皱纹盘鲍和栉孔扇贝抗菌肽的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
皱纹盘鲍(Haliotis discus hannai)和栉孔扇贝(Chlamys farreri)是我国黄渤海区的重要自然资源,也是我国北方的重要养殖品种。九十年代中期以来,病害频繁发生,造成的经济损失达百亿元,直接威胁到现有产业的生存。为了促进我国贝类养殖业的复兴和健康发展,实现我国蓝色农业的可持续化,海水养殖动物的免疫抗病机制成为最突出和亟待解决的问题。
     抗菌肽(antibacterial peptide)是基因编码的肽类抗菌分子,它们广泛存在于生物体内,是脊椎动物、无脊椎动物和植物的先天性免疫关键因子。长期以来,国内外对抗菌肽的研究主要集中在高等动物和一些低等昆虫方面,海洋抗菌肽研究是10年来发展起来的一个热点。本论文以我国重要海水养殖动物——栉孔扇贝和皱纹盘鲍为研究对象,开展抗菌肽的研究,取得了以下结果:
     (1)本文利用固相提取和HPLC技术,结合灵敏的酶标抗微生物活性检测法,从栉孔扇贝血液中纯化出1种抗菌肽。经测定其分子量为2000Da,部分氨基酸序列为GQPGHTGNAH……。
     (2)从作者所在实验室构建的皱纹盘鲍肝肾cDNA文库中,筛选得到了鲍防御素基因EST。通过序列分析,发现该基因cDNA序列编码66个氨基酸残基,其前体由信号肽、前导肽和成熟肽组成。该前体的成熟肽含42个氨基酸,推测分子量为4323Da、等电点为8.02。氨基酸序列同源性分析表明,该多肽与昆虫防御素的相似性最高、达到了70%。因成熟肽二级结构具有典型的昆虫防御素结构特征,作者认为该多肽应属于抗菌肽中的昆虫防御素亚家族,是一种新型抗菌肽,并将其命名为鲍防御素(hd-def)。
     (3)用鳗弧菌和金黄色葡萄球菌刺激皱纹盘鲍,能诱导hd-def的表达,且鳗弧菌刺激引起的表达量比金黄色葡萄球菌诱导的高,说明该防御素基因属于诱导型表达。在被检测的5种组织中,hd-def基因仅在肝胰腺中表达,而在其它组织(性腺、鳃、肌肉和外套膜)中均未检测到表达。说明该基因具有明显的组织表达特异。
     人工感染刺激后,不同时间皱纹盘鲍的hd-def表达量有很大差异。感染早期(2hr)表达非常微弱,4hr时表达量明显增大,感染中晚期(12hr)表达量最大。该结果提示,hd-def基因可能参与皱纹盘鲍的抗细菌感染。
     (4)采用基因组步移法,获得了4032bp的全长基因组序列。分析表明,该基因由3个内含子和4个外显子编码组成;3个内含子大小分别为497、2357和528bp,其中两个内含子存在于编码信号肽的序列中,这种是一种防御素基因的新结构模式,在其他昆虫防御素均未报道。
     (5)本文利用酵母表达系统,成功构建鲍hd-def基因的重组表达载体pPIC9k-hddef。重组酵母体外表达4.3kd蛋白,具有抗鳗弧菌和金黄色葡萄球菌的活性。
Abalone Haliotis discus hannai and scallop Chlamys farreri are important natural resources in Huanghai and Bohai Sea area of China, but also the importance of culture in northern China. Since the 1990s, the frequent occurrence of diseases, causing economic losses of 10 billion yuan, a direct threat to the survival of existing industries. In order to promote China's shellfish aquaculture and the healthy development, to pursue durative of China's blue agriculture, the immune resistance mechanisms of aquaculture animals become the most prominent and requiring urgent solution.
     The antibacterial peptides are the gene encoding peptide antibacterial molecules, which are widespread in the organism. They are key congenital immune factor for vertebrates, invertebrates and plants. For a long time, the antimicrobial peptide research was focused on the higher animals and some insects, marine antimicrobial peptide is a hot topic in recent 10 years. To study Haliotis discus hannai and Chlamys farreri as a research objective, This paper carried out antimicrobial peptides research. The results made the following findings:
     (1) By using solid-phase extraction and HPLC technology, combined with sensitive anti-microbial enzymic activity test, one kind of antimicrobial peptides was purified from Chlamys farreri blood. It has a molecular weight of 2000 Da, some amino acid sequence was determined to GQPGHTGNAH…….
     (2) Via analysis, 322 nucleotides from the defensin-related EST were identified in the liver and kidney cDNA library of Haliotis discus hannai Ino. Sequence analysis showed that the tailing signal AATAAA located at 3 'poly (A), 5' with ATG initiation codon, which has won the full-length cDNA sequences. In the ORF (open reading frame) of cDNA sequence, full -length 201 nucleotides encoding 66 amino acid residues of the prepropeptide. Analyzing the signal peptide and enzymatic digestion of the coding protein, found that its precursor consist of signal peptide (18 AA), the leader peptide (6 AA) and the mature peptide (42 AA). Submitted mature peptide amino acid sequence analysis proved the amino acid sequence of defensin has high similarity to other insects defensin, and similarity of 70% to the beetles Anomala cuprea.
     (3) The bacterial stimulation treatment showed that the gene expression is inducible. Under normal circumstances (control group) the defensin gene was not expressed. Gram-positive and Gram-negative bacteria infection can cause the gene expression, but V.anguillarum induced high expression than Staphylococcus aureus.
     Under artificial infection in the stimulation of different time stages, the hd-def gene expression exist great differences. In the early stage of infection (2 hr) expression is very weak, in process of 4 hr the expression increased significantly, late in the infection (12 hr) hd-def expression is up to the largest volume, but in 0,6,8 and 24 hr the hd-def gene transcriptional expression was not detected.
     (4) The 4032 bp of the full-length genome sequence was obtained using genome walking. The analysis results showed that the gene consist of three introns and four exons coding, which three intron size were 497, 2357 and 528 bp, two of them were in the presence of the coded signal peptide sequence. This is a new structure model for defense gene. It was not reported in other insects defense.
     5) The recombinant gene expression vector pPIC9k-hddef of the hd-def gene was successfully constructed by using yeast expression system. In vitro, the expressed 4.3 kd protein of the recombinant yeast has anti-V. anguillarum and anti-E.coli activity.
引文
Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH. (1996) PR-39, a proline-rich peptide antibiotic from pig, and FALL-39, a tentative human counterpart. Vet Immunol Immunopathol. 54(1-4):127-31
    Amiche M, Delfour A, Nicolas P (1998)Opioid peptides from frog skin. EXS. 85:57-71.
    Amiche M, Seon AA, Pierre TN, Nicolas P. (1999) The dermaseptin precursors: a protein family with a common preproregion and a variable C-terminal antimicrobial domain. FEBS Lett. 456(3):352-6
    Andersson M, Gunne H, Agerberth B, Boman A, Bergman T, Olsson B, Dagerlind A, Wigzell H, Boman HG, Gudmundsson GH. (1996) NK-lysin, structure and function of a novel effector molecule of porcine T and NK cells. Vet Immunol Immunopathol. 54(1-4):123-6
    Andreu A, Rivas L(1998)Animal antimicrobial peptides: an overview Biopolymers (Pep. Sci.) 47: pp415-433.
    Bache`re, E., Destoumieux, D. & Bulet, P. (2000) Penaeidins, antimicrobial peptides of shrimp: a comparison with other e.ectors of innate immunity. Aquaculture 191, 71–88.
    Bals R. (2000) Antimicrobial peptides and peptide antibiotics. Med Klin. 95(9):496-502
    Bardan A, Nizet V, Gallo RL. (2004) Antimicrobial peptides and the skin. Expert Opin Biol Ther. 4:543-9. Barra D, Simmaco M, Boman HG, (1998) Gene-encoded peptide antibiotics and innate immunity. Do 'animalcules' have defence budgets? FEBS Lett. 430:130-4.
    Barra D, Simmaco M. (1995) Amphibian skin: a promising resource for antimicrobial peptides. TIBTECH 13:205-209.
    Bartlett TC, Cuthbertson BJ, Shepard EF, Chapman RW, Gross PS, and Warr GW. (2002) Crustins, Homologues of an 11.5-kDa Antibacterial Peptide, from Two Species of Penaeid Shrimp, Litopenaeus vannamei and Litopenaeus setiferus. Marine Biotechnology 4:278-293
    Bechinger B. (1999) The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimen ional solid-state NMR spectroscopy. Biochim Biophys Acta 1462(1-2):157-83
    Bellm L, Lehrer RI, Ganz T. (2000) Protegrins: new antibiotics of mammalian origin. Expert Opin Investig Drugs. 9(8):1731-42
    Berkowitz BA, Bevins CL, Zasloff M. (1990) Magainins: a new family of membrane-active host defense peptides. Biochem. Pharmacol. 39:625-629
    Bevins CL. (1994) Antimicrobial peptides as agents of mucosal immunity. Ciba Found Symp. 186:250-60
    Bierbaum G, Sahl HG (1993) Lantibiotics--unusually modified bacteriocin-like peptides from gram-positive bacteria. Zentralbl Bakteriol. 278(1):1-22
    Biggin PC, Sansom MS. (1999) Interactions of alpha-helices with lipid bilayers: a review of simulation studies. Biophys Chem. 1999 Feb 22;76(3):161-83
    Blondelle S.E., Lohner K. (2000) Combinatorial libraries: a tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure-activity relationship studies. Biopolymers 55 (1): 74-87.
    Blondelle SE, Lohner K, Aguilar M. (1999) Lipid-induced conformation and lipid-binding properties of cytolytic and antimicrobial peptides: determination and biological specificity. Biochim Biophys Acta 1462(1-2):89-108
    Blondelle SE, Perez-Paya E, Houghten RA. (1996) Synthetic combinatorial libraries: novel discovery strategy for identification of antimicrobial agents. Antimicrob Agents Chemother. 40(5):1067-71
    Boman HG, (2000) Innate immunity and the normal microflora Immunol Rev.173:5-16.
    Boman HG, Faye I, von Hofsten P, et al. (1985) On the primary structures of lysozyme, cecropins and attacins from Hyalophora cecropia. Dev. Comp. Immunol. 9:551-558.
    Boman HG, Faye I., Gudmundsso G. H., Lee J.-Y. and Lidholm D.-A. (1991) Cell-free immunity in Cecropia. A model system for antibacterial proteins. Eur. J. Biochem. 201:23-31.
    Boman HG, Hultmark D. (1987) Cell-free immunity in insects. Annu. Rev. Microbiol. 41:103-126.
    Boman HG. (1991) Antibacterial peptides: key components needed in immunity. Cell 65:205-207.
    Boman HG. (1995) Peptide antibiotics and their role in innate immunity. Annu. Rev. Immun. 13:61-92.
    Boman HG. (1996) Peptide antibiotics: Holy or heretic grails of innate immunity? Scand. J. Immunol. 43:475-482.
    Boman HG. (1998) Gene-encoded Peptide antibiotics and the concept of innate immunity: An update review Scand. J. Immunol. 48:15-25.
    Boman HG. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 1995; 13: 61–92.
    Boman HG., Broekaert WF., Willem F. (1999) Peptide antibiotics come of age. Immunologist, 6:234-238 Boman HG., March J., Goode J., eds. Antimicrobial Peptides. Chichester, PO19 1UD, UK: John Wiley & Sons Ltd., 1994. Ciba Symposium No.186;
    Breukink E, de Kruijff B. (1999) The lantibiotic nisin, a special case or not? Biochim Biophys Acta 1462(1-2):223-34
    Brey P., Hultmark D., (eds.)(1998) Immune Responses Insects. Chapman and Hall, London.
    Broekaert W., Terras F., Cammue B., Osborne R. (1995) Plant defensins: novel antimicrobial peptides as components of the hast defense system. Plant Physiol. 108:1353-1358.
    Broekaert WF, Cammue BPA, De Bolle MFC, Thevissen K, De Samblanx GW, Osborn RW. Antimicrobial peptides from plants. Critical Reviews in Plant Sciences 1997;16:297-323.
    Broekaert, W.F., Terras, F.R., Cammue, B.P. and Osborn, R.W. (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system, Plant Physiol. 108, 1353–1358
    Bulet P., Hetru C., Dimarcq JL., Hoffmann D., (1999) Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol 23: 329-44
    Bulet, P., Hetru, C., Dimarcq, J.-C. & Ho.mann, D. (1999) Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329–344.
    Cammue BP, De Bolle MF, Schoofs HM, Terras FR, Thevissen K, Osborn RW, Rees SB, Broekaert WF. (1994) Gene-encoded antimicrobial peptides from plants. Ciba Found Symp. 186:91-101
    Casteels P., (1998) Immune response in hyalophera. in: Mol. Mech. Immune Responses Insects. Chapman and Hall, London, pp92-110
    Charlet, M., Chernysh, S., Philipe, H., Hetru, C., Hoffmann, J. & Bulet, PH. (1996) Isolation of several cysteine rich anti-microbial peptides from the blood of a mollusc, Mytilus edulis. J. Biol. Chem. 271, 21808–21813.
    Chen J., Falla J.T., Liu H., Hurst A.M., Fujii AC., Mosca D.A., Embree J.R., Loury J.D., Radel P.A., Chang C.C., Gu L., Fiddes C.J. (2000) Development of protegrins for the treatment and prevention of oral mucositis structure-activity relationships of synthetic protegrin analogues. Biopolymers 55 (1): 88-98.
    Cheng, P., Liu, X., Zhang, G., He, J. Cloning and expression analysis of a HSP70 gene from Pacific abalone (Haliotis discus hannai).Fish and Shellfish Immunology ,2007, 22( 1): 77-87.
    Cho, W.L. et al. Molecular characterization of a defensin gene from the mosquito, Aedes aegypti. Insect Biochem. Mol. Biol. 1997,27, 351–358
    Chopra I. (1993) The magainins: antimicrobial peptides with potential for topical application. J Antimicrob Chemother. 32(3):351-3
    Clare DA, Swaisgood HE. (2000) Bioactive milk peptides: a prospectus. J Dairy Sci. 83(6):1187-95 Cociancich S., Bulet P., Hetru C., Hoffmann JA. (1994) The inducible antibacterial peptides of insects. Parasitol Today 10:132-139
    Cole AM, Ganz T. (2000) Human antimicrobial peptides: analysis and application. Biotechniques. 29(4):822-6, 828, 830-1
    Cole AM, Weis P, Diamond G Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J Biol Chem 1997 272:18 12008-13
    Conlon JM, Kolodziejek J, Nowotny N (2004) Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim. Biophys. Acta 1696:1-14.
    Conlon JM, Sower SA. Isolation of a peptide structurally related to mammlian, an antibacterial substance from Petromyzon marinus. Comp Biochem Mol Biol, 1996, 114(2):133-137
    Cooper EL, Kauschke E, Cosarizza A.(2002) Digging for inate immunity since Darwin and Metchnifoff. Bioessays 24: 319-333.
    Cowan MM. (1999) Plant products as antimicrobial agents. Clin Microbiol Rev. 12(4):564-82
    Cunliffe RN, Mahida YR. (2000) Antimicrobial peptides in innate intestinal host defence. Gut. 47(1):16-7
    Dathe M, Wieprecht T. (1999) Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1462(1-2):71-87
    De Lucca AJ., Walsh TJ., (1995) Antifungal peptides: novel therapeutic compounds against emerging pathogens. Antimic. Agents Chemother. 43:1-11
    Destoumieux D, Bulet P, Loew D, Van Dorsselaer A, Rodriguez J, Bachere E Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda).J Biol Chem 1997 272:4528398-406
    Destoumieux D, Bulet P, Strub JM, Van Dorsselaer A, Bachere E Recombinant expression and range of activity of penaeidins, antimicrobial peptides from penaeid shrimp. Eur J Biochem 1999 266:2 335-46
    Destoumieux D, Munoz M, Bulet P, Bachere E. (2000) Penaeidins, a family of antimicrobial peptides from penaeid shrimp (Crustacea, Decapoda). Cell Mol Life Sci. 57(8-9):1260-71
    Destoumieux D, Munoz M, Cosseau C, Rodriguez J, Bulet P, Comps M, Bachere E Penaeidins, antimicrobial peptides with chitin-binding activity, are produced and stored in shrimp granulocytes and released after microbial challenge.J Cell Sci 2000 113 (3): 461-9
    Destoumieux D, Saulnier D, Garnier J, Jouffrey C,Bulet P, Bache`re E. Crustacean immunity: antifungal peptides are generated from the C-terminus of shrimp hemocyanin in response to microbial challenge. J Biol Chem 2001;276:47070–7.
    deVos W., Kuipers O., van der Meer J., Siezen R. (1995) Maturation pathway of nisin and other lantibiotics: post-translationally modified antimicrobial peptides exported by Gram-positive bacteria Molec. Microbiol. 17:427-437
    Diamond G., Bevins C.L. (1998) Beta-defensins: Endogenous antibiotics of the innate defense system Clin. Immunol. Immunopathol. 88:221-225
    Dimarcq J.-L., Bulet, P., Hetru, C., Hoffmann J., (1998) Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers (Pep. Sci.) 47: pp465-478.
    Dimarcq, J.L. et al. Characterization and transcriptional profiles of a Drosophila gene encoding an insect defensin. A study in insect immunity. Eur. J. Biochem. 1994,221, 201–209
    Dorner, B., Ostresh, JM., Blondelle, SE., Dooley,CT., Houghten, RA. (1997) Peptidomimetic synthetic combinatorial libraries. Adv. Amino Acid Mimetics Peptidomimetics, 1: 109-125
    Douglas SE, Gallant JW, Gong Z, Hew C Cloning and developmental expression of a family of pleurocidin-like antimicrobial peptides from winter flounder, Pleuronectes americanus (Walbaum).Dev Comp Immunol 2001 25:2 137-47
    Duclohier H. (1994) Anion pores from magainins and related defensive peptides. Toxicology 87(1-3):175-88
    Eggleston, P. et al. Genomic organization and immune regulation of the defensin gene from themosquito, Anopheles gambiae. Insect Mol. Biol. 2000,9, 481–490
    Ekanayake, P.M. , Kang, H.-S. , De Zyosa, M. , Jee, Y.b , Lee, Y.-H. , Lee, J..Molecular cloning and characterization of Mn-superoxide dismutase from disk abalone (Haliotis discus discus).Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology.2006,145(3-4): 318-324
    Ellison RT. (1994) The effects of lactoferrin on gram-negative bacteria. Adv Exp Med iol. 357:71-90
    Elsbach P. (1993) Bactericidal/permeability increasing protein in host defense against Gram-negative bacteria and endotoxin. Curr. Opin. Immunol. 5:103-107.
    Elsbach P., Weiss J., Levy O. (1994) Integration of antimicrobial host defenses: role of bactericidal/permeability-increasing protein. Trends Microbiol. 2:324-328.
    Engstrom Y. (1999) Induction and regulation of antimicrobial peptides in Drosophila. Dev Comp Immunol. 23(4-5):345-58
    Epand RM, Vogel HJ. (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1462(1-2):11-28
    Fritig B, Heitz T, Legrand M. (1998) Antimicrobial proteins in induced plant defense. Curr Opin Immunol. 10(1):16-22
    Froy O and Gurevitz M. Arthropod and mollusk defensins– evolution by exon-shuffling.TRENDS in Genetics, 2003, 19(12):684-687.
    Gabay JE. (1994) Antimicrobial proteins with homology to serine proteases. Ciba Found Symp. 186:237-47 Gabay JE. (1994) Ubiquitous natural antibiotics. Science 264:373-374
    Gabay JE., Almeida R.P. (1993) Antibiotic peptides and serine protease homologs in human polymorphonuclear leukocytes:defensins and azurocidin. Curr. Opin. Immunol. 5:97-102.
    Gallo RL, Huttner KM. (1998) Antimicrobial peptides: an emerging concept in cutaneous biology. J Invest Dermatol. 111(5):739-43
    Ganz T, Lehrer RI. (1999) Antibiotic peptides from higher eukaryotes: biology and applications. Mol Med Today. 5(7):292-7
    Ganz T. (1994) Biosynthesis of defensins and other antimicrobial peptides. Ciba Found Symp. 186:62-71
    Ganz T., Lehrer R. (1997) Antimicrobial peptides of leukocytes. Curr. Opin. Hematol. 4: 53-58
    Ganz T., Lehrer RI. (1995) Defensins. Pharmacol Ther. 66:191-205.
    Ganz T., Lehrer RI. (1998) Antimicrobial peptides of vertebrates. Curr. Opin. Immunol. 10: 41-44
    Ganz T., Weiss J (1997) Antimicrobial peptides of phagocytes and epithelia. Seminars hematol. 34: 343-354
    Ganz, T. and Lehrer, R.I. (1997) Antimicrobial peptides of leukocytes, Curr. Opin.Hematol. 4, 53–58
    Garcia-Olmedo F., Molina A., Alamillo J,M. and P. Rodriguez-Palanzuèla (1998) Plant defense peptides Biopolymers (Pep. Sci.) 47:479-494.
    Gennaro R., Romeo D., Skerlavaj B., Zanetti M. (1991) Neutrophil and eosinophil granules as storage of 'defense' proteins. In: Harris JR (ed) Blood Cell Biochemistry, Vol. 3. Plenum Publishing, New York pp 335-368
    Gennaro R., Zanetti M. (2000) Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers 55 (1): 31-49.
    Gillespie J., Kanost M., Trenczek T. (1997) Biological mediators of insect immunity Annu. Rev. Entomol. 42:611-643.
    Glinski, Zd.; Jarosz, J. (1998) Novel antibacterial insect immune peptides and proteins. Folia Vet., 42: 33-41.
    Groisman EA. (1994) How bacteria resist killing by host-defense peptides. Trends Microbiol. 2(11):444-9
    Guder A., Wiedemann I., Sahl H.G. (2000) Posttranslationally modified bacteriocins - The lantibiotics. Biopolymers 55 (1): 62-73.
    Gudmundsson GH, Agerberth B (1999) Neutrophil antibacterial peptides, multifunctional effector molecules in the mammalian immune system J Immunol Methods. 232(1-2):45-54.
    Haegele B, Mersch-Sundermann V, Kretschmar M, Hof H. (1995) Antimicrobial oligopeptides--an important factor in non-specific defenseagainst infection. Immun Infekt. 23(6):205-8
    Hall SH, Hamil KG, French FS. (2002) Host defense proteins of the male reproductive tract. J Androl 23:585-597
    Ham PJ, Albuquerque C, Smithies B, Chalk R, Klager S, Hagen H. (1994) Antibacterial peptides in insect vectors of tropical parasitic disease. Ciba Found Symp. 186:140-51
    Hancock R.E., Lehrer R. Cationic peptides:anew source of antibiotics,Trends Biotechnol., 1998, 6(2): 82-288
    Hancock R.W.E., Scott G.M. (2000)The role of antimicrobial peptides in animal defenses. PNAS 97(16): 8856-8861.
    Hancock RE, Diamond G. (2000) The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 8(9):402-10
    Hancock RE. (1999) Host defence (cationic) peptides: what is their future clinical potential? Drugs. 57(4):469-73
    Hancock RE. (2000) Cationic antimicrobial peptides: towards clinical applications. Expert Opin Investig Drugs. 9(8):1723-9
    Hancock RE., (1997) Peptide antibiotics. Lancet 349:418-422
    Hancock RE., (1999) The defence (cationic) peptides: what is their future clinical potential? Drugs 57:469-473.
    Hancock REW, Chapple DS. Peptide antibiotics. Antimicrob AgentsChemother 1999; 43: 1317.
    Hancock REW, Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 2000; 8: 402–10.
    Hancock REW. (1997) Antibacterial peptides and the outer membranes of gram-negative bacteria. J. Med. Microbiol. 46:1-3.
    Hancock REW. (1998) The therapeutic potential of cationic peptides. Expert Opin. Invest. Drugs 7:167-174
    Hancock REW., Chapple, Dd. (1999) Peptide antibiotics. Antimic. Agents Chemother. 43:1435-1440
    Hancock REW., Falla T., Brown M. (1995) Cationic Bactericidal Peptides. Adv. Microbiol. Physiol. 37:135-175.
    Hancock REW., Lehrer R., (1998) Cationic peptides: a new source of antibiotics. Trends in Biotech. 16:82-88
    Hansen JN. (1994) Nisin as a model food preservative. Crit Rev Food Sci Nutr. 34(1):69-93
    Hecht G. (1999) Innate mechanisms of epithelial host defense: spotlight on intestine. Am J Physiol. 277(3 Pt 1):C351-8
    Hiemstra PS, van Furth R. (1994) Antimicrobial mechanisms: antimicrobial polypeptides of mononuclear phagocytes. Immunol Ser. 60:197-202
    Hiroko Shike, Xavier Lauth, Mark E. Westerman, Vaughn E. Ostland, James M. Carlberg Jon C. Van Olst, Chisato Shimizu, Philippe Bulet and Jane C. Burns。Bass hepcidin is a novel antimicrobial peptide induced by bacterial Challenge.Eur. J. Biochem. (2002)269, 2232–2237
    Hoffman J, Kafatos F, Janeway C, Ezekowitz R.Phylogenetic perspectives in innate immunity.Science. 1999;284:1313-1318.
    Hoffmann J., Natori S., Janeway C., eds. (1994) Phylogenetic perspectives in immunity: The insect-host defense. Austin, TX 78765: R. G. Landes Biomedical Publisher.
    Hoffmann JA, Reichhart JM, Hetru C. (1996) Innate immunity in higher insects. Curr Opin Immunol. 8(1):8-1
    Hoffmann JA. (1995) Innate immunity of insects. Curr. Opin. Immunol. 7:4-10
    Hoffmann JA., Hetru C. (1992) Insect defensins: inducible antibacterial peptides. Immunol Today 13:411-415.
    Hoffmann JA., Hetru C., Reichhart J-M. (1993) The humoral antibacterial response of Drosophila. FEBS Lett. 325:63-66.
    Huang HW. (1999) Peptide-lipid interactions and mechanisms of antimicrobial peptides. Novartis Found Symp. 225:188-200; discussion 200-6
    Hubert F, Noel T, Roch P. A member of the arthropod defensin family from edible Mediterranean mussels (Mytilus galloprovincialis).European Journal of Biochemistry 1996;240:302-6.
    Hubert, F.A member of the arthropod defensin family from edible Mediterranean mussels (Mytilus galloprovincialis). European Journal of Biochemistry,1996, 240 (1):302-306
    Hughes AL. (1999) Evolutionary diversification of the mammalian defensins. Cell Mol Life Sci. 56(1-2):94-103
    Hultmark D. (1993) Immune Reactions in Drosophila and Other Insects - A Model for Innate Immunity. Trends Genet 9:178-183.
    Hultmark D. (1994) Drosophila as a model system for antibacterial peptides. Ciba Found Symp. 186:107-19
    Huttner K., Bevins C. (1999) Antimicrobial peptides as mediators of epithelial host defense. Pediatr. Res. 45:785-794
    Hwang PM, Vogel HJ. Structure-function relationships of antimicrobial peptides. (1998) Biochem Cell Biol. 76(2-3):235-46
    Imler JL, Hoffmann JA. (2000) Signaling mechanisms in the antimicrobial host defense of Drosophila. Curr Opin Microbiol. 3(1):16-22
    Iwanaga S, Kawabata S. (1998) Evolution and phylogeny of defense molecules associated with innate immunity in horseshoe crab. Front Biosci. 3:D973-84
    Iwanaga S, Muta T, Shigenaga T, Seki N, Kawano K, Katsu T, Kawabata S. (1994) Structure-function relationships of tachyplesins and their analogues. Ciba Found Symp. 186:160-74
    Jack RW, Jung G. (2000) Lantibiotics and microcins: polypeptides with unusual chemical diversity. Curr Opin Chem Biol. 4(3):310-7
    Jack, R., Tagg J., Ray, B. (1995) Bacteriocins of gram-positive bacteria. Microbiol. Rev. 59:171-200.
    Jacob L, Zasloff M. (1994) Potential therapeutic applications of magainins and other antimicrobial agents of animal origin. Ciba Found Symp. 186:197-216
    Javadpour M., Juban M., Lo W.-C., Bishop S., Alberty J., Cowell S., Becker C., McLaughlin M. (1996) De Novo Antimicrobial Peptides with Low Mammalian Cell Toxicity. J. Med. Chem 39:3107-3113
    Jerala R, Porro M. (2004) Endotoxin neutralizing peptides.Curr Top Med Chem. 4:1173-84.
    Jia X, Patrzykat A, Devlin RH, Ackerman PA, Iwama GK, Hancock RE Antimicrobial peptides protect coho salmon from Vibrio anguillarum infections.Appl Environ Microbiol 2000 66:5 1928-32
    Jones RN, (2000) Perspectives on the development of new antimicrobial agents for resistant gram-positive pathogens Braz J Infect Dis. 4(1):1-8.
    Kagan BL, Ganz T, Lehrer RI. (1994) Defensins: a family of antimicrobial and cytotoxic peptides. Toxicology 87(1-3):131-49
    Kaiser V, Diamond G. (2000) Expression of mammalian defensin genes. J Leukoc Biol. 68(6):779-84.
    Kawano K, Yoneya T, Miyata T, Yoshikawa K, Tokunaga F, Terada Y, Iwanaga S Antimicrobial peptide, tachyplesin I, isolated from hemocytes of the horseshoe crab (Tachypleus tridentatus). NMR determination of the beta-sheet structure.J Biol Chem 1990 265:26 15365-7
    Kharchenko EP. (1995) Antimicrobial peptides and resistance in animals. Antibiot Khimi ter. 40(7):45-53
    Kimbrell DA (1991) Insect antibacterial proteins: not just for insects and against bacteria. Bioessays 13(12):657-63
    Kreil G. (1994) Antimicrobial peptides from amphibian skin: an overview. Ciba Found Symp. 186:77-85
    Krensky AM. (2000) Granulysin: a novel antimicrobial peptide of cytolytic T lymphocytes and natural killer cells. Biochem Pharmacol. 59(4):317-20
    Kuhn-Nentwig L, (2003) Antimicrobial and cytolitic peptides of venomous arthropods CMLS Cell. Mol. Sci. 60:2651-2668
    Kuipers OP, Bierbaum G, Ottenwalder B, Dodd HM, Horn N, Metzger J, Kupke T, Gnau V, Bongers R, van den Bogaard P, Kosters H, Rollema HS, de Vos WM, Siezen RJ, Jung G, Gotz F, Sahl HG, Gasson MJ. (1996) Protein engineering of lantibiotics. Antonie Van Leeuwenhoek. 69(2):161-69
    La Rocca P, Biggin PC, Tieleman DP, Sansom MS. (1999) Simulation studies of the interaction of antimicrobial peptides and lipid bilayers. Biochim Biophys Acta 1462(1-2):185-200
    Lamb HM, Wiseman LR. (1998) Pexiganan acetate. Drugs 56(6):1047-52
    Lamkin MS, Oppenheim FG. (1993) Structural features of salivary function. Crit Rev Oral Biol Med. 4(3-4):251-9
    Lauth, X., Shike, H., Burns, J.C., Westerman, M., Ostland, V.E., Carlberg, J.M., VanOlst, J.C.,Nizet, V., Taylor, S.W., Shimizu, C. & Bulet, P. (2002) Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide fr. J. Biol. Chem. 277, 5030–5039.
    Lee, H., Young Shin Lee, Chong Han Kim, Chung Ryul Kim, Teresa Hong, Lorenzo Menzel, Lee Ming Boo, Jan Pohl, Mark A. Sherman, Alan Waring and Robert I. Lehrer. Dicynthaurin: an antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium Biochimica et Biophysica Acta (BBA)/General Subjects, 2001, 1527:3:141-148
    Lee, H., Zhao, C., Cho, Y., Harwig, S.S.L., Cooper, E.L. & Lehrer, R.I. (1997) Clavanins, alpha-helical anti-microbial peptides from tunicate hemocytes. FEBS Lett. 400, 158–162.
    Lehrer RI, Ganz T. (1996) Endogenous vertebrate antibiotics. Defensins, protegrins, and other cysteine-rich antimicrobial peptides. Ann N Y Acad Sci. 797:228-39
    Lehrer RI., Ganz T. (1990) Antimicrobial Polypeptides of Human Neutrophils. Blood 76:2169-2181.
    Lehrer RI., Ganz T. (1992) Defensins: endogenous antibiotic peptides from human leukocytes. In: Chadwick DJ, Whelan J, eds. Secondary Metabolites : Their Function and Evolution. Chichester, UK: John Wiley & Sons Ltd., pp 276-293. Ciba Foundation Symposia No.171;
    Lehrer RI., Ganz T. (1999) Antimicrobial peptides in mammalian and insect host defense. Curr. Opin. Immunol. 11:23-27
    Lehrer RI., Ganz T., Selsted ME. (1991) Defensins: Endagenous antibiotic peptides of animal cells. Cell 64:229-230.
    Lehrer RI., Harwig SSL., Ganz T. (1994) Defensins and protegrins. Vertebrate analogs of arthropod antimicrobial peptides. In: Hoffmann J, Natori S, Janeway C, eds. Phylogenetic perspectives in immunity: The insect-host defense. Austin, TX 78765: R. G. Landes Biomedical Publisher pp 19-29
    Lehrer RI., Lichtenstein AK., Ganz T. (1993) Defensins: Antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 11:105-128.
    LehrerR.,Ganz T., Selsted M.E. Defensins:endogenous antibiotic peptides of animal cells. Cell, 1991; 64: 229-223
    Lester Khoo, David W. Robinette, and Edward J. Noga Callinectin, an Antibacterial Peptide from Blue Crab, Callinectes sapidus, Hemocytes, 1999, Mar. Biotechnol. 1, 44–51
    Levy O. (2000) Antimicrobial proteins and peptides of blood: templates for novel antimicrobial agents. Blood. 96(8):2664-72
    Levy, O. (1996) Antibiotic proteins of polymorfonuclear leukocytes. Eur. J. Haematol. 56:263-277.
    Lohner K, Epand R.M., (1997) Membrane interactions of hemolytic and antimicrobial peptides. Adv. Biophys. Chem.6, 53-66.
    Lohner K, Prenner EJ. (1999) Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems. Biochim Biophys Acta 1462(1-2):141-56
    Lopez-Brea M, Alarcon T. (1999) Peptides of eukaryotic origin with antimicrobial activity. Rev Esp Quimioter. 12(4):300-9
    Maget-Dana R.(1999) The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochim Biophys Acta 1462(1-2):109-40
    Maloy WL., Kari UP. (1995) Structure-activity studies on magainins and other host defense peptides. Biopolymers 37:105-122.
    Manetti A., Rosetto M., Marchini D., (1998) Antibacterial peptides of the insct reproductive tract. in: Mol. Mech. Immune Responses Insects. Chapman and Hall, London, pp67-91.
    Martin E., Ganz T., Lehrer RI. (1995) Defensins and other endagenous peptide antibiotics of vertebrates. J. Leukocyte Biol. 58:128-136.
    Matsuzaki K. (1998) Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta. 1376(3):391-400
    Matsuzaki K. (1999) Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1462(1-2):1-10
    McCafferty DG, Cudic P, Yu MK, Behenna DC, Kruger R. (1999) Synergy and duality in peptide antibiotic mechanisms. Curr Opin Chem Biol. 3(6):672-80
    Meister M., Lemaitre B., Hoffmann J.(1997) Antibacterial peptide defense in drosophila. Bioessays, 19, 1019-1026
    Merrifield RB, Merrifield EL, Juvvadi P, Andreu D, Boman HG. (1994) Design and synthesis of antimicrobial peptides. Ciba Found Symp. 186:5-20
    Metz Boutigue M., Goumon Y., Lugardon K., Strub JM., Aunis D. (1998) Antibacterial peptides present in chromaffin cell secretory granules. Cell. Mol. Neurobiol., 18, 249-266
    Michael Zasloff Antimicrobial peptides of multicellular organisms Nature 2002,415, 389-395.
    Michel Salzet. Vertebrate innate immunity resembles a mosaic of invertebrate immune responses TRENDS in Immunology2001.22(6):285-288
    Mignogna G, Simmaco M, Barra D. (1998) Occurrence and function of D-amino acid-containing peptides and proteins: antimicrobial peptides. EXS 85:29-36
    Mitta G, Florence Hubert, Elisabeth A. Dyrynda, Pierre Boudry and Philippe Roch Mytilin B and MGD2, two antimicrobial peptides of marine mussels: gene structure and expression analysis Developmental and Comparative Immunology, 2000, 24:4:381-393
    Mitta G, Hubert F, Noel T, Roch P Myticin, a novel cysteine-rich antimicrobial peptide isolated from haemocytes and plasma of the mussel Mytilus galloprovincialis.Eur J Biochem 1999 265:1 71-8
    Mitta G, Vandenbulcke F, Hubert F, Roch P. Mussel defensins are synthesised and processed in granulocytes then released into the plasma after bacterial challenge.J Cell Sci 1999 112 ( Pt 23): 4233-42
    Mitta G, Vandenbulcke F, Hubert F, Salzet M, Roch P Involvement of mytilins in mussel antimicrobial defense.J Biol Chem 2000 275:17 12954-62
    Mitta G, Vandenbulcke F, Noel T, Romestand B, Beauvillain JC, Salzet M, Roch P Differential distribution and defence involvement of antimicrobial peptides in mussel. J Cell Sci 2000 113 ( Pt 15): 2759-69
    Mitta G, Vandenbulcke F, Roch P. (2000) Original involvement of antimicrobial peptides in mussel innate immunity. FEBS Lett. 486(3):185-90
    Mitta, G. et al. Mytilin B and MGD2, two antimicrobial peptides of marine mussels: gene structure and expression analysis. Dev. Comp. Immunol. 2000,24, 381–393
    Miyasaki KT, Lehrer RI. (1998) Beta-sheet antibiotic peptides as potential dental therapeutics. Int J Antimicrob Agents. 9(4):269-80
    Morimoto M, Mori H, Otake T, Ueba N, Kunita N, Niwa M, Murakami T, Iwanaga S Inhibitory effect of tachyplesin I on the proliferation of human immunodeficiency virus in vitro. Chemotherapy 1991 37:3 206-11
    Mourgues F, Brisset MN, Chevreau E. (1998) Strategies to improve plant resistance to bacterial diseases through genetic engineering. Trends Biotechnol. 16(5):203-10
    Muller FM, Lyman CA, Walsh TJ. (1999) Antimicrobial peptides as potential new antifungals. Mycoses. 42 Suppl 2:77-82
    Munks, R.J. et al. Regulation of midgut defensin production in the blood-sucking insect Stomoxys calcitrans. Insect Mol. Biol. 2001,10, 561–571
    Munoz M, Vandenbulcke F, Saulnier D, Bache`re E. Expression and distribution of penaeidin antimicrobial peptides are regulated by haemocyte reactions in microbial challenged shrimps. Eur J Biochem 2002;269:1–12.
    Muta T, Fujimoto T, Nakajima H, Iwanaga S Tachyplesins isolated from hemocytes of Southeast Asian horseshoe crabs (Carcinoscorpius rotundicauda and Tachypleus gigas): identification of a new tachyplesin, tachyplesin III, and a processing intermediate of its precursor. J Biochem (Tokyo) 1990 108:2 261-6
    Nakajima, Y. et al. Antibacterial peptide defensin is involved in midgut immunity of the soft tick, Ornithodoros moubata. Insect Mol. Biol. 2002,11, 611–618
    Nakamura T, Furunaka H, Miyata T, Tokunaga F, Muta T, Iwanaga S, Niwa M, Takao T, Shimonishi Y Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J Biol Chem 1988 15 263:32 16709-13
    Nascimento AC, Fontes W, Sebben A, Castro MS, (2003) Antimicrobial peptides from anurans skin secretions. Protein Pep. Lett.10:227-238
    Natori S. (1995) Antimicrobial proteins of insect and their clinical application. Nippon Rin ho. 53(5):1297-304
    Nes F.I., Holo H. (2000) Class II antimicrobial peptidesfrom lactic acid bacteria. Biopolymers 55 (1): 50-61.
    Nicolas P, Mor A. (1994) Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu. Rev. Microbiol 49:277-304
    Niidome T., Wakamatsu M., Wada A., Hirayama T., Aoyagi H. (2000)Required structure of cationic peptide for oligonucleotide binding and delivering into cells.J. Pept. Sci. 6(6): 271-279.
    Nissen-Meyer J., Nes I. (1997) Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch. Microbiol. 167:67-77.
    Ohta M, Ito H, Masuda K, Tanaka S, Arakawa Y, Wacharotayankun R, Kato N Mechanisms of antibacterial action of tachyplesins and polyphemusins, a group of antimicrobial peptides isolated from horseshoe crab hemocytes.Antimicrob Agents Chemother 1992 36:7 1460-5
    Oren Z, Shai Y. (1998) mode of action of linear amphipathic a-heliacal antimicrobial peptides. Biopolymers (pep. Sci.). 47: 451-463
    Oren Z, Shai Y. A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Eur J Biochem 1996 237:1 303-10
    Osaki T, Omotezako M, Nagayama R, Hirata M, Iwanaga S, Kasahara J, Hattori J, Ito I, Sugiyama H,Kawabata S Horseshoe crab hemocyte-derived antimicrobial polypeptides, tachystatins, with sequence similarity to spider neurotoxins.J Biol Chem 1999 274:37
    Otvos, L. Jr.: (2000) Antibacterial peptides isolated from insects. J. Pept Sci. 6: 497-511
    Ouelette A, Selsted M (1996) Paneth cell defensins: Endogenous peptide components of intestinal host defense. FASEB J. 10:1280-1289.
    Ouelette A, Selsted M (1998) Enteric defensins Curr. Opin. Gastroenterol. 13:494-499.
    Ouellette AJ. (1997) Paneth cells and innate immunity in the crypt microenvironment. Gastroenterology 113(5):1779-84
    Park CB, Lee JH, Park IY, Kim MS, Kim SC A novel antimicrobial peptide from the loach, Misgurnus anguillicaudatus.FEBS Lett 1997 411:2-3 173-8
    Park IY, Chan Bae Park , Mi Sun Kim , Sun Chang Kim. Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett 1998 23 437(3):258-262
    Patrzykat A, Zhang L, Mendoza V, Iwama GK, Hancock RE Synergy of histone-derived peptides of coho salmon with lysozyme and flounder pleurocidin. Antimicrob Agents Chemother 2001 45:5 1337-42
    Rao AG. (1995) Antimicrobial peptides. Mol Plan Microbe Interact. 8(1):6-13
    Relf, J. M., Chisholm, J. R. S., Kemp, G. D., Smith, V. J. (1999). Purification and characterization of a cysteine-rich 11.5-kDa antibacterial protein from the granular haemocytes of the shore crab, Carcinus maenas. Eur J Biochem 264: 350-357
    Risso A. (2000) Leukocyte antimicrobial peptides: multifunctional effector molecules of innate immunity. J Leukoc Biol. 68(6):785-92
    Rogovin VV, Murav'ev RA, Fomina VA (1992), The antimicrobial proteins and peptides of neutrophilic leukocytes. Izv Akad Nauk Ser Biol. 6:854-9
    Saberwal G., Nagaraj R. (1994) Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes: facets of their conformational features, structure-function correlations and membrane-perturbing abilities. BBA-Rev. Biomembranes 1197:109-131.
    Sablon E, Contreras B, Vandamme E. (2000) Antimicrobial peptides of lactic acid bacteria: mode of action, genetics and biosynthesis. Adv Biochem Eng Biotechnol. 68:21-60
    Sahl HG. (1994) Gene-encoded antibiotics made in bacteria. Ciba Found Symp. 186:27-42
    Sahl HG., Bierbaum G. (1998) Lantibiotics: Biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria Ann. Rev. Microbiol. 52:41-79.
    Sahl HG., Jack RW., Bierbaum G. (1995) Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur. J. Biochem. 230:827-853.
    Saito T, Kawabata S, Shigenaga T, Takayenoki Y, Cho J, Nakajima H, Hirata M, Iwanaga S A novel big defensin identified in horseshoe crab hemocytes: isolation, amino acid sequence, and antibacterial activity.J Biochem (Tokyo) 1995 117:5 1131-7
    Sawa T, Kurahashi K. (1999) Antimicrobial peptides/proteins--application to the therapy of sepsis. Masui. 48(11):1186-93
    Schnapp, D., Kemp, G.D. & Smith, V.J. (1996) Purification and characterization of a proline-richanti-bacterial peptide, with sequence similarity to bactenecin 7, from the haemocytes of the shore crab, Carcinus maenas. Eur. J. Biochem. 240, 532–539.
    Schonwetter, B.S., Stolzenberg E.D., and Zasloff M. (1995). Epithelial antibiotics induced at sites of inflammation. Science 267:1645-1648.
    Schroder JM, Harder J. (1999) Human beta-defensin-2. J Biochem Cell Biol. 31(6):645-51
    Schroder JM. (1999) Epithelial antimicrobial peptides: innate local host response elements. Cell Mol Life Sci. 56(1-2):32-46
    Schronder, JM., (1999). Epithelial peptide antibiotics. Biochem. Pharmacol., 57:1645-1648.
    Scott MG, Hancock RE. (2000) Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit Rev Immunol. 20(5):407-31.
    Sela B. (2000) Defensins: peptides of innate immunity serving as first-line antimicrobial defense. Harefuah. 139(3-4):112-6
    Selsted ME., Ouellette AJ. (1995) Defensins in granules and non-phagocytic cells. Trends Cell Biol. 5:114-119.
    Seo, J.-K., Crawford, J.M., Stone, K.L., Noga, E.J.Purification of a novel arthropod defensin from the American oyster, Crassostrea virginica. Biochemical and Biophysical Research Communications 2005,338 (4):1998-2004
    Shafer W.M. (ed.) Antibacterial peptide protocols Methods in Molecular Biology, vol. 78, Humana Press, Totowa.
    Shai Y. (1995) Molecular recognition between membrane-spanning polypeptides.Trends Biochem. Sci. 20:460-464
    Shai Y. (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462(1-2):55-70
    Shai Y., (1998) Mode of action of antibacterial peptides. in: Mol. Mech. Immune Responses Insects. Chapman and Hall, London, pp111-134.
    Shimoda M, Ohki K, Kohashi O. (1995) Defensins, antimicrobial peptides, and their mechanism of actions. Nippon Saikingaku Zasshi. 50(2):471-80
    Simmaco M, Mignogna G, Barra D,(1998) Antimicrobial peptides from amphibian skin: what do they tel us Biopolymers (Pep. Sci.) 47: pp435-450.
    Sitaram N, Nagaraj R. (1995) Seminal plasmin. Bioessays 17(5):415-22
    Sitaram N, Nagaraj R. (1999) Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta 1462(1-2):29-54
    Spitznagel, JK,. (1998) Origins and development of peptide antibiotic research: From extracts to abstracts to contracts. Mol. Biotechnol., 10: 237-245
    Steiner, H., Hultmark, D., Engstrom, A., Bennich, H. & Boman, H. G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature (1981).292, 246-268
    Taylor, S. W., Craig, A. G., Fischer, W. H., Park, M., Lehrer, R. I. (2000). Styelin D, an Extensively ModifiedAntimicrobial Peptide from Ascidian Hemocytes. J. Biol. Chem. 275: 38417-38426
    Tomita M, Takase M, Bellamy W, Shimamura S. (1994) A review: the active peptide of lactoferrin. Acta Paediatr Jpn. 36(5):585-91
    Tossi A., Sandri L., Giangaspero A. (2000) alpha-helical antimicrobial peptides, Biopolymers 55 (1): 1-30. Umaporn Silphaduang, Edward J. Noga. Peptide antibiotics in mast cells of fish NATURE 2001 414:268-269
    van Kan EJ, van der Bent A, Demel RA, de Kruijff B. Membrane activity of the peptide antibiotic clavanin and the importance of its glycine residues. Biochemistry 2001 40:21 6398-405
    van Wetering S, Sterk PJ, Rabe KF, Hiemstra PS. (1999) Defensins: key players or bystanders in infection, injury, and repair in the lung? J Allergy Clin Immunol. 104(6):1131-8
    Venema K, Venema G, Kok J. (1995) Lactococcal bacteriocins: mode of action and immunity. Trends Microbiol. 3(8):299-304
    Weinberg a., Krisanaprakornit S., Dale BA., (1999) Epithelial antimicrobial peptides: review and significance for oral applicationsCrit. Rev. Oral Biol. Med. 9:399-414
    Weiss J. (1994) Leukocyte-derived antimicrobial proteins. Curr. Opin. Hematol. 1:78-84
    White S.H., Wimley W.C. and Selsted ME. (1995) Structure, function and membrane integration of defensins. Curr. Opin. Struc. Biol. 5:114-119.
    Woong Sik Jang, Kyu Nam Kim, Young Shin Lee, Myung Hee Nam, In Hee Lee; Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium FEBS Letters 521 (2002) 81-86
    Yamakawa M, Tanaka H. (1999) Immune proteins and their gene expression in the silkworm, Bombyx mori. Dev Comp Immunol. 23(4-5):281-9
    Yang YS, Mitta G, Chavanieu A, Calas B, Sanchez JF, Roch P, Aumelas A Solution structure and activity of the synthetic four-disulfide bond Mediterranean mussel defensin (MGD-1). Biochemistry 2000 39:47 14436-47
    Yoshida K, Mukai Y, Niidome T, Takashi C, Tokunaga Y, Hatakeyama T, Aoyagi H Interaction of pleurocidin and its analogs with phospholipid membrane and their antibacterial activity. J Pept Res 2001 Feb 57:2 119-26
    Zanetti M., Gennaro R., Romeo D. (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 374:1-5.
    Zasloff M. (1992) Antibiotic peptides as mediators of innate immunity. Curr. Opin. Immun. 4:3-7. Zasloff M.Antimicrobial peptides of multicellular organisms. Nature 415:389– 395
    Zhang G, Ross CR, Blecha F. (2000) Porcine antimicrobial peptides: new prospects for ancient molecules of host defense. Vet Res. 31(3):277-96
    Zhao C, Liaw L, Lee IH, Lehrer RI cDNA cloning of three cecropin-like antimicrobial peptides (Styelins) from the tunicate, Styela clava. FEBS Lett 1997 412:1 144-8
    Zhao C, Lilian Liawa, In Hee Leea and Robert I. Lehrera cDNA cloning of Clavanins: antimicrobial peptides of tunicate hemocytes FEBS Letters 410 (2-3) pp. 490-492
    Zhao Chenquan et al., Styelins, broad-spectrum antimicrobial peptides from the solitary tunicate, Styela clava. Comp Biochem Physiol B Biochem Mol Biol 1997 118:3 515-21
    康翠洁等,对虾抗菌肽研究进展。相建海主编:海水养殖生物病害发生与控制。海洋出版社。2001,P111-117.
    张峰、李光友、张培军。皱纹盘鲍血细胞活性氧产生的研究.中国水产科学,1999,6(3):36-40。
    张峰、李光友、张培军。皱纹盘鲍血细胞吞噬发光的研究。海洋与湖沼,2000,31(4):386-391
    郑明刚等。皱纹盘鲍(Haliotis discus Hannailno)肝、肾cDNA文库的构建及免疫相关基因的初步分析。高技术通讯,2007。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700