人源性抗大疱性类天疱疮抗原BP180单链抗体的构建、表达及纯化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大疱性类天疱疮(bullous pemphigoid,BP)是一种常见的慢性自身免疫性水疱性皮肤病,临床表现为正常皮肤或红斑基础上的紧张性水疱、大疱,多见于老年人群,病情易反复发作。目前BP尚缺乏特异性治疗手段而主要依靠应用糖皮质激素和免疫抑制剂等方法,虽然可以暂时起到缓解病情的作用,但需要长期应用产生的副作用以及BP病情的反复发作是临床实际工作中最亟待解决的问题[1, 2]。
     研究发现BP的发病是由致病性自身抗体介导、补体等多种炎症成分参与而最终导致皮肤免疫损伤的复杂过程[3, 4]。主要病理改变是表皮下水疱并伴有中性粒细胞、嗜酸性细胞等炎细胞浸润。免疫学研究发现患者皮肤表皮真皮交界处的基底膜带(basement membrane zone, BMZ)有抗体(IgG、IgE等)和补体沉积,同时在患者血清中可以检测到特异性识别BMZ的自身抗体。
     BP180系真表皮交界处基底膜带半桥粒跨膜胶原蛋白,又称ⅩⅦ型胶原(COL17)或大疱性类天疱疮抗原2 (BPAg2),在维持表皮和真皮的正常粘附方面起着至关重要的作用。目前证实BP180是BP致病性自身抗体所识别的主要靶抗原,其细胞外区域特别是第16非胶原编码区(NC16A)是致病性自身抗体识别的主要靶表位区[3, 5, 6]。
     BP病理性自身抗体与自身抗原特异性结合并激活补体,肥大细胞脱颗粒,趋化中性粒细胞、嗜酸性细胞、单核细胞等炎细胞在局部浸润并释放中性粒细胞弹性蛋白酶(NE)、基质金属蛋白酶9 (MMP-9)等蛋白水解酶和多种炎症介质,造成明显的免疫炎症反应,导致在表皮真皮黏附中起重要作用的分子结构和功能受损,真表皮分离最终发生表皮下水疱。一项较新的研究已经在人源化动物模型体内证实了BP患者抗BP180-NC16A自身抗体的致病作用[7],更深层次地阐明了BP的发病机理。在此复杂过程中,病理性自身抗体与自身抗原结合进而激活补体是至关重要的环节。因此,我们提出从这一关键环节入手,制备人源性基因工程小分子抗体,利用其能特异性识别靶抗原同时又不具有Fc段因而不能激活补体的特性,封闭与BP发病相关的自身抗原表位,竞争性抑制自身抗体的结合,从而阻断自身抗体的致病作用,探讨更加有效和特异的治疗策略。
     本课题组在前期工作中,直接以大疱性类天疱疮患者的外周血淋巴细胞为基因来源,利用噬菌体抗体库技术筛选首次得到针对大疱性类天疱疮抗原BP180-NC16A的人源性基因工程抗体Fab片段P10[8]。本研究在此基础上构建scFv,为BP的基因工程抗体治疗提供新的候选抗体。
     目的:利用基因重组技术制备人源性抗大疱性类天疱疮抗原BP180的单链抗体(scFv),进行大量原核表达,获得纯化目的蛋白,并对其免疫学特性进行鉴定。为进一步研究BP的发病机制和靶向治疗奠定基础。
     方法:经PCR分别扩增抗BP180人源性Fab抗体P10轻链可变区(Vλ)和重链可变区(VH)基因,应用重叠延伸拼接法(SOE)通过连接肽Linker在体外直接完成轻重链可变区的组合形成scFv。所获得的scFv基因片段再与pGEM-T载体连接,经蓝白斑筛选,菌落PCR快速鉴定阳性克隆,进行SacⅠ和SpeⅠ双酶切鉴定后回收纯化目的产物。重组正确的scFv基因克隆入原核表达载体p3MH,电转化大肠杆菌XL1-Blue,经辅助噬菌体VCSM13感染表达噬菌体抗体,ELISA检测活性,双酶切鉴定及DNA序列测定。选取活性最强的噬菌体抗体质粒酶切去除载体上的基因Ⅲ,载体自连,获得人源性抗BP180-NC16A单链抗体的可溶性表达质粒。IPTG诱导进行scFv的大量可溶性表达,上清用50%饱和硫酸铵盐析沉淀,充分透析后利用亲和层析法分离纯化目的蛋白,SDS-PAGE鉴定纯度。ELISA和Western blot鉴定活性和特异性,以人皮肤冰冻切片为底物进行间接免疫荧光检测结合部位。
     结果:成功构建人源性抗BP180-NC16A单链抗体的表达质粒,双酶切和DNA测序完全正确,命名为pscFv10。噬菌体单链抗体经ELISA检测结合活性良好。载体自连后转化大肠杆菌,表达产物经SDS-PAGE鉴定可溶性目的蛋白的纯度在89%以上。ELISA和Western blot方法证实所获的单链抗体具备良好抗原结合活性和高度特异性。间接免疫荧光检测,在人皮肤的表皮真皮交界处形成线状荧光条带,表明该抗体特异性识别人皮肤基底膜带的BP180分子。
     结论:采用基因重组技术成功构建了人源性抗大疱性类天疱疮抗原BP180-NC16A的单链抗体,并获得了可溶性表达。通过原核表达及亲和层析法有效纯化目的蛋白,并进行体外生物学鉴定,证明所获单链抗体具备良好的抗原结合活性和特异性,为下一步靶向BP180分子免疫学发病机理的研究和开展可能的临床治疗应用奠定了基础。
Bullous pemphigoid(BP) is the most common and chronic autoimmune blistering skin disease characterized clinically by tense bullae that may develop on normal or erythematous skin, which is seen predominantly in the elderly. Up to recently, BP is usually treated with systemic glucocorticosteroids, frequently in combination with other immunosuppressants. Although the condition can be temporarily relieved, the severe side effects of glucocorticosteroids and the frequent recurrence of the disease remain to be the most serious problems[1, 2].
     It has been confirmed that the pathogenesis of BP is a complicated course initiated by the binding of autoantibodies, and mediated by complements and other inflammatory factors[3,.4]. The major histologic feature of BP is subepidermal blisters with variable degrees of dermal inflammation. The immunopathological tsets reveal linear deposition of C3, IgG, and/or IgE along the basement membrane zone. A majority of the patients with BP demonstrate circulating autoantibodies reactive with autoantigens located in the region of the basement membrane zone.
     BP180, also referred to as type XVII collagen or bullous pemphigoid antigen 2 (BPAg2), is a transmembrane protein that is associated with hemidesmosome and is thought to harbor the pathogenic autoantigen responsible for the initiation of BP. The extracellular domain especially the 16th non-collagenous A domain (NC16A) is the main pathogenic target epitope for BP autoantibodies[3, 5, 6].
     The pathogenic autoantibodies of BP bind to dermal-epidermal junction (DEJ) components and activate the complement system that mediates a series of inflammatory events including dermal mast cell degranulation and generation of neutrophils, eosinophils, monocyte rich infiltrates and proteinases and inflammatory mediators released, result in the loss of cell-matrix adhesion structure, and finally, subepidermal blister formation. Newly developed humanized BP animal model further elucidated the pathogenic evects of the autoantibody in vivo[7]. It was confirmed that the activation of the complement cascade via the classical pathway is required for the development of the disease. It is therefore rational to develop new therapeutic strategies by preventing complement activation via blocking autoantibody binding to the corresponding pathogenic autoantigen using targeted scFv antibody fragments.
     In our previous studies, phage antibody library was constructed using the the lymphocytes from BP patients and a Fab monoclonal antibody (clone P10), which specifically bind to BP180-NC16A, was isolated[8]. The purpose of the present study is to generate anti-BP180-NC16A scFv.
     Objective: To construct and express anti-BP180-NC16A scFv by genetically engineering technology, and to identify the binding activity and specificity of the expressed scFv.
     Methods: Variable region genes of VH and Vλwere cloned from Fab fragment against BP180-NC16A separately, linked with a linker sequence by SOE PCR method, and then ligated with the vetor pGEMT. After rapid screening and identification, the correct ligasion of VH-linker-Vλwas inserted into the prokaryotic expression vector p3MH, and transformed to E.coli by electroporation. The recombinant was identified by restriction double-enzyme digestion and sequence analysis. After that, soluble scFv express vector was obtained by removing the gene III fragment in the phagemid vector. Anti-BP180-NC16A scFv was expressed, and was purified using Ni affinity chromatography method. The reactivity and specificity of the expressed scFv with rhNC16A and other control antigens were tested by ELISA and Western blotting. In order to evaluate the binding of anti-BP180-NC16A scFv to the naive BP180 molecule, indirect immunofluorescence (IIF) was performed on the frozen section of normal human skin.
     Results: Anti-BP180-NC16A scFv was successfully constructed. DNA sequence analysis showed that there was no any mutation in Vλand VH genes of the constructed scFv. The soluble anti-BP180-NC16A scFv was successfully expressed and was purified by Ni affinity chromatography. SDS-PAGE analysis showed that the purity of scFv products was higher than 89%. By ELISA and Western blot characterization, the isolated anti-BP180-NC16A scFv was found to have a good antigenic specificity as well as excellent binding activity with the NC16A domain of human BP180. Indirect immunofluorescence (IIF) staining showed linear binding of the scFv along the dermal-epidermal junction (DEJ).
     Conclusion: Our success in generating the anti-BP180-NC16A scFv makes it possible to create a novel specific therapy for BP. In addition, it would be also useful in furthering the studies on the pathogenesis of the disease.
引文
1 Khumalo N, Kirtschig G, Middleton P, Hollis S, Wojnarowska F, Murrell D. Interventions for bullous pemphigoid. The Cochrane Database of Systematic Reviews. 2005; 20(3):No: CD002292.
    2 Patton T, Korman NJ. Bullous pemphigoid treatment review. Expert Opin Pharmacother. 2006;7(17):2403-2411.
    3 Yancey KB. The pathophysiology of autoimmune blistering diseases. J Clin Invest. 2005; 115(4):825-828.
    4 Liu Z. Bullous Pemphigoid: Using Animal Models to Study the Immunopathology. J Investig Dermatol Symp Proc. 2004;9(1):41-46.
    5 Sitaru C, Zillikens D. Mechanisms of blister induction by autoantibodies. Exp Dermatol. 2005;14(12):861–875.
    6 Powell AM, Sakuma-Oyama Y, Oyama N, Black MM. Collagen XVII/BP180: a collagenous transmembrane protein and component of the dermoepidermal anchoring complex Clin Exp Dermatol. 2005;30(6): 682–687.
    7 Nishie W, Sawamura D, Goto M, Ito K, Shibaki A, McMillan JR, Sakai K, Nakamura H, Olasz E, Yancey KB, Akiyama M, Shimizu H. Humanization of autoantigen. Nat Med. 2007;13(3):378-383.
    8王刚,刘玉峰.大疱性类天疱疮患者噬菌体抗体库的构建及抗BP180-NC16A抗体筛选[J].中国皮肤性病学杂志,2008;22(11):655-657.
    9 Lever WF. Pemphigus. Medicine. 1953;32:1-123.
    10 Loo WJ , Burrows NP. Management of autoimmune skin disorders in the elderly. Drugs Aging. 2004;21(12):767-777.
    11 Rzany B, Partscht K, Jung M, et al. Risk factors for lethal outcome in patients with bullous pemphigoid: low serum albumin level, high dosage of glucocorticosteroids, and old age. Arch Dermatol. 2002;138(7):903-908.
    12 Nguyen VA, Friesenecker B, Sepp N. Fatal bullous pemphigoid unresponsive to any therapeutic regimens. JEADV. 2007;21(2):247-289.
    13 Giudice GJ, Emery DJ, LA Diaz. Cloning and primary structural analysis of the bullous pemphigoid autoantigen BP-180. J Invest Dermato. 1992;99: 243-250.
    14 Gagnoux-Palacios L, Gache Y, Ortonne JP, Meneguzzi G. Hemidesmosome assembly assessed by expression of a wild-type integrin beta 4 cDNA in junctional epidermolysis bullosa keratinocytes. Lab Invest. 1997;77(5): 459-468
    15 Borradori L,Sonnenberg A. Hemidesmosomes: roles in adhesion, signaling and human diseases. Curr Opin Cell Biol. 1996;8(5):647-656.
    16 Korge BP, Krieg T. The molecular basis for inherited diseases. J Mol Med. 1996;74(2):59-70.
    17 Stanley JR, Tanaka T, Mueller S, Klaus-Kovtun V, Roop D. Isolation of complementary DNA for bullous pemphigoid antigen by use of patients' autoantibodies. J Clin Invest. 1988;82(6):1864-70.
    18 Luca Borradori, Peter J. Koch, Carien M. Niessen, Stefan Erkeland, Manuel R. The Localization of Bullous Pemphigoid Antigen 180 (BP180) in hemidesmosomes is mediated by its cytoplasmic domain and seems to be regulated by the 4 Integrin subunit. J Cell Biol. 1997;136(6):1333-1347.
    19 Stanley JR. Cell adhesion molecules as targets of autoantibodies in pemphigus and pemphigoid, bullous diseases due to defective epidermal cell adhesion. Adv Immunol. 1993;53:291-325.
    20 Guo L, Degenstein L, Dowling J, Yu QC, Wollmann R, Perman B, Fuchs E. Gene targeting of BPAG1: abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration. Cell. 1995Apr 21;81(2):233-43.
    21 Giudice GJ, Emery DJ, Diaz LA. Cloning and primary structural analysis of the bullous pemphigoid autoantigen,BP-180. J Invest Dermatol. 1992; 99(3): 243–250.
    22 Hopkinson SB, Riddelle KS, Jones JCR. Cytoplasmic domain of the 180-kD bullous pemphigoid antigen, a hemidesmosomal component: molecular and cell biologic characterization. J Invest Dermatol. 1992;99(3):264–270.
    23 Zillikens D, Rose PA, Balding SD, Olague-Marchan M, Mascaro JM Jr, Liu Z, Diaz LA, Giudice GJ. Tight clustering of extracellular BP180 epitopes recognized by bullous pemphigoid autoantibodies. J Invest Dermatol. 1997;109(4):573–579.
    24 McGrath JA, Gatalica B, Christiano AM, Li K, Owaribe K, McMillan JR, Eady RA, Uitto J. Mutations in the 180-kD bullous pemphigoid antigen (BPAG2), a hemidesmosomal transmembrane collagen (COL17A1), in generalized atrophic benign epidermolysis bullosa. Nat Genet. 1995; 11(1): 83-6.
    25 Giudice GJ, DJ Emery, BD Zelickson, GJ Anhalt, Z Liu. Bullous pemphigoid and herpes gestationis autoantibodies recognize a common non-collagenous site on the BP 180 ectodomain. J. Immunol. 1993;151(10): 5742-50.
    26 Hirako Y, Nishizawa Y, Sitaru C et al. The 97-kDa(LABD97) and 120-kDa (LAD-1) fragments of bullous pemphigoid antigen 180/type XVII collagen have different N-termini. J Invest Dermatol. 2003;121:1554–1556.
    27 Kobayashi M, Amagai M, Kuroda-Kinoshita K, Hashimoto T, Shirakata Y, Hashimoto K, Takeji Nishikawa T. BP180 ELISA using bacterial recombinant NC16a protein as a diagnostic and monitoring tool for bullous pemphigoid. J Dermatol Sci. 2002;30(3):224-232.
    28 Tsuji-Abe Y, Akiyama M, Yamanaka Y, et al. Correlation of clinical severity and ELISA indices for the NC16A domain of BP180 measured using BP180 ELISA kit in bullous pemphigoid. J Dermatol Sci. 2005; 37(3):145-149.
    29 SC Hofmann, K Tamm, M Hertl, L Borradori . Diagnostic value of an enzyme-linked immunosorbent assay using BP180 recombinant proteins in elderly patients with pruritic skin disorders. British Journal of Dermatology. 2003;149(4):910-912.
    30 Janet A, Fairley, Christopher T, Burnett, Chang-Ling Fu. A Pathogenic Role for IgE in Autoimmunity: Bullous Pemphigoid IgE Reproduces the Early Phase of Lesion Development in Human Skin Grafted to nu/nu Mice. Journal of Investigative Dermatology. 2007;127(11):2605–2611.
    31 Liu Z, Diaz LA, Swartz SJ, Fairley JA, Troy JL, Giudice GJ .Molecular mapping of a pathogenically relevant BP180 epitope associated with experimentally induced murine bullous pemphigoid. J Immunol. 1995; 155(11):5449–5454.
    32 Liu Z, Diaz LA, Troy JL, Taylor AF, Emery DE, Fairley JA, Giudice GJ. A passive transfer model of the organ-speciWc autoimmune disease, bullous pemphigoid, using antibodies generated against the hemidesmosomal antigen, BP180. J Clin Invest. 1993;92(5):2480–2488.
    33 Liu Z, Giudice GJ, Swartz SJ, Fairley JA, Till GO, Troy JL, Diaz LA. The role of complement in experimental bullous pemphigoid. J Clin Invest. 1995;95(4):1539–1544.
    34 N Nelson KC, Zhao M, Schroeder PR, Li N, Wetsel RA, Diaz LA, Liu Z. Role of different pathways of the complement cascade in experimental bullous pemphigoid. J Clin Invest. 2006;116(11):2892-2900.
    35 Liu Z, Giudice GJ, Swartz SJ, Fairley JA, Till GO. Role of FcRs in Animal Model of Autoimmune Bullous Pemphigoid. J Immunol. 2006;177(5): 3398-3405.
    36 Chen R, Ning G, Zhao ML, Fleming MG, Diaz LA, Werb Z, Liu Z. Mast cells play a key role in neutrophil recruitment in experimental bullous pemphigoid. J Clin Invest. 2001;108(8):1151–1158.
    37 Liu Z, Giudice GJ, Zhou X. A major role for neutrophils in experimental bullous pemphigoid. J Clin Invest. 1997;100(5):1256-63.
    38 M.Wakugawa, K. Nakamura, H. Hino. Elevated levels of eotaxin and interleukin-5 in blister fluid of bullous pemphigoid: correlation with tissue eosinophilia. British Journal of Dermatology. 2000;143(1):112–116.
    39 T. Kakinuma, M. Wakugawa, K. Nakamura, H. Hino, K. Matsushima. High level of thymus and activation-regulated chemokine in blister fluid and sera of patients with bullous pemphigoid. British Journal of Dermatology. 2003;148(2):203-210.
    40 Takeshi Echigo, Minoru Hasegawa, Yuka Shimada, Makoto Inaoki, Kazuhiko Takehara, Shinichi Sato. Both Th1 and Th2 chemokines are elevated in sera of patients with autoimmune blistering diseases. Archives of Dermatological Research. 2006;298(1):38-45.
    41 Schmidt E, Bastian B, Dummer R, Tony HP, Br?cker EB, Zillikens D. Detection of elevated levels of IL-4, IL-6, and IL-10 in blister fluid of bullous pemphigoid. Arch Dermatol Res. 1996;288(7):353-7.
    42 Inaoki M, Takehara K. Increased serum levels of interleukin (IL)-5, IL-6 and IL-8 in bullous pemphigoid. J Dermatol Sci. 1998;16(2):152-7.
    43 Liu Z, Shapiro SD, Zhou X, Twining SS. A critical role for neutrophil elastase in experimental bullous pemphigoid. J Clin Invest. 2000 Jan;105(1): 113-23.
    44 Zhi Liu, J. Michael Shipley,Thiennu H. Vu. Gelatinase B–deficient Mice Are Resistant to Experimental Bullous Pemphigoid. J Exp Med. 1998; 188(3): 475–482.
    45 Delgado JC, Turbay D, Yunis EJ, et a1. A common major histocompatibility complex class II allele HLA—DQB1*0301 is present in clinical variants of pemphigoid. Proc Nail Acad Sci USA. 1996;93(16):8569-8571.
    46 Banfield CC, Wojnarowska F, Allen J, George S, Venning VA, Welsh KI. The association of HLA-DQ7 with bullous pemphigoid is restricted to men. Br J Dermatol. 1998 Jun;138(6):1085-90.
    47 Okazaki A, Miyagawa S, Yamashina Y, et al. Polymorphisms of HLA-DR and-DQ genes in Japanese patientswith bullous pemphigoid. J Dermatol. 2000;27(3):149-156.
    48周淑华,王秀敏,韩兆东等.山东地区汉族大疱性类天疱疮与HLA—DR,DQB1基因的相关性研究.中国皮肤性病学杂志,2007,21(2):72-75.
    49 Rzany B, Partscht K, Jung M, et al. Risk factors for lethal outcome in patients with bullous pemphigoid : low serum albumin level, high dosage of glucocorticosteroids , and old age. Arch Dermatol. 2002;138(7):903-908.
    50 Khumalo N, Kirtschig G, Middleton P, et al. Interventions for bullous pemphigoid. Cochrane Database Syst Rev. 2005;20:CD002292.
    51 Warren DJ, Smith RS. High dose prednisone.Lancet. 1983;1(8324):593-594.
    52 Joly P, Fontaine J, Roujeau JC. The role of topical corticosteroids in bullouspemphigoid in the elderly. Drugs. Aging. 2005;22(7):571-576.
    53 Kowal A, Warminska J, Krasowska D. Immunosuppressive drugs in dermatology-benefits.and.threats.Ann.Univ.Mariae.Curie.Sklodowska. 2003;58(2):14-21.
    54 Grundmann-Kollmann M, Korting HC, Behrens S, et al. Mycophenolate mofetil: a new therapeutic option in the treatment of blistering autoimmune diseases. J Am Acad Dermatol. 1999;40(6 Pt 1):957-960.
    55 Ko MJ, Chu CY. Topical tacrolimus therapy for localized bullous pemphigoid. Br J Dermatol. 2003;149(5):1079-1081.
    56 Engineer L ,Ahmed AR. Role of intravenous immunoglobalin in the treatment of bullous pemphigoid :analysis of current data. J Am Acad Dermatol. 2001;44(1):83-88.
    57 Sami N , Ali S , Bhol KC. Influence of intravenous immunoglobulin therapy on autoantibody titres to BP Ag1 and BP Ag2 in patients with bullous pemphigoid. J Eur Acad Dermatol Venereol. 2003;17(6):641-645.
    58 Jolles S. A reviewof high dose intravenous immunoglobulin (hdIVIg) in the treatment of the autoimmune blistering disorders. Clin Exp Dermatol 2001;26(2):127-131.
    59 Herrero-Gonzòlez J E, Sitaru C, Klinker E. Successful adjuvant treatment of severe bullous pemphigoid by tryptophan immunoadsorption. Clin Experi Dermatol. 2005;30(5):519-22.
    60 Hatano Y, Katagiri K, Arakawa S , et al. Successful treatment by double filtration plasmapheresis of a patient with bullous pemphigoid : effects in vivo on transcripts of several genes for chemokines and cytokines in peripheral blood mononuclear cells. Br J Dermatol. 2003;148(3):573-579.
    61 Nousari HC, Anhalt GJ. Bullous pemphigoid treated with leflunomide: anovel immunomodulatory agent. Arch Dermatol. 2000;136(10):1204-1205.
    62 Loo WJ , Kirtschig G, Wojnarowska F. Minocycline as a therapeutic option in bullous pemphigoid. Clin Exp Dermatol. 2001;26(5):376-9.
    63 Wright A. Genetically engeneered antibodies: progress and prospects. Crit Rev Immunol. 1992;12:125-168.
    64谭文庆.单链抗体的研究进展[J].国外医学-放射医学核医学分册,2001;25(2):55-59.
    65董志伟,王琰.抗体工程[M].第二版北京:北京医科大学出版社,2002.
    66 Adey NB, M ataragnon AH, Rider JE, et al. Characterization of phage that bind pastic from phage-displayed random peptide libraries. Gene. 1995; 156(1):27-31.
    67武国军,郝晓柯.单链抗体的研究进展及在肿瘤诊断、治疗中的应用[J].国外医学-临床生物化学与检验学分册.1999;20(1):33-34.
    68 Sanna.PP.Expression of antibody Fab fragments and whole immunoglobulin in mammalian cells. Methods in molecular biology. 2002;178:389-395.
    69 Mayer A, Sharma SK, Tolier B, et al. Modifying an immunogenic epitope on a therapeutic protein: a step towards an improved system for antibody- directed enzyme prodrug therapy (ADEPT). Br J Cancer. 2004; 90(12): 2402-2410.
    70 Zhang JL, Gou JJ, Zhang ZY, et al. Screening and evaluation of human single-chain fragment variable antibody against hepatitis B virus surface antigen. Hepatobiliary Pancreat Dis Int. 2006;5(2):237-241.
    71 Shen S, Forero A, Lobuglio AF, Breitz H. Patient-specific dosimetry of retargeted radioimmunotherapy using CC49 fusion protein in patients with gastrointestinal malignancies. J Nucl Med. 2005; 46(4):642-651.
    72 Christian BA, Lin TS. Antibody therapy for chronic lymphocytic leukemia.Semin Hematol. 2008;45(2):95-103.
    73 J.萨姆布鲁克,DW.拉塞尔等著,黄培堂等译.分子克隆实验指南,第3版,北京:科学出版社,2002,1217-1270.
    74 Kipriyanov SM, Moldenhauer G, Little M. High level production of soluble single chain antibodies in small-scale Escherichia coli cultures. J Immunol Methods. 1997 Jan 15;200(1-2):69-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700