LTF基因在鼻咽癌中的表达及其与甲基化的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼻咽癌是一种好发于我国南方各省及东南亚一带的上皮源性恶性肿瘤。流行病学及实验研究表明,鼻咽癌的发生是多阶段、多途径、多因素共同参与的复杂过程,遗传易感性、Epstein-Barr病毒(EBV)感染及包括饮食在内的环境因素等对鼻咽癌的发生起重要作用。在这些因素的共同作用下,鼻咽上皮细胞的鼻咽癌相关瘤基因和抑瘤基因发生遗传学变异和表遗传学改变的不断积累,最终引起细胞的恶性转化。
     乳铁蛋白(lactotransferrin,LTF)是一种分泌性糖蛋白,可表达于多种组织中。一系列体内体外实验证明LTF具有多种生物学功能,它参与铁平衡、免疫调节、抗炎、抗肿瘤、止痛、调节骨代谢,参与胚胎发育和生殖等过程。本实验室前期工作通过分析鼻咽癌基因表达谱的结果选取了位于鼻咽癌高频缺失区3p21.3-22的LTF基因作为研究对象,探讨该基因与鼻咽癌发生发展的关系。实验结果显示,LTF基因在鼻咽癌组织(76%)中和7株鼻咽癌细胞系(100%)表达缺失或下调:原因分析显示其中63.6%、25%和30%的鼻咽癌组织及14%、14%和100%的鼻咽癌细胞系中分别存在启动子区DNA甲基化、微卫星位点LOH和基因突变。野生型LTF基因导入鼻咽癌细胞系5-8F后,稳定表达LTF基因的5-8F细胞细胞周期阻滞于G0-G1期,同时体外增殖能力和克隆形成能力下降。这些研究结果表明LTF基因很可能是一个与鼻咽癌关系密切的候选抑瘤基因。
     在此基础上,本课题进一步分析了LTF基因的两个转录本LTF和△LTF在鼻咽癌组织中的表达。同时构建LTF基因P1和P2启动子甲基化与未甲基化的报告载体,并导入CNE2,观察启动子甲基化对LTF基因表达的调控作用。此外,野生型LTF基因被导入到鼻咽癌细胞系CNE2中并观察稳定表达LTF基因的CNE2细胞体内外生物学特性的影响,明确LTF基因在CNE2细胞中的作用。这些为探讨研究甲基化修饰与鼻咽癌组织LTF基因表达下调或缺失的相关性及LTF基因与鼻咽癌发生发展关系提供了进一步的证据。实验方法和结果如下:
     首先,采用RT-PCR方法检测LTF基因两个转录本LTF和△LTF在34例原发性鼻咽癌和17例慢性鼻咽炎的组织表达,结果显示LTF和△LTF基因在慢性鼻咽炎组织中稳定表达,在82.35%(26/34)原发性鼻咽癌中表达缺失或下调。接着实验构建了LTF基因启动子甲基化和未甲基化的报告载体。启动子报告载体瞬时转染入6-10B和CNE2细胞,报告基因检测表明CNE2细胞比6-10B细胞具有相对较高的LTF启动子活性。定位于-99~+16区域启动子报告载体pGL3B/P1-116在6-10B和CNE2细胞中其报告基因都具有相对较高的活性,推测-99~+16区域为核心的启动子区。我们选择CNE2细胞做启动子regional methylation实验。SssI处理和对照的启动子连入报告载体并瞬时转染CNE2细胞,报告基因活性分析提示,与对照组相比,甲基化的LTF基因启动子活性明显降低,推测甲基化修饰抑制LTF启动子功能可能是NPC中LTF表达下调或缺失的重要原因。
     此外,实验采用Origene公司含LTF基因cDNA序列的克隆载体pCMV6-XL5-LTF,并利用Not I酶切位点定向克隆到pcDNA3.1(-)载体中,构建了LTF基因的真核表达载体(pcsLTF)。利用脂质体将pcsLTF导入CNE2细胞,G418筛选获得抗性克隆,进一步采用RT-PCR检测LTF基因的mRNA表达,采用Western blotting检测LTF蛋白的表达,结果表明成功建立稳定表达LTF基因的CNE2细胞系(CNE2-LTF)。实验进一步检测了CNE2-LTF细胞的生物学特征:流式细胞分析结果表明,与对照组相比转染pcsLTF后可以使CNE2细胞阻滞于G1期,G0-G1期细胞比例明显增加(64.80%vs 55.13%),G2-M期(7.76%vs 15.13%)细胞比例减少。MTT的结果表明CNE2-LTF细胞的增殖速度明显低于对照组(P<0.05);平板克隆形成实验结果显示CNE2-LTF细胞的克隆形成率明显低于对照组(37.5%vs 52.2%)。提示LTF基因稳定表达后导致CNE2细胞的增殖能力和克隆形成能力降低。裸鼠成瘤实验表明CNE2-LTF细胞肿瘤形成能力明显降低(P<0.05)
     本课题的实验结果表明,LTF基因两个转录本LTF与△LTF在原发性鼻咽癌表达缺失或下调;启动子区甲基化对LTF基因在鼻咽癌中表达下调或缺失可能起着重要作用;LTF基因稳定表达于CNE2细胞可明显改善其恶性生物学特性,使细胞阻滞于G1期,增殖能力和克隆形成能力降低,且裸鼠成瘤能力降低。综上所述,我们推测LTF基因很可能是鼻咽癌的候选抑瘤基因之一,LTF在鼻咽癌的发生发展中发挥重要作用,其具体作用还需要更多的体内外实验进行证实。
Nasopharyngeal carcinoma(NPC)is an epithelium-derived malignancy with high incidence in Southeast Asia and Southern China. The epidemiological and etiological studies indicate that the tumorigenesis of NPC is a multistage and multichannel process involving multiple factors.The various factors including genetic alterations, Epstein-Barr virus(EBV)infection,dietary and environmental factors are considered to contribute to the occurrence and development of NPC.On the backgroud of predisposed genetic and environmental factors, cumulative genetic and epigenetic alteration of NPC associated oneogenes and tumor suppressor genes(TSG)lead to malignant transformation of normal nasopharyngeal epithelial cells.
     Lactotransferrin(LTF)is a secretory glycoprotein expressed in a wide variety of tissues.The biological functions of LTF,which are confirmed in numerous in vitro and in vivo models,include participation in iron homeostasis,immunoregulatory properties,anti-inflammatory, anti-tumor,and analgesic actions,regulation of bone metabolism, participation in embryonic development,reproductive functions,and others.Based on the microarray experiments conducted on NPC and other human malignancies,LTF gene located at 3p21.3-22(which is a common deleted region in NPC)evoked our interest.Previous results in our laboratory have indicated that LTF was down-regulated or absent in 76%of NPC tissues and 100%of 7 NPC cell lines.To assess the possible molecular mechanism causing LTF inactivation in NPC cells,LOH,gene mutation and/or promoter methylation were detected in 63.6%,25%and 30%of NPC tissues an in 14%,14%and 100%of NPC cell lines respectively.Expression of LTF in 5-8F cells via gene transfeetion induce cell cycle arrest in G1 phase,much more slower proliferation and cloning efficiency.These results have shown that LTF may be a promising NPC-associated candidate TSG.
     Based on the previous work,we further analyzed the expression of two transcript isoforms of LTF in NPC tissues.Subsequently,We successfully constructed a series of methylated and unmethylated LTF gene P1 and P2 promoter recombinants containing luciferase reporter gene and analyzed the role of promoter methylation in regulating LTF gene expression in CNE2 cell line.In addition,transfection of LTF eukaryotic expression vector into CNE2 cells was performed by liposome method and the biological characteristic changes of transfected CNE2 cells were examined in vitro and in vivo for studying the possible roles of LTF in NPC.The experimental methods and results are as follows:
     To analyze the expression of two LTF isoforms at the transcription level,RT-PCR was performed.The expression of LTF in 35 primary NPC tissues and 17 chronic nasopharyngitis tissues were detected and the results showed that LTF was stably expressed in all the chronic nasopharyngitis tissues,but aberrantly expressed(absent or down-regulated)in 82.35%(26 of 34)of NPC tissues.Different P1 and P2 promoters were respectively cloned into pGL3-Basic vector without promoter and enhancer,which were confirmed by sequencing.P1 and P2 promoter recombinants were transiently transfected into 6-10B and CNE2 cell lines,lueiferase activities were measured.The results showed that LTF gene promoter exerted stronger activity in CNE2 cells than that in 6-10B.pGL3B/P1-116 recombinant mapping -99-+16 of LTF promoter exhibited relatively higher lueiferase activity in both 6-10B and CNE2 cells,suggesting -99-+16 region may be the core sequence of the P1 promoter.CNE2 cells were selected for regional methylation analysis of LTF promoters with reporter constructs.Promoter sequences methylated with SssI and controls prepared by similar treatment except the addition of SssI,were ligated back into the lueiferase reporter constructs and transfected into CNE2 cells,with pRL-SV40 cotransfection as an inner control.Our results indicated luciferase activities driven by methylated promoters were strikingly decreased compared to the control.It is inferred that suppression of LTF promoter function by methylation is an important reason leading to aberrant LTF expression in NPC.
     On the basis of pcDNA3.1(-)vector and pCMV6-XL5-LTF vector containing LTF cDNA sequence bought from Origene company,the eukaryotic LTF expression vector was consructed(designated pcs-LTF) and transfected into CNE2 cells by liposome method.After G418 selection,several G418-resistant cell clones were obtained.The stable expression of LTF both at mRNA and protein levels in the G418-resistant cell clones was detected by RT-PCR and Western blotting respectively. The results showed that the CNE2 cell line stably expressing LTF gene (named CNE2-LTF)has been successfully established.
     In vitro and in vivo experiments illustrated that biological characteristics of CNE2-LTF cells changed significantly.Flow cytometry (FCM)analysis showed that LTF expression could block the cell cycle progression of CNE2-LTF cells in G1 phase,leading to an increase in the number of cells in G1 phase(64.80%vs 55.13%)and a decrease in the number of cells in G2/M phase(7.76%vs 15.13%).MTT analysis and colony formation assay showed that,compared with CNE2 cells transfeeted with blank vector(named CNE2-pc3.1),CNE2-LTF cells proliferated much more slowly(P<0.05)and had a much lower cloning efficiency(37.5%vs 52.2%),providing evidence that LTF had an inhibitory effect on proliferation of CNE2-LTF cells.In order to compare the ability of tumor formation between CNE2-LTF cells and CNE2-pc3.1, we inoculated subeutaneouly 5×10~6 cells of each kind to six nude mice respectively.Tumor formation was examined after 6 weeks.All the nude mice were alive with the tumor developed.CNE2-LTF cells manifested much weaker tumor formation potential compared to CNE2-pc3.1 cells (P<0.05).
     Above all,our results demonsrate that expression of LTF two isoforms is absent or down-regulated in NPC;methylation of LTF promoter plays an important role in inactivation of LTF gene;sequences mapping -99- +16 of LTF gene may be the core site of the promoter; stable expression,of LTF could induce cell cycle arrest in G1 phase, decrease the proliferation and cloning abilites of CNE2-LTF cells,and induce tumor suppression in nude mice in vivo.All these data confirm that LTF can be a candidate TSG in NPC.The detailed mechanism of LTF in the tumorigenesis of NPC remains to be further studied.
引文
[1]Lung ML,Sham JS,Lam WP,et al.Analysis of localized tumors provides further evidence for the direct association of Epstein-Barr virus with nasopharyngeal carcinoma.Cancer.1993,71(4):1190-1192.
    [2]Choi PH,Suen MW,Huang DP,et al.Nasopharyngeal carcinoma:genetic changes,Epstein-Barr virus infection,or both.A clinical and molecular study of 36 patients.Cancer.1993,72(10):2873-2878
    [3]Lo K,Huang PW,Lee CK.Genetic changes in nasopharyngeal carcinoma.Clin Med J(Engl).1997,110(7):548-549.
    [4]Hildesheim A,Levine PH.Etiology of nasopharyngeal carcinoma:a review.Epidemiol Rev.1993,15(2):466-485.
    [5]Chen DL,Huang TB.A case-control study of risk factors of nasopharyngeal carcinoma.Cancer Lett.1997,117(1):17-22.
    [6]Zur Hausen H,Schulte-Holthausen H,Klein G,et al.EBV DNA in biopsies of Burkitt tumors and anaplastic carcinomas of the nasopharynx.Nature.1970,228(5276):1056-1058.
    [7]Cheng Y,Stanbridge EJ,Kong H,et al.A functional investigation of tumor suppressor gene activities in a nasopharyngeal carcinoma cell line HONE1 using a monochromosome transfer approach.Genes Chromosomes Cancer.2000,28(1):82-91.
    [8]Vogelstein B,Klnzler KW.The multistep nature of cancer.Trends Genet.1993,9(4):138-141.
    [9]姚开泰.从死因回顾调查资料看湖南省鼻咽癌流行病学的一些特点并探索其发病机理.湖南医学院学报.1982,7(1):10-17.
    [10]Lo KW,Huang DP,Lau KM.p16 gene alterations in nasopharyngeal carcinoma.Cancer Res.1995,55(10):2039-2043.
    [11]FangY,Guan XY,Guo Y,et al.Analysis of genetic alterations in primary nasopharyngeal carcinoma by comparative genomic hybridization.Genes,Chromosome & Cancer.2001,30:254-260.
    [12]Yan J,Fang Y,Liang QW,et al.Novel chromosome alterations detected in primary nasopharyngeal carcinoma by comparative genomic hybridization.Chinese Medical Journal.2001,114(4):418-421.
    [13] Chen YJ, Ko JY, Chen PJ, et al. chromosomal aberrations in nasopharyngeal carcinoma analyzed by comparative genomic hybridization. Genes Chromosomes Cancer, 1999; 25:169-175.
    [14] Hui ABY, Lo KW, Leung SF, et al. Detection of recurrent chromosomal gains and loss in primary nasopharyngeal carcinoma by comparative genomic hybridization. Int J Cancer, 1999, 82:498-503.
    [15] Lo KW, Teo PM, Hui ABY, et al. High resolution allelotype of microdissected primary nasopharyngeal carcinoma. Cancer Res 2000,60:3348-3353.
    [16] Chan ASC, To KF, Lo KW, et al. High frequency of chromosome 3p deletion in histologically normal nasopharyngeal epithelia from southern Chinese. Cancer Res 2000, 60:5365-5370.
    [17] Lo KW, Tsao SW, Leung SF, et al. Detailed deletion mapping on the short arm of chromosome 3 in nasopharyngeal carcinoma. Int J Oncol 1994,43:936-939.
    [18] Cheng Y, Poulos NE, Lung ML, et al. Functional evidence for a nasopharyngeal carcinoma tumor suppressor gene that maps at chromosome 3p21.3. Proc Natl Acad Sci USA 1998, 95:3042-3047.
    [19] Xiong W, Zeng ZY, Xia JH, et al. A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma. Cancer Res. 2006, 4(6): 1972-1974.
    [20] Lee JT, Davidow LS, Warshawsky D. Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet, 1999,21(4):400~404.
    [21] Reik W, Murrell A. Genomic imprinting. Silence across the border. Nature, 2000, 405(6785):408~409.
    [22] Tong JH,Tsang RK,Lo KW, et al. Quantitative Epstein-Barr virus DNA analysis and detection of gene promoter hypermethylation in nasopharyngeal (NP) brushing samples from patients with NP carcinoma. Clin Cancer Res. 2002,8(8):2612~2619.
    [23] Yi HM, Li H, Peng D, Zhang HJ, et al. Genetic and epigenetic alterations of LTF at 3p21. 3 in nasopharyngeal carcinoma. Oncol Res. 2006;16(6):261~72.
    
    [24] Lo KW, Kwong J, Hui AB, et al. High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma. Cancer Res. 2001, 61(10): 3877-3881.
    [25] Zhou L, Jiang W, Ren C, et al. Frequent hypermethylation of RASSF1A and TSLC1, and high viral load of Epstein - Barr Virus DNA in nasopharyngeal carcinoma and matched tumor-adjacent tissues.Neoplasia,2005,7(9):809-815.
    [26]Qiu GH,Tan LK,Loh KS,et al.The candidate tumor suppressor gene BLU,located at the commonly deleted region 3p21.3,is an E2F- regulated,stressresponsive gene and inactivated by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma.Oncogene,2004,23(27):4793-4806.
    [27]Wong TS,Kwong DLW,Sham JST,et al.Promoter hypermethylation of high-in-normal 1 gene in primary nasopharyngeal carcinoma.Clin Cancer Res,2003,9(8):3042-3046.
    [28]Tsao SW,Liu Yu,Wang X,et ol.The association of E-cadherin expression and the methylation status of the E-cadherin gene in nasopharyngeal carcinoma cells.Eur J Cancer,2003,39(4):524-531.
    [29]Kwong J,Lo KW,Chow LSN,et al.Silencing of the retinoid response gene TIGI by promoter hypermethylation in nasopharyngeal carcinoma.Int J Cancer,2005,113(3):386-392.
    [30]Kwong J,Lo KW,Chow LSN,et al.Epigenetic silencing of cellular retinolbinding proteins in nasopharyngeal carcinoma.Neoplasia,2005,7(1):67-74.
    [31]Lin YC,You L,Xu Z,et al.Wnt signaling activation and WIF- 1 silencing in nasopharyngeal cancer cell lines.Biochem Biophys ges Commun,2006,341(2):635-640.
    [32]Chang HW,Chan A,Kwong DLW,et al.Detection of hypermethylated RIZI gene in primary Tumor,mouth,and throat rinsing fluid,nasopharyngeal swab,and peripheral blood of nasopharyngeal carcinoma patient.Clin Cancer Res,2003,9(3):1033-1038.
    [33]Cheung HW,Ching YP,Nicholls JM,et al.Epigenetic inactivation of CHFR in nasopharyngeal carcinoma through promoter methylation.Mol Carcinogenesis,2005,43(4):237-245.
    [34]Lo KW,Tsang YS,Kwong J,et al.Promoter hypermethylation of the EDNRB gene in nasopharyngealcarcinoma.Int J Cancer,2002,98(5):651-655.
    [35]Peng H,Zhao T,Yao KT.鼻咽癌DLC1基因的表达研究.中华耳鼻咽喉科杂志,2002,37(6):454-457.
    [36]Chow LS,Lo KW,Kwong J,et al.RASSFIA is a target tumor suppressor from 3p21.3 in nasopharyngeal carcinoma.Int J Cancer.2004,109(6):839-847.
    [37]Liu XQ,Sun M,Chen HK,et al.Mutation and expression of SEMA3B and SEMA3F gene in nasopharyngeal carcinoma.Ai Zheng.2003,22(1):16-20.
    [38] Liu XQ, Chen HK, Zhang XS, et al. Alterations of BLU, a candidate tumor suppressor gene on chromosome 3p21. 3, in human nasopharyngeal carcinoma. Int J Cancer. 2003,106(1):60~65.
    [39] Yi HM, Ren CP, Peng D, et al. Expression, loss of heterozygosity, and methylation of GNAT1 gene in nasopharyngeal carcinoma. Ai Zheng. 2007, 26(1):9~14.
    [40] Rey MW, Woloshuk SL, deBoer HA, et al. Complete nucleotide sequence of human mammary gland lactoferrin. Nucleic acids research. 1990, 18(17): 5288-5294.
    [41] Siebert PD, Huang BCB. Identification of an alternative form of human lactoferrin mRNA that is expressed differentially in normal tissues and tumor-derived cell lines. Proc. Natl. Acad. Sci USA. 1997,94(6):2198~2203
    [42] Liu D.Wang X,Zhang Z,Teng CT.An intronic alternative promoter of the human lactoferrin gene is activated by Ets. Biochem Biophys Res Commun.2003, 301(2):472-479.
    [43] Goldberg GS,Kunimoto T.Alexander DB, et al.Full length and delta lactoferrin display differential cell localization dynamics, but do not act as tumor markers or significantly affect the expression of other genes.Med Chem.2005,l(1):57-64.
    [44] Weinberg ED. The therapeutic potential of lactoferrin. Expert Opin Investig Drugs. 2003,12(5):841-851.
    [45] Ward PP, Paz E, Conneely OM. Multifunctional roles of lactoferrin: a critical overview. Cell Mol Life Sci. 2005,62(22):2540~2548.
    [46] Artym J. Antitumor and chemopreventive activity of lactoferrin. Postepy Hig Med Dosw. 2006, 60:352-369.
    [47] Mistry N, Drobni P, Naslund J, et al. The anti-papillomavirus activity of human and bovine lactoferricin. Antiviral Res. 2007,75(3):258~265.
    [48] Yi M,Kaneko S, Yu DY, et al. Hepatitis C virus envelope proteins bind lactoferrin.J Virol.l997,71(8):5997-6002.
    [49] Hara K, Ikeda M, Saito S, et al. Lactoferrin inhibits hepatitis B virus infection in cultured human hepatocytes. Hepatol Res. 2002,24(3):228.
    [50] Ikeda M, Nozaki A, Sugiyama K, et al. Characterization of antiviral activity of lactoferrin against hepatitis C virus infection in human cultured cells. Virus Res. 2000, 66(1):51-63.
    [51] Ishii K, Takamura N, Shinohara M, et al. Long-term follow-up of chronic hepatitis C patients treated with oral lactoferrin for 12 months. Hepatol Res. 2003, 25 :226~233.
    
    [52] Stenfors LE, Bye HM, Raisanen S. Noticeable differences in bacterial defence on tonsillar surfaces between bacteria-induced and virus-induced acute tonsillitis. Int J Pediatr Otorhinolaryngol. 2003, 67(10):1075~1082.
    [53] Spadaro M, Curcio C, Varadhachary A, et al. Requirement for IFN-gamma, CD8+ T lymphocytes, and NKT cells in talactoferrin-induced inhibition of neu+ tumors. Cancer Res. 2007, 67(13):6425~6432.
    [54] Bezault J, Bhimani R, Wiprovnick J, et al. Human lactoferrin inhibits growth of solid tumors and development of experimental metastases in mice. Cancer Res. 1994, 54(9):2310-2312.
    [55] Ego M, KuharaT, Ushida Y, et al. Inhibitory effects of bovine latoferrin on colon carcinoma 26 lung metastasis in mice. Clin Exp Metastasis. 1999, 17(1):35~40.
    [56] Damiens E, El Yazidi I, Mazurier J, et al. Lactoferrin inhibits G1 cyclin-dependent kinases during growth arrest of human breast carcinoma cells. J Cell Biochem. 1999, 74(3):486~498.
    [57] Xiao Y, Monitto CL, Minhas KM, et al. Lactoferrin down-regulates G1 cyclin-dependent kinases during growth arrest of head and neck cancer cells. Clin Cancer Res. 2004, 10(24): 8683-8686.
    [58] Fujita K, Matsuda E, Sekine K, et al. Lactoferrin modifies apoptosis-related gene expression in the colon of the azoxymethane-treated rat. Cancer Lett. 2004, 213(1):21~29.
    [59] Fujita K, Matsuda E, Sekine K, et al. Lactoferrin enhances Fas expression and apoptosis in the colon mucosa of azoxymethane-treated rats. Carcinogenesis. 2004, 25(10): 1961-1966.
    
    [60] Norrby K, Mattsby-Baltzer I, Innocenti M, et al. Orally administered bovine lactoferrin systemically inhibits VEGF(165)-mediated angiogenesis in the rat. Int J Cancer. 2001, 91(2):236~240.
    [61] Shimamura M, Yamamoto Y, Ashino H, et al. Bovine lactoferrin inhibits tumor-induced angiogenes. Int J Cancer. 2004,111(1): 111-116.
    [62] Sakamoto K, Ito Y, Mori T, et al. Interaction of human lactoferrin with cell adhension molecules through RGD motif elucidated by lactoferrin-bingding epitopes. JBiol Chem. 2006, 281(34):24472~24478.
    [63] Chen C,Yang MC.Yang TP.Evidence that silencing of the HPRT promoter by DNA methylation is mediated by critical CpG sites. J Biol Chem. 2001 Jan 5;276(1):320~328.
    [64] Benaissa M, Peyrat JP, Hornez L, et al. Expression and prognostic value of lactoferrin mRNA isoforms in human breast cancer. Int J Cancer. 2005, 114(2)299-306.
    [65] Finkbeiner WE, Carrier SD, Teresi CE. Reverse transcription-polymerase chain reaction (RT-PCR) phenotypic analysis of cell cultures of human tracheal epithelium, tracheobronchial glands, and lung carcinomas. Am J Respir Cell Mol Biol. 1993, 9(5):547~556.
    [66] Penco S, Caligo MA, Cipollini G, et al. Lactoferrin expression in human breast cancer. Cancer Biochem Biophys. 1999,17(1-2): 163-178.
    [67] Tuccari G, Giuffre G, Crisafulli C, et al. Immunohistochemical detection of lactoferrin in human astrocytomas and multiforme glioblastomas. Eur J Histochem. 1999,43(4):317-322.
    [68] Lee JY, Eom EM, Kim DS, et al. Analysis of gene expression profiles of gastric normal and cancer tissues by SAGE. Genomics. 2003, 82(1):78~85.
    [69] Teng C, Gladwell W, Raphiou I, et al. Methylation and expression of the lactoferrin gene in human tissues and cancer cells. Biometals 2004, 17(3): 317-323.
    [70] Giuffre G, Barresi V, Skliros C, et al. Immunoexpression of lactoferrin in human sporadic renal cell carcinomas. Oncol Rep. 2007,17(5): 1021-1026.
    [71] Giuffre G, Arena F, Scarfi R, et al. Lactoferrin immunoexpression in endometrial carcinomas: relationships with sex steroid hormone receptors (ER and PR), proliferation indices (Ki-67 and AgNOR) and survival. Oncol Rep. 2006, 16(2): 257-263.
    [72] Barresi G, Tuccari G Lactoferrin in benign hypertrophy and carcinomas of the prostatic gland. Virchows Arch APathol Anat Histopathol. 1984;403(1):59~66.
    [73] Iijima H, Tomizawa Y, Iwasaki Y, et al. Genetic and epigenetic inactivation of LTF gene at 3p21. 3 in lung cancers. Int J Cancer. 2006; 118(4):797~801.
    [74] Shaheduzzaman S, Vishwanath A, Furusato B, et al. Silencing of Lactotransferrin Expression by Methylation in Prostate Cancer Progression. Cancer Biol Ther. 2007, 20;6(7).
    [75] Harm SR,Dixit M, Sears RC, et al.The alternatively initiated c-Myc proteins differentially regulate transcription through a noncanonical DNA-binding site. Genes Dev. 1994,8(20):2441~2452.
    [76] Voss JW,Yao TP,Rosenfeld MG Alternative translation initiation site usage results in two structurally distinct forms of Pit-l.J Biol Chem. 1991,266(20): 12832- 12835.
    [77] Calligaris R,Bottardi S.Cogoi S,et al.Alternative translation initiation site usage results in two functionally distinct forms of the GATA-1 transcription factor.Proc Natl Acad Sci USA. 1995,92(25): 11598-11602.
    [78] Spence AM,Sheppard PC,Davie JR, et al.Regulation of a bifiinctional mRNA results in synthesis of secreted and nuclear probasin.Proc Natl Acad Sci USA. 1989,86(20):7843-7847.
    [79] Stone S,Jiang P,Dayananth P, et al.Complex structure and regulation of the P16 (MTS1) locus.Cancer Res.l995,55(14):2988-2994.
    [80] Teng CT, Gladwell W, Beard C, et al. Lactoferrin gene expression is estrogen responsive in human and rhesus monkey endometrium. Mol Hum Reprod. 2002, 8(1):58~67.
    [81] Teng CT, Beard C, Gladwell W. Differential expression and estrogen response of lactoferrin gene in the female reproductive tract of mouse, rat, and hamster. Biol Reprod. 2002, 67(5): 1439-1449.
    [82] Jefferson WN, Padilla-Banks E, Newbold RR. Lactoferrin is an estrogen responsive protein in the uterus of mice and rats. Reprod Toxicol. 2000, 14(2): 103-110.
    [83] Frasor J, Barnett DH, Danes JM, et al. Response-specific and ligand dose-dependent modulation of estrogen receptor (ER) alpha activity by ERbeta in the uterus. Endocrinology. 2003,144(7):3159-3166.
    [84] Zhang Z, Teng CT. Estrogen receptor-related receptor alpha 1 interacts with coactivator and constitutively activates the estrogen response elements of the human lactoferrin gene. J Biol Chem. 2000,275(27):20837-20846.
    [85] Zhang Z, Teng CT. Estrogen receptor alpha and estrogen receptor-related receptor alphal compete for binding and coactivator. Mol Cell Endocrinol. 2001, 172(l-2):223~233.
    [86] Stokes K, Alston-Mills B, Teng C. Estrogen response element and the promoter context of the human and mouse lactoferrin genes influence estrogen receptoralpha-mediated transactivation activity in mammary gland cells. J Mol Endocrinol. 2004, 33(2):315-334.
    [87] Khanna-Gupta A, Zibello T, Kolla S, et al. CCAAT displacement protein (CDP/cut) recognizes a silencer element within the lactoferrin gene promoter. Blood. 1997, 90(7):2784~2795.
    [88] Khanna-Gupta A, Zibello T, Simkevich C, et al. Spl and C/EBP are necessary to activate the lactoferrin gene promoter during myeloid differentiation. Blood. 2000, 95(12):3734~3741.
    [89] Khanna-Gupta A, Zibello T, et al. Chromatin immunoprecipitation (ChIP) studies indicate a role for CCAAT enhancer binding proteins alpha and epsilon (C/EBP alpha and C/EBP epsilon ) and CDP/cut in myeloid maturation-induced lactoferrin gene expression. Blood. 2003, 101(9):3460~3468.
    [90] Lee MO, Liu Y, Zhang XK. A retinoic acid response element that overlaps an estrogen response element mediates multihormonal sensitivity in transcriptional activation of the lactoferrin gene. Mol Cell Biol.1995,15(8):4194~4207.
    [91] Geng K, Li Y, Bezault J, et al. Induction of lactoferrin expression in murine ES cells by retinoic acid and estrogen. Exp Cell Res. 1998, 245(1):214~220.
    [92] Lu Q, Richardson B. Methods for Analyzing the Role of DNA Methylation and Chromatin Structure in Regulating T Lymphocyte Gene Expression. Biol Proced Online. 2004, 6:189-203.
    [93] van Berkel PH, van Veen HA, Geerts ME, et al. Heterogeneity in utilization of N-glycosylation sites Asn624 and Asnl38 in human lactoferrin: a study with glycosylation-site mutants. Biochem J. 1996, 319(Ptl):117~122.
    [94] van Berkel PHC, Geerts ME, van Veen HA, et al. Glycosylated and unglycosylated human lactoferrins both bind iron and show identical affinities towards human lysozyme and bacterial lipopolysaccharide, but differ in their susceptibilities towards tryptic proteolysis. Biochem J. 1995, 312(Pt1): 107-114.
    [95] Nichols BL, McKee KS, Henry JF, et al. Human lactoferrin stimulates thymidine incorporation into DNA of rat crypt cells. Pediatr Res. 1987, 21(6):563~567.
    [96] Hagiwara T, Shinoda I, Fukuwatari Y, et al. Effects of lactoferrin and its peptides on proliferation of rat intestinal epithelial cell line, IEC-18, in the presence of epidermal growth factor. Biosci Biotechnol Biochem. 1995, 59(10): 1875-1881.
    [97] Hashizume S, Kuroda K, Murakami H. Identification of lactoferrin as an essential growth factor for human lymphocytic cell lines in serum-free medium. Biochim Biophys Acta. 1983, 763(4):377-382.
    [98] Rejman JJ, Oliver SP, Muenchen RA, et al. Proliferation of the MAC-T bovine mammary epithelial cell line in the presence of mammary secretion whey proteins. Cell Biol Int Rep. 1992, 16(10):993~1001.
    [99] Son HJ, Lee SH, Choi SY Human latoferrin controls the level of retinoblastoma protein and its activity. Biochem Cell Biol. 2006, 84(3):345~350.
    [100] Oh SM, Pyo CW, Kim Y, et al. Neutrophil lactoferrin upregulates the human p53 gene through induction of NF-kappaB activation cascade. Oncogene. 2004, 23(50): 8282-8291.
    
    [101] Manlier C, Benaissa M, Hardiville S, et al. Human delta-lactoferrin is a transcription factor that enhances Skp1 (S-phase kinase-associated protein) gene expression. FEBS J. 2007,274(8):2038~2053.
    [1]Ward PP,Paz E,Conneely OM.Multifunctional roles of lactoferrin:a critical overview.Cell Mol Life Sci.2005,62(22):2540--2548.
    [2]Weinberg ED.The therapeutic potential of lactoferrin.Expert Opin Investig Drags.2003,12(5):841-851.
    [3]van Berkel PH,van Veen HA,Geerts ME,et al.Heterogeneity in utilization of N-glycosylation sites Asn624 and Asn138 in human lactoferrin:a study with glycosylation-site mutants.Biochem J.1996,319(Pt1):117-122.
    [4]van Berkel PHC,Geerts ME,van Veen HA,et al.Glycosylated and unglycosylated human lactoferrins both bind iron and show identical affinities towards human lysozyme and bacterial lipopolysaccharide,but differ in their susceptibilities towards tryptic proteolysis.Biochem J.1995,312(Pt1):107-114.
    [5]Lesman-Movshovich E,Lerrer B,Gilboa-Garber N.Blocking of Pseudomonas aeruginosa lectins by human milk glycans.Can J Microbiol.2003,49(3):230-235.
    [6]Ward PP,Mendoza-Meneses M,Mulao-Jericevic B,et al.Restricted spatiotemporal expression of lactoferrin during murine embryonic development.Endocrinology.1999,140(4):1852-1860.
    [7]Finkbeiner WE,Carrier SD,Teresi CE.Reverse transcription-polymerase chain reaction(RT-PCR)phenotypic analysis of cell cultures of human tracheal epithelium,tracheobronchial glands,and lung carcinomas.Am J Respir Cell Mol Biol.1993,9(5):547-556.
    [8]Penco S,Caligo MA,Cipollini G,et al.Lactoferrin expression in human breast cancer.Cancer Biochem Biophys.1999,17(1-2):163-178.
    [9]Tuccari G,Giuffre G,Crisafulli C,et al.Immunohistochemical detection of lactoferrin in human astrocytomas and multiforme glioblastomas.Eur J Histochem.1999,43(4):317-322.
    [10]Lee JY,Eom EM,Kim DS,et al.Analysis of gene expression profiles of gastric normal and cancer tissues by SAGE.Genomics.2003,82(1):78-85.
    [11]Teng C,Gladwell W,Raphiou I,et al.Methylation and expression of the lactoferrin gene in human tissues and cancer cells.Biometals.2004,17(3):317-323.
    [12]Giuffrè G,Barresi V,Sldiros C,et al.Immunoexpression of lactoferrin in human sporadic renal cell carcinomas.Oncol Rep.2007,17(5):1021-1026.
    [13]Cfiuffrè G,Arena F,Scarfi R,et al.Lactoferrin immunoexpression in endometrial carcinomas:relationships with sex steroid hormone receptors(ER and PR),proliferation indices(Ki-67 and AgNOR)and survival.Oncol Rep.2006,16(2):257-263.
    [14]Barresi G,Tuccari G.Lactoferrin in benign hypertrophy and carcinomas of the prostatic gland.Virchows Arch A Pathol Anat Histopathol.1984;403(1):59-66.
    [15]Iijima H,Tornizawa Y,Iwasaki Y,et al.Genetic and epigenetic inactivation of LTF gene at 3p21.3 in lung cancers.Int J Cancer.2006;118(4):797-801.
    [16]Shaheduzzaman S,Vishwanath A,Furusato B,et al.Silencing of Lactotransferrin Expression by Methylation in Prostate Cancer Progression.Cancer Biol Ther.2007,20;6(7).
    [17]Yi HM,Li H,Peng D,Zhang HJ,et al.Genetic and epigenetic alterations of LTF at 3p21.3 in nasopharyngeal carcinoma.Oncol Res.2006;16(6):261-72.
    [18]Teng CT,Gladwell W,Beard C,et al.Lactoferrin gene expression is estrogen responsive in human and rhesus monkey endometrium.Mol Hum Reprod.2002,8(1):58-67.
    [19]Teng CT,Beard C,Gladwell W.Differential expression and estrogen response of lactoferrin gene in the female reproductive tract of mouse,rat,and hamster.Biol Reprod.2002,67(5):1439-1449.
    [20]Jefferson WN,Padilla-Banks E,Newbold RR.Lactoferrin is an estrogen responsive protein in the uterus of mice and rats.Reprod Toxicol.2000,14(2):103-110.
    [21]Frasor J,Barnett DH,Danes JM,et al.Response-specific and ligand dose-dependent modulation of estrogen receptor(ER)alpha activity by ERbeta in the uterus.Endocrinology.2003,144(7):3159-3166.
    [22]Zhang Z,Teng CT.Estrogen receptor-related receptor alpha 1 interacts with coactivator and constitutively activates the estrogen response elements of the human lactoferfin gene.J Biol Chem.2000,275(27):20837-20846.
    [23]Zhang Z,Teng CT.Estrogen receptor alpha and estrogen receptor-related receptor alphal compete for binding and coactivator.Mol Cell Endocrinol.2001,172(1-2):223-233.
    [24]Stokes K,Alston-Mills B,Teng C.Estrogen response element and the promoter context of the human and mouse lactoferrin genes influence estrogen receptor alpha-mediated transactivation activity in mammary gland cells.J Mol Endocrinol.2004,33(2):315-334.
    [25]Khanna-Gupta A,Zibello T,Kolla S,et al.CCAAT displacement protein (CDP/cut)recognizes a silencer element within the lactoferrin gene promoter.Blood.1997,90(7):2784-2795.
    [26]Khanna-Gupta A,Zibello T,Simkevich C,et al.Spl and C/EBP are necessary to activate the lactoferrin gene promoter during myeloid differentiation.Blood.2000,95(12):3734-3741.
    [27]Khanna-Gupta A,Zibello T,et al.Chromatin immunoprecipitation(ChIP)studies indicate a role for CCAAT enhancer binding proteins alpha and epsilon(C/EBP alpha and C/EBP epsilon)and CDP/cut in myeloid maturation-induced lactoferrin gene expression.Blood.2003,101(9):3460-3468.
    [28]Lee MO,Liu Y,Zhang XK.A retinoic acid response element that overlaps an estrogen response element mediates multihormonal sensitivity in transcriptional activation of the lactoferrin gene.Mol Cell Biol.1995,15(8):4194-4207.
    [29]Geng K,Li Y,Bezault J,et al.Induction of lactoferrin expression in murine ES cells by retinoic acid and estrogen.Exp Cell Res.1998,245(1):214-220.
    [30]Artym J.Antitumor and chemopreventive activity of lactoferrin.Postepy Hig Med Dosw.2006,60:352-369.
    [31]Sekine K,Watanabe E,Nakamura J,et al.Inhibition of azoxymethane-initiated colon tumor by bovine lactoferrin administration in F344 rats.Jpn J Cancer Res.1997,88(6):523-526.
    [32]Ushida Y,Sekine K,Kuhara T,et al.Possible chemopreventive effects of bovine lactoferrin on esophagus and lung carcinogenesis in the rat.Jpn J Cancer Res,1999,90:262-267.
    [33]Matsuda Y,Saoo K,Hosokawa K,et al.Post-initiation chemopreventive effects of dietary bovine lactoferrin on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone -induced lung tumorigenesis in female A/J mice.Cancer Lett.2007,246(1-2):41-46.
    [34]Tanaka T,Kawabata K,Kohno H,et al.Chemopreventive effect of bovine lactoferrin on 4-nitroquinolinel-oxide-induced tongue carcinogenesis in male F344rats.Jpn J Cancer Res,2000,91:25-33.
    [35]Masuda C,Wanibuchi H,Sekine K,et al.Chemopreventive effects of bovine lactoferrin on N-butyl-N-(4-hydroxybutyl)nitrosamine-induced rat bladder carcinogenesis.Jpn J Cancer Res,2000,91:582-588.
    [36]Chandra Mohan KV,Kumaraguruparan R,Prathiba D,et al.Modulation of xenobiotic-metabolizing enzymes and redox status during chemoprevention of hamster buccal carcinogenesis by bovine lactoferrin.Nutrition.2006,22(9):940-946.
    [37]Hasegawa K,Motsuchi W,Tanaka S,et al.Inhibition with lactoferrin of in vitro infection with human herpes virus.Jpn J Med Sci Biol.1994,47(2):73-85.
    [38]Mistry N,Drobni P,Naslund J,et al.The anti-papillomavirus activity of human and bovine lactoferricin.Antiviral Res.2007,75(3):258-265.
    [39]Hara K,Ikeda M,Saito S,et al.Lactoferrin inhibits hepatitis B virus infection in cultured human hepatocytes.Hepatol Res.2002,24(3):228.
    [40]Ikeda M,Nozald A,Sugiyama K,et al.Characterization of antiviral activity of lactoferrin against hepatitis C virus infection in human cultured cells.Virus Res.2000,66(1):51-63.
    [41]Ishii K,Takamura N,Shinohara M,et al.Long-term follow-up of chronic hepatitis C patients treated with oral lactoferrin for 12 months.Hepatol Res.2003,25:226-233.
    [42]Stenfors LE,Bye HM,Raisanen S.Noticeable differences in bacterial defence on tonsillar surfaces between bacteria-induced and virus-induced acute tonsillitis.Int J Pediatr Otorhinolaryngol.2003,67(10):1075-1082.
    [43]Kiessling R,Wasserman K,Horiguchi S,et al.Tumor-induced immune dysfunction.Cancer Immunol Immunother.1999,48(7):343-345.
    [44]Spadaro M,Curcio C,Varadhachary A,et al.Requirement for IFN-gamma,CDS+ T lymphocytes,and NKT cells in talactoferrin-induced inhibition of neu+ tumors.Cancer ges.2007,67(13):6425-6432.
    [45]Legrand D,Elass E,Carpentier M,et al.Lactoferrin:a modulator of immune and inflammatory responses.Cell Mol Life Sci.2005,62(22):2549-2559.
    [46]Bezault J,Bhimani R,Wiprovnick J,et al.Human lactoferrin inhibits growth of solid tumors and development of experimental metastases in mice.Cancer Res.1994,54(9):2310-2312.
    [47]Iigo M,KuharaT,Ushida Y,et al.Inhibitory effects of bovine latoferrin on colon carcinoma 26 lung metastasis in mice.Clin Exp Metastasis.1999,17(1):35-40.
    [48]Damiens E,El Yazidi I,Mazurier J,et al.Lactoferrin inhibits G1cyclin-dependent kinases during growth arrest of human breast carcinoma cells.J Cell Biochem.1999,74(3):486-498.
    [49]Xiao Y,Monitto CL,Minhas KM,et al.Lactoferrin down-regulates G1cyclin-dependent kinases during growth arrest of head and neck cancer cells.Clin Cancer Res.2004,10(24):8683-8686.
    [50]Fujita K,Matsuda E,Sekine K,et al.Lactoferrin modifies apoptosis-related gene expression in the colon of the azoxymethane-treated rat.Cancer Lett.2004,213(1):21-29.
    [51]Fujita K,Matsuda E,Sekine K,et al.Lactoferrin enhances Fas expression and apoptosis in the colon mucosa of azoxymethane-treated rats.Carcinogenesis.2004,25(10):1961-1966.
    [52]Norrby K,Mattsby-Baltzer I,Innocenti M,et al.Orally administered bovine lactoferrin systemically inhibits VEGF(165)-mediated angiogenesis in the rat.Int J Cancer.2001,91(2):236-240.
    [53]Shimamura M,Yamamoto Y,Ashino H,et al.Bovine lactoferrin inhibits tumor-induced angiogenes.Int J Cancer.2004,111(1):111-116.
    [54]Sakamoto K,Ito Y,Mori T,et al.Interaction of human lactoferrin with cell adhension molecules through RGD motif elucidated by lactoferrin-bingding epitopes.J Biol Chem.2006,281(34):24472-24478.
    [54]Hayes TG,Falchook GF,Varadhachary GR,et al.Phase Ⅰ trial of oral talactoferrin alfa in refractory solid tumors.Invest New Drugs.2006,24(3):233-240.
    [56]Jonasch E,Stadler WM,Bukowski RM,et al.Phase 2 trial of talactoferrin in previously treated patients with metastatic renal cell arcinoma.Cancer.2008,16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700