典型碳纳米材料的高压结构相变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以单壁碳纳米管和石墨烯为代表的碳纳米材料因其独特的结构,优异的力学、热学、光学、电学性能以及在纳米电子学、纳米器件学、功能化材料等方面所具有的广阔应用前景和丰富的应用价值而成为材料科学领域的研究热点。高压可以有效地改变物质中分子或原子之间的距离,从而改变物质内部的电子分布,能带结构等等,进而在宏观上影响或改变物质的各种物理化学特性,它是产生新物质新材料、发现新规律新理论的重要手段。利用高压实验技术对碳纳米材料开展高压研究,一方面有助于我们了解其高压行为并深入理解碳材料的各种性质;另一方面,由于碳原子成键形式的灵活性和多样性,使得碳纳米材料的高压研究成为合成优异性能的新碳结构特别是新型超硬材料的重要方法和途径。这些都赋予了碳纳米材料高压研究以丰富的内涵。
     本论文以单壁碳纳米管(SWNTs)、C_(60)peapods(C_(60)@SWNTs)以及石墨烯纳米片等几种典型的碳纳米材料为主要对象,利用金刚石对顶砧装置对它们开展了详细的高压结构相变研究。
     单壁碳纳米管的高压研究方面,很多工作都表明其横截面的形状在压力作用下会发生结构上的变化。当碳管的管状结构发生坍缩之后,在更高压力的作用下它将会进一步发生怎么样的结构变化目前还不十分清楚。本文中对直径分布在1.3nm的高质量的电弧法制备的单壁碳纳米管(arc-SWNTs)样品进行了多个激发光波长的高压拉曼光谱研究。通过对碳管样品拉曼特征峰特别是G-band的详细分析,获得了单壁碳纳米管在高压下发生多个结构相变的完整的物理图像:在2GPa和5GPa碳管的横截面分别发生了由圆形变到椭圆形,再由椭圆形到扁平的跑道状的结构变化;在更高压力15-17GPa左右不同的坍缩碳管之间或是同一碳管的管壁间形成了由sp3键组成的内部键连结构,从而使得G-band的峰位和峰宽出现了突变。这一实验结果为理解单壁碳纳米管特有的高压行为和了解其高压相变机制提供了极其重要的参考价值。从31GPa卸压后的arc-SWNTs样品的高分辨电镜测试和拉曼光谱测试表明大部分碳管样品的结构在卸压后得到了恢复。碳管中形成的sp3键连结构对高压下的碳管起到了很好保护作用,从而使其表现出了非常优异的结构稳定性。
     我们进一步对直径分布范围在0.6-1.3nm的宽直径分布的HiPco-SWNTs型碳管进行了使用多种传压介质和不使用传压介质的高压拉曼光谱研究。结合arc-SWNTs样品的高压实验结果,我们对影响碳管高压行为的各种因素进行了详细的分析。研究发现碳管RBM峰的频率ωRBM随压力变化的斜率dωRBM/dp即依赖于碳管的直径又依赖于具体的实验条件。通过与理论计算结果的对比,指出在使用传压介质的情况下,除了压力下碳-碳键硬化效应的影响外,传压介质对碳管RBM的压致频移具有显著的贡献作用,并且与大直径碳管相比,传压介质和小直径的碳管(直径小于0.8nm的碳管)之间有着更强的相互作用。在未使用传压介质的情况下,碳管与碳管间的相互作用对RBM压致频移起着主导作用,而且碳管的管径越小管间相互作用越强。对从不同压力卸压后HiPco-SWNTs样品的研究表明,在不使用传压介质条件下,碳纳米管的塌缩压力依赖于碳管直径,而在使用传压介质的情况下塌缩压力对碳管的直径没有太明显的依赖关系。相比之下,对于arc-SWNTs样品,不论是否使用传压介质,它在经过了31GPa左右的高压处理后都具有很高的结构稳定性。这些结果表明,碳纳米管高压下塌缩后的结构可逆性不仅受到碳纳米管样品自身因素的影响,而且还和其他实验条件密切相关。
     在单壁碳纳米管特殊的中空管道中加入C_(60)分子,便得到了一种全新的全碳纳米复合结构材料C_(60)peapod。目前,对peapod的高压工作一般都集中在相对较低的压力范围来研究限域在碳管内的C_(60)分子的变化行为。而在更高的压力下,C_(60)peapod将会有怎样的高压行为和结构变化,目前还缺少实验和理论上的研究。本文利用拉曼光谱、透射电镜及XRD等实验手段对从31GPa、37GPa、52GPa和81GPa卸压的几个C_(60)peapod样品分别进行了结构相变研究。发现37GPa以及更高压力处理后的样品发生了不可逆变化,卸压后所有碳管的管状结构都遭到了破坏。52GPa和81GPa卸压样品的XRD和高分辨电镜等数据表明peapod样品中形成了可以在常压下得到保持的与理论提出的Cco-C8结构相吻合的超硬相。高压实验后金刚石压砧上出现了明显的压痕表明了该结构的超硬特性。与碳管相比,C_(60)peapod样品形成可以在常压下得到保持的超硬结构所需要的压力值明显降低,这说明在碳管的中空孔道中加入C_(60)分子对于降低碳管向超硬结构转变的压力条件具有十分显著的作用。我们的实验发现对于新型碳超硬纳米材料的制备和优异性能材料的合成都具有非常重要的指导意义。
     石墨烯纳米片是一种厚度在纳米尺寸的准二维碳纳米材料。我们对石墨烯纳米片样品进行了高压拉曼光谱研究。发现了石墨烯纳米片的高压相变行为:在15GPa左右石墨烯纳米片发生了层间的sp3成键的结构相变。对微米石墨和体石墨的高压研究表明其相变压力在19GPa左右,这明显高于石墨烯纳米片的相变压力。石墨烯纳米片和体石墨在厚度尺寸上的不同是造成它们相变压力不同的原因。提出石墨烯纳米片特殊的有限层数的层状结构和独特的相变成核过程是造成其相变压力降低的主要机制。卸压后样品的透射电镜表征和拉曼光谱测试进一步支持了石墨烯纳米片发生结构相变的物理图像。
Since their unique chemical and physical properties and great potentialapplications in the fields of nanoelectronics and multi-functional materials, carbonnanomaterials, such as single-wall carbon nanotubes (SWNTs) and graphene havebeen the subject of intense investigations. High pressure can effectively change thedistances between molecules and atoms to affect the electron distribution and energyband structure of materials, which will greatly influence or even change the propertiesof materials. High pressure is a powerful method to synthesize new materials, to findnew laws and theories of physics. Carrying out high pressure experiments on carbonnanomaterials can help us deeply understand their various properties and furtherprovide an important way to obain new carbon strutures and new carbon materialssuch as the superhard carbon materials, due to the flexibility of carbon to form sp, sp2,and sp3bonds. These arouse great value in the field of high pressure research oncarbon nanomaterials.
     In this thesis, we carried out high pressure research on some typical carbonnanomaterials, such as single-wall carbon nanotubes (SWNTs), C_(60)peapods(C_(60)@SWNTs), and graphene nanoplates by using diamond anvil cell (DAC) to makedetailed research on their structural transitions under pressure.
     Extensive high pressure studies on SWNTs have shown that the cross-section ofnanotubes will change in shape under pressure. However, what structural transitionswill happen in a higher pressure region after the pressure-induced collapse hasoccurred in SWNTs? This issue is still not clear up to now. In our work, we studiedthe high-pressure Raman spectra of high quality single-walled carbon nanotubes(arc-SWNTs) with a narrow diameter distribution of1.3nm by using different lasers.Through detailed analysis of the Raman signals of our SWNTs sample, we obtained the whole physical picture of the structural transitions in SWNTs under pressure. Thepressure-induced changes in Raman signals at around2GPa and5GPa can beattributed to the nanotubes’ cross-section changes from circle to ellipse and then to aflattened shape, respectively. At around15-17GPa both the Raman wavenumber andthe linewidth of the G-band as a function as pressure exhibit anomalies. We suggestthat the interlinked configuration with sp3bonds is formed among nanotubes or evenbetween the two opposite walls of a collapsed nanotube for this anomaly, which couldbe corresponding to the anomalies in G-band wavenumber and width. Our HRTEMobservations and Raman measurements on the decompressed samples show that theSWNTs are almost recovered even from31GPa. It is proposed that the formation ofinterlinking sp3C-C bonds in SWNTs stabilize the nanotube structure and thusenhance significantly the high pressure stability of SWNTs.
     Raman spectra of HiPco-SWNTs with diameters of0.6–1.3nm was furtherstudied under high pressure. It is found that the pressure dependence of the radialR-band frequency, dω/dp, is diameter and experimental condition dependent.Compared with the theoretical calculation, we believe that besides thepressure-induced hardening of the C-C bond, the effect from PTM contributessignificantly to the pressure-induced upshift of RBMs in the experiments with PTMs,and the interaction between PTM and nanotubes becomes stronger in nanotubes withdiameters smaller than~0.8nm. In the experiments without a PTM, the intertubeinteractions dominate the upshift of RBMs, i.e., the smaller the nanotube diameter, thestronger the intertube interactions. The results thus indicate that the smaller diameternanotubes should have stronger coupling to the PTM in the case with a PTM, andinstead stronger intertube interactions between each other in the case without a PTM.For the HiPco SWNTs upon decompression, it is found that the pressure for thecollapse of a nanotube is diameter dependent in the experiments without a PTM butshows little diameter dependence in the case with a PTM. In contrast, the arc-SWNTsshow high stability even after31GPa compression with or without a PTM. Theseresults suggest that the reversibility of the collapse for a nanotube depends on thenanotube itself and also on other experimental conditions.
     The encapsulation of C_(60)molecules into SWNTs can result in a self-assemblednanotube-C_(60)hybrid structure, the so-called peapods C_(60)@SWNTs, a new carboncomposite nanomaterial. Nowadays the high pressure studies on C_(60)peapods mainly focus on the behaviors of confined C_(60)in a relative low pressure region. The structuraltransitions of C_(60)peapods under the higher pressure region are still absent both in theexperimental and theoretical studies. By using Raman spectroscopy, HRTEM andXRD technique, we investigated the structural phase transitions of decompressed C_(60)peapod samples from different pressures of31GPa,37GPa,52GPa,81GPa. It isfound that the initial structure of C_(60)peapod is absolutely destroyed when it isdecompressed from37GPa and the above pressure value. The X-ray diffractionpattern and HRTEM observations on the52GPa and81GPa decompressed samplesindicate that a new quenchable suprhard carbon phase is formed, which is highlyconsistent with the Cco-C8structure proposed by a theoretical work. The ring crackindentations on the diamond anvils following the original boundary of sample in thegasket are found, indicating the exceptional hardness of this new phase. Compared tothe carbon nanotubes, the pressure value to get the quenchable suprhard carbon phaseis obviously reduced. This indicates that the insertion of C_(60)into SWNTs could highlylower the pressure condition to obtain the quenchable suprhard carbon phase. Ourexperimental findings have great guiding significance for the synthesis of newsuperhard carbon materials and the materials with unique properties.
     Graphene nanoplate is a quasi two-dimensional carbon nanomaterial with thethickness in nano-scale. High pressure Raman study on graphene nanoplates has beencarried out in a diamond anvil cell. A phase transformation has been observed ingraphene nanoplates at15GPa, which can be explained by the interlayer couplingwith sp3bonds formed in the material. For graphite and micro-graphite, the transitionpressure is19GPa, which is obvious higher than that of graphene nanoplates. Thedifferent thickness of graphene nanoplates/graphite could be responsible for thedifferent phase transition pressure in our experiments. And the lower phase pressurein graphene nanoplates is explained by their specical limited-number layer structureand nucleation process in phase transition. Our TEM observations and Ramanmeasurements on the decompressed samples of graphene nanoplates further support the proposed transformation picture.
引文
[1]张力德,牟季美.纳米材料和纳米结构:科学出版社,2001
    [2]唐元洪,裴立宅,赵新奇.纳米材料导论:湖南大学出版社,2011
    [3] Sumio Iijima. Helical microtubules of graphitic carbon. Nature354,56–58(1991).
    [4] Sumio Iijima and Toshinari Ichihashi. Single-shell carbon nanotubes of1-nmdiameter. Nature363,603–605(1993).
    [5] Steven C. Clemens, John W. Farrell, and L. Peter Gromet. Synchronouschanges in seawater strontium isotope composition and global climate. Nature363,607–610(1993).
    [6]韦进全,张先锋,王昆林.碳纳米管宏观体:清华大学出版社,2006.
    [7] H. Dai, E. W. Wong, and C. M. Lieber. Probing Electrical Transport inNanomaterials: Conductivity of Individual Carbon Nanotubes. Science272,523–526(1996).
    [8] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S.G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer,and R. E. Smalley. Crystalline Ropes of Metallic Carbon Nanotubes. Science273,483–487(1996).
    [9] T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T.Thio. Electrical conductivity of individual carbon nanotubes. Nature382,54–56(1996).
    [10] Teri Wang Odom. Atomic structure and electronic properties of single-walledcarbon nanotubes. Nature391,62–64(1998).
    [11] O. Chauvet, L. Forro, W. Bacsa, D. Ugarte, B. Doudin, and Walt de Heer.Magnetic anisotropies of aligned carbon nanotubes. Physical Review B52,R6963–R6966(1995).
    [12] Madhu Menon and Deepak Srivastava. Carbon Nanotube―T Junctions‖:Nanoscale Metal-Semiconductor-Metal Contact Devices. Physical ReviewLetters79,4453–4456(1997).
    [13] Jian Lu. Elastic Properties of Carbon Nanotubes and Nanoropes. PhysicalReview Letters79,1297–1300(1997).
    [14] Y. Y. Wei and Gyula Eres. Directed assembly of carbon nanotube electroniccircuits. Applied Physics Letters76,3759(2000).
    [15] E. Hernández, C. Goze, P. Bernier, and A. Rubio. Elastic Properties of C andBxCyNz Composite Nanotubes. Physical Review Letters80,4502–4505(1998).
    [16] Savas Berber, Young-Kyun Kwon, and David Tománek. Unusually HighThermal Conductivity of Carbon Nanotubes. Physical Review Letters84,4613–4616(2000).
    [17] Eric Pop, David Mann, Qian Wang, Kenneth Goodson, and Hongjie Dai.Thermal conductance of an individual single-wall carbon nanotube above roomtemperature. Nano letters6,96–100(2006).
    [18] Choongho Yu, Li Shi, Zhen Yao, Deyu Li, and Arunava Majumdar. Thermalconductance and thermopower of an individual single-wall carbon nanotube.Nano letters5,1842–6(2005).
    [19] P M Ajayan, M Terrones, A de la Guardia, V Huc, N Grobert, B Q Wei, HLezec, G Ramanath, and T W Ebbesen. Nanotubes in a flash--ignition andreconstruction. Science (New York, N.Y.)296,705(2002).
    [20] M. Lin. Optical spectra of single-wall carbon nanotube bundles. PhysicalReview B62,13153–13159(2000).
    [21] R. Saito, A. Gruneis, G.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, A.Jorio, L.G. Cancado, M.A. Pimenta, and A.G. Souza Filho. Optical absorptionof graphite and single-wall carbon nanotubes. Applied Physics A: MaterialsScience&Processing78,1099–1105(2004).
    [22] Byong M. Kim, Shashank Sinha, and Haim H. Bau. Optical Microscope Studyof Liquid Transport in Carbon Nanotubes. Nano Letters4,2203–2208(2004).
    [23] Sergei M Bachilo, Michael S Strano, Carter Kittrell, Robert H Hauge, RichardE Smalley, and R Bruce Weisman. Structure-assigned optical spectra ofsingle-walled carbon nanotubes. Science (New York, N.Y.)298,2361–6(2002).
    [24] Sergei M Bachilo, Michael S Strano, Carter Kittrell, Robert H Hauge, RichardE Smalley, and R Bruce Weisman. Structure-assigned optical spectra ofsingle-walled carbon nanotubes. Science (New York, N.Y.)298,2361–6(2002).
    [25] Jason E Riggs, Zhixin Guo, David L Carroll, and Ya-Ping Sun. StrongLuminescence of Solubilized Carbon Nanotubes. Journal of the AmericanChemical Society122,5879–5880(2000).
    [26] Jean-Marc Bonard, Thomas St ckli, Frédéric Maier, Walt de Heer, AndréChatelain, Jean-Paul Salvetat, and László Forró. Field-Emission-InducedLuminescence from Carbon Nanotubes. Physical Review Letters81,1441–1444(1998).
    [27] W Liang, M Bockrath, D Bozovic, J H Hafner, M Tinkham, and H Park. Fabry-Perot interference in a nanotube electron waveguide. Nature411,665–9(2001).
    [28] Ray H Baughman, Anvar A Zakhidov, and Walt A de Heer. Carbonnanotubes--the route toward applications. Science (New York, N.Y.)297,787–92(2002).
    [29] B. Q. Wei, R. Vajtai, and P. M. Ajayan. Reliability and current carryingcapacity of carbon nanotubes. Applied Physics Letters79,1172(2001).
    [30] T. Kuzumaki, K. Miyazawa, H. Ichinose, and K. Ito. Processing of CarbonNanotube Reinforced Aluminum Composite. Journal of Materials Research13,2445–2449(1998).
    [31] RZ Ma, J Wu, BQ Wei, J Liang, and DH Wu. Processing and properties ofcarbon nanotubes–nano-SiC ceramic. Journal of Materials Science3,5243–5246(1998).
    [32] Yahachi Saito, Sashiro Uemura, and Koji Hamaguchi. Cathode Ray TubeLighting Elements with Carbon Nanotube Field Emitters. Japanese Journal ofApplied Physics37, L346–L348(1998).
    [33] Yan-Hui Li, Shuguang Wang, Anyuan Cao, Dan Zhao, Xianfeng Zhang, CailuXu, Zhaokun Luan, Dianbo Ruan, Ji Liang, Dehai Wu, and Bingqing Wei.Adsorption of fluoride from water by amorphous alumina supported on carbonnanotubes. Chemical Physics Letters350,412–416(2001).
    [34] K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, IV Grigorieva, and A A Firsov. Electric field effect in atomically thin carbonfilms. Science (New York, N.Y.)306,666–9(2004).
    [35]朱宏伟,徐志平,谢丹.石墨烯——结构、制备方法与性能表征:清华大学出版社,2011.
    [36] A K Geim and K S Novoselov. The rise of graphene. Nature materials6,183–91(2007).
    [37] R R Nair, P Blake, A N Grigorenko, K S Novoselov, T J Booth, T Stauber, NM R Peres, and A K Geim. Fine structure constant defines visual transparencyof graphene. Science (New York, N.Y.)320,1308(2008).
    [38] Z H Ni, H M Wang, J Kasim, H M Fan, T Yu, Y H Wu, Y P Feng, and Z XShen. Graphene thickness determination using reflection and contrastspectroscopy. Nano letters7,2758–63(2007).
    [39] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim,and H.L. Stormer. Ultrahigh electron mobility in suspended graphene. SolidState Communications146,351–355(2008).
    [40] Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, KwangS Kim, Jong-Hyun Ahn, Philip Kim, Jae-Young Choi, and Byung Hee Hong.Large-scale pattern growth of graphene films for stretchable transparentelectrodes. Nature457,706–10(2009).
    [41] K S Novoselov, A K Geim, S V Morozov, D Jiang, M I Katsnelson, I VGrigorieva, S V Dubonos, and A A Firsov. Two-dimensional gas of masslessDirac fermions in graphene. Nature438,197–200(2005).
    [42] Yuanbo Zhang, Yan-Wen Tan, Horst L Stormer, and Philip Kim. Experimentalobservation of the quantum Hall effect and Berry’s phase in graphene. Nature438,201–4(2005).
    [43] Changgu Lee, Xiaoding Wei, Jeffrey W Kysar, and James Hone. Measurementof the elastic properties and intrinsic strength of monolayer graphene. Science(New York, N.Y.)321,385–8(2008).
    [44] Alexander A Balandin, Suchismita Ghosh, Wenzhong Bao, Irene Calizo,Desalegne Teweldebrhan, Feng Miao, and Chun Ning Lau. Superior thermalconductivity of single-layer graphene. Nano letters8,902–7(2008).
    [45] Suchismita Ghosh, Wenzhong Bao, Denis L Nika, Samia Subrina, Evghenii PPokatilov, Chun Ning Lau, and Alexander A Balandin. Dimensional crossoverof thermal transport in few-layer graphene. Nature materials9,555–8(2010).
    [46] Jiuning Hu, Xiulin Ruan, and Yong P Chen. Thermal conductivity and thermalrectification in graphene nanoribbons: a molecular dynamics study. Nanoletters9,2730–5(2009).
    [47] D. Nika, E. Pokatilov, A. Askerov, and A. Balandin. Phonon thermalconduction in graphene: Role of Umklapp and edge roughness scattering.Physical Review B79,155413(2009).
    [48] Alexander V. Savin, Yuri S. Kivshar, and Bambi Hu. Suppression of thermalconductivity in graphene nanoribbons with rough edges. Physical Review B82,195422(2010).
    [49] Yanwu Zhu, Shanthi Murali, Weiwei Cai, Xuesong Li, Ji Won Suk, Jeffrey RPotts, and Rodney S Ruoff. Graphene and graphene oxide: synthesis, properties,and applications. Advanced materials (Deerfield Beach, Fla.)22,3906–24(2010).
    [50] Sungjin Park and Rodney S Ruoff. Chemical methods for the production ofgraphenes. Nature nanotechnology4,217–24(2009).
    [51] Zhiping Xu and Kun Xue. Engineering graphene by oxidation: a first-principlesstudy. Nanotechnology21,045704(2010).
    [52] Radek Zbo il, Franti ek Karlicky, Athanasios B Bourlinos, Theodore ASteriotis, Athanasios K Stubos, Vasilios Georgakilas, Klára afá ová, DaliborJan ík, Christos Trapalis, and Michal Otyepka. Graphene fluoride: a stablestoichiometric graphene derivative and its chemical conversion to graphene.Small (Weinheim an der Bergstrasse, Germany)6,2885–91(2010).
    [53] Jeremy T Robinson, James S Burgess, Chad E Junkermeier, Stefan C Badescu,Thomas L Reinecke, F Keith Perkins, Maxim K Zalalutdniov, Jeffrey WBaldwin, James C Culbertson, Paul E Sheehan, and Eric S Snow. Properties offluorinated graphene films. Nano letters10,3001–5(2010).
    [54] G. Giovannetti, P. Khomyakov, G. Brocks, V. Karpan, J. van den Brink, and P.Kelly. Doping Graphene with Metal Contacts. Physical Review Letters101,026803(2008).
    [55] K. V. Emtsev, F. Speck, Th. Seyller, and L. Ley. Interaction, growth, andordering of epitaxial graphene on SiC{0001} surfaces: A comparativephotoelectron spectroscopy study. Physical Review B77,155303(2008).
    [56] Masa Ishigami, J H Chen, W G Cullen, M S Fuhrer, and E D Williams. Atomicstructure of graphene on SiO2. Nano letters7,1643–8(2007).
    [57] Holger Spanggaard and Frederik C. Krebs. A brief history of the developmentof organic and polymeric photovoltaics. Solar Energy Materials and SolarCells83,125–146(2004).
    [58] Xuan Wang, Linjie Zhi, and Klaus Müllen. Transparent, conductive grapheneelectrodes for dye-sensitized solar cells. Nano letters8,323–7(2008).
    [59] Xinming Li, Hongwei Zhu, Kunlin Wang, Anyuan Cao, Jinquan Wei, ChunyanLi, Yi Jia, Zhen Li, Xiao Li, and Dehai Wu. Graphene-on-silicon Schottkyjunction solar cells. Advanced materials (Deerfield Beach, Fla.)22,2743–8(2010).
    [60] Vincent C Tung, Li-Min Chen, Matthew J Allen, Jonathan K Wassei, KurtNelson, Richard B Kaner, and Yang Yang. Low-temperature solutionprocessing of graphene-carbon nanotube hybrid materials for high-performancetransparent conductors. Nano letters9,1949–55(2009).
    [61] Dongyu Cai, Mo Song, and Chenxi Xu. Highly ConductiveCarbon-Nanotube/Graphite-Oxide Hybrid Films. Advanced Materials20,1706–1709(2008).
    [62] Y-M Lin, C Dimitrakopoulos, K A Jenkins, D B Farmer, H-Y Chiu, A Grill,and Ph Avouris.100-GHz transistors from wafer-scale epitaxial graphene.Science (New York, N.Y.)327,662(2010).
    [63] F Schedin, A K Geim, S V Morozov, E W Hill, P Blake, M I Katsnelson, and KS Novoselov. Detection of individual gas molecules adsorbed on graphene.Nature materials6,652–5(2007).
    [64] Sukang Bae, Hyeongkeun Kim, Youngbin Lee, Xiangfan Xu, Jae-Sung Park,Yi Zheng, Jayakumar Balakrishnan, Tian Lei, Hye Ri Kim, Young Il Song,Young-Jin Kim, Kwang S Kim, Barbaros Ozyilmaz, Jong-Hyun Ahn, ByungHee Hong, and Sumio Iijima. Roll-to-roll production of30-inch graphene filmsfor transparent electrodes. Nature nanotechnology5,574–8(2010).
    [65] Peter Blake, Paul D Brimicombe, Rahul R Nair, Tim J Booth, Da Jiang, FredSchedin, Leonid A Ponomarenko, Sergey V Morozov, Helen F Gleeson, ErnieW Hill, Andre K Geim, and Kostya S Novoselov. Graphene-based liquidcrystal device. Nano letters8,1704–8(2008).
    [66] Kunook Chung, Chul-Ho Lee, and Gyu-Chul Yi. Transferable GaN layersgrown on ZnO-coated graphene layers for optoelectronic devices. Science (NewYork, N.Y.)330,655–7(2010).
    [67] Gunho Jo, Minhyeok Choe, Chu-Young Cho, Jin Ho Kim, Woojin Park,Sangchul Lee, Woong-Ki Hong, Tae-Wook Kim, Seong-Ju Park, Byung HeeHong, Yung Ho Kahng, and Takhee Lee. Large-scale patterned multi-layergraphene films as transparent conducting electrodes for GaN light-emittingdiodes. Nanotechnology21,175201(2010).
    [68] Ishwor Khatri, Sudip Adhikari, Hare Ram Aryal, Tetsuo Soga, Takashi Jimbo,and Masayoshi Umeno. Improving photovoltaic properties by incorporatingboth single walled carbon nanotubes and functionalized multiwalled carbonnanotubes. Applied Physics Letters94,093509(2009).
    [69] Jeremy T Robinson, Maxim Zalalutdinov, Jeffrey W Baldwin, Eric S Snow,Zhongqing Wei, Paul Sheehan, and Brian H Houston. Wafer-scale reducedgraphene oxide films for nanomechanical devices. Nano letters8,3441–5(2008).
    [70] L A Ponomarenko, F Schedin, M I Katsnelson, R Yang, E W Hill, K SNovoselov, and A K Geim. Chaotic Dirac billiard in graphene quantum dots.Science (New York, N.Y.)320,356–8(2008).
    [71] Bj rn Trauzettel, Denis V. Bulaev, Daniel Loss, and Guido Burkard. Spinqubits in graphene quantum dots. Nature Physics3,192–196(2007).
    [72] Hyunwoo Kim, Ahmed A. Abdala, and Christopher W. Macosko.Graphene/Polymer Nanocomposites. Macromolecules43,6515–6530(2010).
    [73] A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, and R.C. Haddon. GraphiteNanoplatelet-Epoxy Composite Thermal Interface Materials. Journal ofPhysical Chemistry C111,7565–7569(2007).
    [74] Patrice Simon and Yury Gogotsi. Materials for electrochemical capacitors.Nature materials7,845–54(2008).
    [75] EunJoo Yoo, Jedeok Kim, Eiji Hosono, Hao-shen Zhou, Tetsuichi Kudo, andItaru Honma. Large reversible Li storage of graphene nanosheet families foruse in rechargeable lithium ion batteries. Nano letters8,2277–82(2008).
    [76] Guoxiu Wang, Xiaoping Shen, Jane Yao, and Jinsoo Park. Graphenenanosheets for enhanced lithium storage in lithium ion batteries. Carbon47,2049–2053(2009).
    [77] Jun-Qiang Lu, Jian Wu, Wenhui Duan, Feng Liu, Bang-Fen Zhu, and Bing-LinGu. Metal-to-Semiconductor Transition in Squashed Armchair CarbonNanotubes. Physical Review Letters90,156601(2003).
    [78] U. Venkateswaran, A. Rao, E. Richter, M. Menon, A. Rinzler, R. Smalley, andP. Eklund. Probing the single-wall carbon nanotube bundle: Raman scatteringunder high pressure. Physical Review B59,10928–10934(1999).
    [79] M. Peters, L. McNeil, Jian Lu, and Daniel Kahn. Structural phase transition incarbon nanotube bundles under pressure. Physical Review B61,5939–5944(2000).
    [80] P Teredesai. Pressure-induced reversible transformation in single-wall carbonnanotube bundles studied by Raman spectroscopy. Chemical Physics Letters319,296–302(2000).
    [81] I. Loa. Raman spectroscopy on carbon nanotubes at high pressure. Journal ofRaman Spectroscopy34,611–627(2003).
    [82] U. Venkateswaran, D. Masica, G. Sumanasekera, C. Furtado, U. Kim, and P.Eklund. Diameter dependent wall deformations during the compression of acarbon nanotube bundle. Physical Review B68,10–13(2003).
    [83] James Elliott, Jan Sandler, Alan Windle, Robert Young, and Milo Shaffer.Collapse of Single-Wall Carbon Nanotubes is Diameter Dependent. PhysicalReview Letters92,92–95(2004).
    [84] Maher S Amer, Mostafa M El-Ashry, and John F Maguire. Study of thehydrostatic pressure dependence of the Raman spectrum of single-walledcarbon nanotubes and nanospheres. The Journal of chemical physics121,2752–7(2004).
    [85] A. Merlen, N. Bendiab, P. Toulemonde, A. Aouizerat, A. San Miguel, J.Sauvajol, G. Montagnac, H. Cardon, and P. Petit. Resonant Ramanspectroscopy of single-wall carbon nanotubes under pressure. Physical ReviewB72,1–6(2005).
    [86] Sergei Lebedkin, Katharina Arnold, Oliver Kiowski, Frank Hennrich, andManfred Kappes. Raman study of individually dispersed single-walled carbonnanotubes under pressure. Physical Review B73,1–12(2006).
    [87] Ch. Caillier, D. Machon, A. San-Miguel, R. Arenal, G. Montagnac, H. Cardon,M. Kalbac, M. Zukalova, and L. Kavan. Probing high-pressure properties ofsingle-wall carbon nanotubes through fullerene encapsulation. Physical ReviewB77,1–9(2008).
    [88] Mingguang Yao, Zhigang Wang, Bingbing Liu, Yonggang Zou, Shidan Yu,Wang Lin, Yuanyuan Hou, Shoufu Pan, Mingxing Jin, Bo Zou, Tian Cui,Guangtian Zou, and B. Sundqvist. Raman signature to identify the structuraltransition of single-wall carbon nanotubes under high pressure. PhysicalReview B78,1–9(2008).
    [89] Jing-Yin Chen, Minseob Kim, and Choong-Shik Yoo. High structural stabilityof single wall carbon nanotube under quasi-hydrostatic high pressures.Chemical Physics Letters479,91–94(2009).
    [90] J Tang, Lc Qin, T Sasaki, M Yudasaka, a Matsushita, and S Iijima.Compressibility and polygonization of single-walled carbon nanotubes underhydrostatic pressure. Physical review letters85,1887–9(2000).
    [91] Surinder Sharma, S. Karmakar, S. Sikka, Pallavi Teredesai, a. Sood, a.Govindaraj, and C. Rao. Pressure-induced phase transformation and structuralresilience of single-wall carbon nanotube bundles. Physical Review B63,1–5(2001).
    [92] S. Rols, I. Goncharenko, R. Almairac, J. Sauvajol, and I. Mirebeau.Polygonization of single-wall carbon nanotube bundles under high pressure.Physical Review B64,1–4(2001).
    [93] C. a. Kuntscher, A. Abouelsayed, K. Thirunavukkuarasu, and F. Hennrich.Pressure-induced phenomena in single-walled carbon nanotubes: Structuralphase transitions and the role of pressure transmitting medium. Physica StatusSolidi (B)247,2789–2792(2010).
    [94] A. Abouelsayed, K. Thirunavukkuarasu, F. Hennrich, and C. A. Kuntscher.Role of the Pressure Transmitting Medium for the Pressure Effects inSingle-Walled Carbon Nanotubes. The Journal of Physical Chemistry C114,4424–4428(2010).
    [95] K. Thirunavukkuarasu, F. Hennrich, K. Kamarás, and C. A. Kuntscher. Infraredspectroscopic studies on unoriented single-walled carbon nanotube films underhydrostatic pressure. Physical Review B81,1–12(2010).
    [96] X. Zhang, D. Sun, Z. Liu, and X. Gong. Structure and phase transitions ofsingle-wall carbon nanotube bundles under hydrostatic pressure. PhysicalReview B70,1–5(2004).
    [97] Paul Tangney, Rodrigo B Capaz, Catalin D Spataru, Marvin L Cohen, andSteven G Louie. Structural transformations of carbon nanotubes underhydrostatic pressure. Nano letters5,2268–73(2005).
    [98] Wei Yang, Ru-Zhi Wang, Yu-Fang Wang, Xue-Mei Song, Bo Wang, and HuiYan. Anomalous pressure behavior of tangential modes in single-wall carbonnanotubes. Physical Review B76,1–4(2007).
    [99] W. Yang, R. Wang, X. Song, B. Wang, and H. Yan. Pressure-inducedRaman-active radial breathing mode transition in single-wall carbon nanotubes.Physical Review B75,2–6(2007).
    [100] Siu-Pang Chan, Wai-Leung Yim, X. Gong, and Zhi-Feng Liu. Carbon nanotubebundles under high pressure: Transformation to low-symmetry structures.Physical Review B68,1–7(2003).
    [101] S. Reich, C. Thomsen, and P. Ordejón. Elastic properties and pressure-inducedphase transitions of single-walled carbon nanotubes. Physica Status Solidi (B)235,354–359(2003).
    [102] Sukanta Karmakar, Surinder M Sharma, P. V. Teredesai, D. V. S. Muthu, A.Govindaraj, S. K. Sikka, and A. K. Sood. Structural changes in single-walledcarbon nanotubes under non-hydrostatic pressures: x-ray and Raman studies.New Journal of Physics5,143–143(2003).
    [103] D. Sun, D. Shu, M. Ji, Feng Liu, M. Wang, and X. Gong. Pressure-inducedhard-to-soft transition of a single carbon nanotube. Physical Review B70,1–5(2004)
    [104] Ji Zang, Andrejs Treibergs, Y. Han, and Feng Liu. Geometric ConstantDefining Shape Transitions of Carbon Nanotubes under Pressure. PhysicalReview Letters92,10–13(2004).
    [105] Ji Zang and O Aldás-Palacios. MD Simulation of Structural and MechanicalTransformation of Single-Walled Carbon Nanotubes Under Pressure. Physics2,451–465(2007).
    [106] Masayuki Hasegawa and Kazume Nishidate. Radial deformation and stabilityof single-wall carbon nanotubes under hydrostatic pressure. Physical Review B74,1–10(2006).
    [107] A. Merlen, P. Toulemonde, N. Bendiab, A. Aouizerat, J. L. Sauvajol, G.Montagnac, H. Cardon, P. Petit, and A. San Miguel. Raman spectroscopy ofopen-ended Single Wall Carbon Nanotubes under pressure: effect of thepressure transmitting medium. Physica Status Solidi (B)243,690–699(2006).
    [108] T. Yildirim, O. Gülseren,. K l, and S. Ciraci. Pressure-induced interlinkingof carbon nanotubes. Physical Review B62,12648–12651(2000).
    [109] Sumit Saxena and Trevor A Tyson. Interacting quasi-two-dimensional sheets ofinterlinked carbon nanotubes: a high-pressure phase of carbon. ACS nano4,3515–21(2010).
    [110] Wanlin Guo, C. Zhu, T. Yu, C. Woo, B. Zhang, and Y. Dai. Formation of sp3Bonding in Nanoindented Carbon Nanotubes and Graphite. Physical ReviewLetters93,1–4(2004).
    [111] M Popov. Superhard phase of single wall carbon nanotube: comparison withfullerite C60and diamond. Diamond and Related Materials12,833–839(2003).
    [112] Jeremy R. Patterson, Yogesh K. Vohra, Samuel T. Weir, and JagannadhamAkella. Single-Wall Carbon Nanotubes under High Pressures to62GPaStudied Using Designer Diamond Anvils. Journal of Nanoscience andNanotechnology1,143–147(2001).
    [113] Zhongwu Wang, Yusheng Zhao, Kimberly Tait, Xiaozhou Liao, David Schiferl,Changsheng Zha, Robert T Downs, Jiang Qian, Yuntian Zhu, and Tongde Shen.A quenchable superhard carbon phase synthesized by cold compression ofcarbon nanotubes. Proceedings of the National Academy of Sciences of theUnited States of America101,13699–702(2004).
    [114] A. M. Rao, P. Zhou, K.-A. Wang, G. T. Hager, J. M. Holden, Y. Wang, W.-T.Lee, X.-X. Bi, P. C. Eklund, D. S. Cornett, M. A. Duncan, and I. J. Amster.Photoinduced Polymerization of Solid C60Films. Science259,955–957(1993).
    [115] V.D. Blank, S.G. Buga, G.A. Dubitsky, N. R. Serebryanaya, M.Yu. Popov, andB. Sundqvist. High-pressure polymerized phases of C60. Carbon36,319–343(1998).
    [116] B. Sundqvist. Fullerenes under high pressures. Advances in Physics48,1–134(1999).
    [117] Fred Moshary, Nancy Chen, Isaac Silvera, Charles Brown, Harry Dorn,Mattanjah de Vries, and Donald Bethune. Gap reduction and the collapse ofsolid C60to a new phase of carbon under pressure. Physical Review Letters69,466–469(1992).
    [118] Lin Wang, Bingbing Liu, Dedi Liu, Mingguang Yao, Shidan Yu, YuanyuanHou, Bo Zou, Tian Cui, Guangtian Zou, Bertil Sundqvist, Zongju Luo, Hui Li,Yanchun Li, Jing Liu, Shijian Chen, Guorui Wang, and Yichun Liu. Synthesisand high pressure induced amorphization of C60nanosheets. Applied PhysicsLetters91,103112(2007).
    [119] Lin Wang, Bingbing Liu, Hui Li, Wenge Yang, Yang Ding, Stanislav VSinogeikin, Yue Meng, Zhenxian Liu, Xiao Cheng Zeng, and Wendy L Mao.Long-range ordered carbon clusters: a crystalline material with amorphousbuilding blocks. Science (New York, N.Y.)337,825–8(2012).
    [120] Brian W. Encapsulated C60in carbon nanotubes. Nature396,323(1998).
    [121] Yonggang Zou, Bingbing Liu, Liancheng Wang, Dedi Liu, Shidan Yu, PengWang, Tianyi Wang, Mingguang Yao, Quanjun Li, Bo Zou, Tian Cui,Guangtian Zou, Thomas W gberg, Bertil Sundqvist, and Ho-Kwang Mao.Rotational dynamics of confined C60from near-infrared Raman studies underhigh pressure. Proceedings of the National Academy of Sciences of the UnitedStates of America106,22135–8(2009).
    [122] Zou, Y., Liu, B.&Yao, M. Effective polymerization study of C60s in SWNTsunder simultaneous high pressure and UV light irradiation.
    [123] Yonggang Zou, Bingbing Liu, Mingguang Yao, Yuanyuan Hou, Lin Wang,Shidan Yu, Peng Wang, Bing Li, Bo Zou, Tian Cui, Guangtian Zou, T.W gberg, and B. Sundqvist. Raman spectroscopy study of carbon nanotubepeapods excited by near-IR laser under high pressure. Physical Review B76,1–6(2007).
    [124] Ryo Kitaura and Hisanori Shinohara, H. Carbon-nanotube-based hybridmaterials: nanopeapods. Chemistry, an Asian journal1,646–55(2006).
    [125] R B Aust and H G Drickamer. Carbon: A New Crystalline Phase. Science (NewYork, N.Y.)140,817–9(1963).
    [126] W Utsumi and T Yagi. Light-transparent phase formed by room-temperaturecompression of graphite. Science (New York, N.Y.)252,1542–4(1991).
    [127] Jeffrey M. Montgomery, Boris Kiefer, and Kanani K. M. Lee. Determining thehigh-pressure phase transition in highly-ordered pyrolitic graphite withtime-dependent electrical resistance measurements. Journal of Applied Physics110,043725(2011).
    [128] ED Miller, DC Nesting, and JV Badding. Quenchable transparent phase ofcarbon. Chemistry of materials4756,18–22(1997).
    [129] Maximilian Amsler, José Flores-Livas, Lauri Lehtovaara, Felix Balima, S.Ghasemi, Denis Machon, Stéphane Pailhès, Alexander Willand, DamienCaliste, Silvana Botti, Alfonso San Miguel, Stefan Goedecker, and MiguelMarques. Crystal Structure of Cold Compressed Graphite. Physical ReviewLetters108,1–4(2012).
    [130] M. Hanfland, H. Beister, and K. Syassen. Graphite under pressure: Equation ofstate and first-order Raman modes. Physical Review B39,12598–12603(1989).
    [131] Trent L Schindler and Yogesh K Vohra. A micro-Raman investigation ofhigh-pressure quenched graphite. Journal of Physics: Condensed Matter7,L637(1995).
    [132] Ji-an Xu, Ho-kwang Mao, and Russell J Hemley. The gem anvil cell:high-pressure behaviour of diamond and related materials. Journal of Physics:Condensed Matter14,11549–11552(2002).
    [133] Wendy L Mao, Ho-kwang Mao, Peter J Eng, Thomas P Trainor, MatthewNewville, Chi-chang Kao, Dion L Heinz, Jinfu Shu, Yue Meng, and Russell JHemley. Bonding changes in compressed superhard graphite. Science (NewYork, N.Y.)302,425–7(2003).
    [134] Koichiro Umemoto, Renata M. Wentzcovitch, Susumu Saito, and TakashiMiyake. Body-Centered Tetragonal C4: A Viable sp3Carbon Allotrope.Physical Review Letters104,1–4(2010).
    [135] Quan Li, Yanming Ma, Artem Oganov, Hongbo Wang, Hui Wang, Ying Xu,Tian Cui, Ho-Kwang Mao, and Guangtian Zou. Superhard MonoclinicPolymorph of Carbon. Physical Review Letters102,1–4(2009).
    [136] Jian-Tao Wang, Changfeng Chen, and Yoshiyuki Kawazoe. Low-TemperaturePhase Transformation from Graphite to sp3Orthorhombic Carbon. PhysicalReview Letters106,15–18(2011).
    [137] Yuejian Wang, Joseph E Panzik, Boris Kiefer, and Kanani K M Lee. Crystalstructure of graphite under room-temperature compression and decompression.Scientific reports2,520(2012).
    [138] Y. Wang and K. K. M. Lee. From soft to superhard: Fifty years of experimentson cold-compressed graphite. Journal of Superhard Materials34,360–370(2013).
    [139] S.M. Clark, Ki-Joon Jeon, Jing-Yin Chen, and Choong-Shik Yoo. Few-layergraphene under high pressure: Raman and X-ray diffraction studies. Solid StateCommunications154,15–18(2013).
    [140] Jimmy Nicolle, Denis Machon, Philippe Poncharal, Olivier Pierre-Louis, andAlfonso San-Miguel. Pressure-mediated doping in graphene. Nano letters11,3564–8(2011).
    [141] John Proctor, Eugene Gregoryanz, Konstantin Novoselov, Mustafa Lotya,Jonathan Coleman, and Matthew Halsall. High-pressure Raman spectroscopyof graphene. Physical Review B80,1–4(2009).
    [142] Yanming Ma, Mikhail Eremets, Artem R Oganov, Yu Xie, Ivan Trojan, SergeyMedvedev, Andriy O Lyakhov, Mario Valle, and Vitali Prakapenka.Transparent dense sodium. Nature458,182–5(2009).
    [143] H K Mao, A P Jephcoat, R J Hemley, L W Finger, C S Zha, R M Hazen, and DE Cox. Synchrotron X-ray Diffraction Measurements of Single-CrystalHydrogen to26.5Gigapascals. Science (New York, N.Y.)239,1131–4(1988).
    [144] I. Chou. In Situ Observations of a High-Pressure Phase of H2O Ice. Science281,809–812(1998).
    [145] G. J. Piermarini and S. Block. Ultrahigh pressure diamond-anvil cell andseveral semiconductor phase transition pressures in relation to the fixed pointpressure scale. Review of Scientific Instruments46,973(1975).
    [146] R A Forman, G J Piermarini, J D Barnett, and S Block. Pressure measurementmade by the utilization of ruby sharp-line luminescence. Science (New York,N.Y.)176,284–5(1972).
    [147] G. J. Piermarini, S. Block, J. D. Barnett, and R. A. Forman. Calibration of thepressure dependence of the R1ruby fluorescence line to195kbar. Journal ofApplied Physics46,2774(1975).
    [148] H. K. Mao, J. Xu, and P. M. Bell. Calibration of the ruby pressure gauge to800kbar under quasi-hydrostatic conditions. Journal of Geophysical Research91,4673(1986).
    [149]安德里亚·卡罗·费拉里,约翰·罗伯逊,碳材料的拉曼光谱——从纳米管到金刚石(中文版):化学工业出版社,2007.
    [150] M. Dresselhaus, G. Dresselhaus, and P. Eklund. Science of Fullerenes andCarbon Nanotubes.(Academic, San Diego:1996).
    [151] M Meyyappan. Carbon nanotubes: science and applications.(CRC, BocaRaton:2005).
    [152] Chan-Jeong Park, Yong-Hyun Kim, and K. Chang. Band-gap modification byradial deformation in carbon nanotubes. Physical Review B60,10656–10659(1999).
    [153] Mário S. C. Mazzoni and H. Chacham. Bandgap closure of a flattenedsemiconductor carbon nanotube: A first-principles study. Applied PhysicsLetters76,1561(2000).
    [154] H. Mehrez, A. Svizhenko, M. Anantram, M. Elstner, and T. Frauenheim.Analysis of band-gap formation in squashed armchair carbon nanotubes.Physical Review B71,1–7(2005).
    [155] Sumit Saxena and Trevor A. Tyson. Ab initio density functional studies of therestructuring of graphene nanoribbons to form tailored single walled carbonnanotubes. Carbon48,1153–1158(2010).
    [156] A Kis, G Csányi, J-P Salvetat, Thien-Nga Lee, E Couteau, a J Kulik, W Benoit,J Brugger, and L Forró. Reinforcement of single-walled carbon nanotubebundles by intertube bridging. Nature materials3,153–7(2004).
    [157] Marcel Sluiter and Yoshiyuki Kawazoe. Phase diagram of single-wall carbonnanotube crystals under hydrostatic pressure. Physical Review B69,1–11(2004).
    [158] M. Hanfland, H. Beister, and K. Syassen. Graphite under pressure: Equation ofstate and first-order Raman modes. Physical Review B39,12598–12603(1989).
    [159] A. Rao, J. Chen, E. Richter, U. Schlecht, P. Eklund, R. Haddon, U.Venkateswaran, Y.-K. Kwon, and D. Tománek. Effect of van der WaalsInteractions on the Raman Modes in Single Walled Carbon Nanotubes.Physical Review Letters86,3895–3898(2001).
    [160] Rodrigo B. Capaz, Catalin D. Spataru, Paul Tangney, Marvin L. Cohen, andSteven G. Louie. Hydrostatic pressure effects on the structural and electronicproperties of carbon nanotubes. Physica Status Solidi (B)241,3352–3359(2004).
    [161] U.D. Venkateswaran, E.a. Brandsen, U. Schlecht, a.M. Rao, E. Richter, I. Loa,K. Syassen, and P.C. Eklund. High Pressure Studies of the Raman-ActivePhonons in Carbon Nanotubes. Physica Status Solidi (B)223,225–236(2001).
    [162] J. Sandler, M. Shaffer, A. Windle, M. Halsall, M. Montes-Morán, C. Cooper,and R. Young. Variations in the Raman peak shift as a function of hydrostaticpressure for various carbon nanostructures: A simple geometric effect. PhysicalReview B67,1–8(2003).
    [163] P. T. C. Freire, V. Lemos, J. a. Lima, G. D. Saraiva, P. S. Pizani, R. O.Nascimento, N. M. P. S. Ricardo, J. Mendes Filho, and a. G. Souza Filho.Pressure effects on surfactant solubilized single-wall carbon nanotubes.Physica Status Solidi (B)244,105–109(2007).
    [164] F. P. Bundy. Hexagonal Diamond—A New Form of Carbon. The Journal ofChemical Physics46,3437(1967).
    [165] J R Patterson, S a Catledge, Y K Vohra, J Akella, and S T Weir. Electrical andmechanical properties of C70fullerene and graphite under high pressuresstudied using designer diamond anvils. Physical review letters85,5364–7(2000).
    [166] T Yagi, W Utsumi, Ma Yamakata, T Kikegawa, and O Shimomura.High-pressure in situ x-ray-diffraction study of the phase transformation fromgraphite to hexagonal diamond at room temperature. Physical review. B,Condensed matter46,6031–6039(1992).
    [167] You Zhao and Ian Spain. X-ray diffraction data for graphite to20GPa.Physical Review B40,993–997(1989).
    [168] Kaoru J. Takano, Hiroshi Harashima, and Masao Wakatsuki. NewHigh-Pressure Phases of Carbon. Japanese Journal of Applied Physics30,L860–L863(1991).
    [169] E. D. Miller, D. C. Nesting, and J. V. Badding. Quenchable Transparent Phaseof Carbon. Chemistry of Materials9,18–22(1997).
    [170] G. Dresselhaus and Ph. Avouris M. S. Dresselhaus. Carbon Nanotubes:Synthesis, Structure, Properties and Applications.
    [171] Alfonso San-Miguel. Nanomaterials under high-pressure. Chemical Societyreviews35,876–89(2006).
    [172] Ahmad J. Ghandour, D. J. Dunstan, and Andrei Sapelkin. G-mode behaviour ofclosed ended single wall carbon nanotubes under pressure. Physica StatusSolidi (B)246,491–495(2009).
    [173] J Proctor, M Halsall, A Ghandour, and D Dunstan. High pressure Ramanspectroscopy of single-walled carbon nanotubes: Effect of chemicalenvironment on individual nanotubes and the nanotube bundle. Journal ofPhysics and Chemistry of Solids67,2468–2472(2006).
    [174] A. L. Aguiar, Rodrigo B. Capaz, a. G. Souza Filho, and a. San-Miguel.Structural and Phonon Properties of Bundled Single-and Double-Wall CarbonNanotubes Under Pressure. The Journal of Physical Chemistry C116,22637–22645(2012).
    [175] Surinder Sharma, S. Karmakar, S. Sikka, Pallavi Teredesai, a. Sood, a.Govindaraj, and C. Rao. Pressure-induced phase transformation and structuralresilience of single-wall carbon nanotube bundles. Physical Review B63,1–5(2001).
    [176] M J Longhurst and N Quirke. The environmental effect on the radial breathingmode of carbon nanotubes in water. The Journal of chemical physics124,234708(2006).
    [177] M. Longhurst and N. Quirke. Pressure Dependence of the Radial BreathingMode of Carbon Nanotubes: The Effect of Fluid Adsorption. Physical ReviewLetters98,6–9(2007).
    [178] K Gao, R Dai, Z Zhao, Z Zhang, and Z Ding. Effects of pressure transmittingmedia on Raman features of single-walled carbon nanotubes. Solid StateCommunications147,65–68(2008).
    [179] C Thomsen, S Reich, and AR Goni. Intermolecular interaction in carbonnanotube ropes. Physica Status Solidi…435,435–442(1999).
    [180] S. Bandow, G. Chen, G. Sumanasekera, R. Gupta, M. Yudasaka, S. Iijima, andP. Eklund. Diameter-selective resonant Raman scattering in double-wall carbonnanotubes. Physical Review B66,075416(2002).
    [181] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, andY. Achiba. et al. Optical properties of single-wall carbon nanotubes. SyntheticMetals103,2555–2558(1999).
    [182] J. Wu, W. Walukiewicz, W. Shan, E. Bourret-Courchesne, J. Ager, K. Yu, E.Haller, Kyle Kissell, Sergei Bachilo, R. Weisman, and Richard Smalley.Structure-Dependent Hydrostatic Deformation Potentials of IndividualSingle-Walled Carbon Nanotubes. Physical Review Letters93,1–4(2004).
    [183] Gang Wu, Jian Zhou, and Jinming Dong. Raman modes of the deformedsingle-wall carbon nanotubes. Physical Review B72,1–10(2005).
    [184] S. Rols, I. Goncharenko, R. Almairac, J. Sauvajol, and I. Mirebeau.Polygonization of single-wall carbon nanotube bundles under high pressure.Physical Review B64,1–4(2001).
    [185] A. Merlen, P. Toulemonde, S. Le Floch, G. Montagnac, T. Hammouda, O.Marty, and A. San Miguel. High pressure–high temperature synthesis ofdiamond from single-wall pristine and iodine doped carbon nanotube bundles.Carbon47,1643–1651(2009).
    [186] S. Kawasaki, Y. Matsuoka, T. Yokomae, Y. Nojima, F. Okino, H. Touhara, andH. Kataura. Effect of a liquid pressure-transmitting medium on the highpressure behavior of open-and closed-end single-walled carbon nanotubes andof C60-peapods. Physica Status Solidi (B)241,3512–3516(2004).
    [187] Zhongwu Wang. Formation of a Quenchable Dense Carbon Form byCompression of Double-Walled Carbon Nanotubes. The Journal of PhysicalChemistry B108,18192–18194(2004).
    [188] Zhisheng Zhao, Bo Xu, Xiang-Feng Zhou, Li-Min Wang, Bin Wen, Julong He,Zhongyuan Liu, Hui-Tian Wang, and Yongjun Tian. Novel Superhard Carbon:C-Centered Orthorhombic C8. Physical Review Letters107,215502(2011).
    [189] S. Kawasaki, T. Hara, T. Yokomae, F. Okino, H. Touhara, H. Kataura, T.Watanuki, and Y. Ohishi. Pressure-polymerization of C60molecules in acarbon nanotube. Chemical Physics Letters418,260–263(2006).
    [190] M. Chorro, S. Rols, J. Cambedouzou, L. Alvarez, R. Almairac, J.-L. Sauvajol,J.-L. Hodeau, L. Marques, M. Mezouar, and H. Kataura. Structural propertiesof carbon peapods under extreme conditions studied using in situ x-raydiffraction. Physical Review B74,205425(2006).
    [191]邹永刚.豆荚结构碳纳米材料peapod(C60@SWNTs)的制备及其结构和高压相变研究:吉林大学博士学位论文,2009.
    [192] A K Geim. Graphene: status and prospects. Science (New York, N.Y.)324,1530–4(2009).
    [193] Tim J Booth, Peter Blake, Rahul R Nair, Da Jiang, Ernie W Hill, Ursel Bangert,Andrew Bleloch, Mhairi Gass, Kostya S Novoselov, M I Katsnelson, and A KGeim. Macroscopic graphene membranes and their extraordinary stiffness.Nano letters8,2442–6(2008).
    [194] Ting Yu, Zhenhua Ni, Chaoling Du, Yumeng You, Yingying Wang, andZexiang Shen. Raman Mapping Investigation of Graphene on TransparentFlexible Substrate: The Strain Effect. Journal of Physical Chemistry C112,12602–12605(2008).
    [195] T. Mohiuddin, a. Lombardo, R. Nair, a. Bonetti, G. Savini, R. Jalil, N. Bonini,D. Basko, C. Galiotis, N. Marzari, K. Novoselov, a. Geim, and a. Ferrari.Uniaxial strain in graphene by Raman spectroscopy: G peak splitting,Grüneisen parameters, and sample orientation. Physical Review B79,1–8(2009).
    [196] Zhongwu Wang, S. Saxena, V. Pischedda, H. Liermann, and C. Zha. In situx-ray diffraction study of the pressure-induced phase transformation innanocrystalline CeO2. Physical Review B64,012102(2001).
    [197] Zhongwu Wang, S K Saxena, V Pischedda, H P Liermann, and C S Zha. X-raydiffraction study on pressure-induced phase transformations in nanocrystallineanatase/rutile (TiO2). Journal of Physics: Condensed Matter13,8317–8323(2001).
    [198] J. Z Jiang, J. Staun Olsen, L Gerward, and S M rup. Enhanced bulk modulusand reduced transition pressure in γ-Fe2O3nanocrystals. Europhysics Letters(EPL)44,620–626(1998).
    [199] Salah Eddine Boulfelfel, Artem R Oganov, and Stefano Leoni. Understandingthe nature of―superhard graphite‖. Scientific reports2,471(2012).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700