新型Sn-Ag-Cu-RE-P电子级无铅钎料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着欧盟“WEEE指令”和“RoHS指令”及美国、日本、中国等国家规定和管理办法的颁布和实施,电子产品的无铅化已在全球形成了共识。人们已经对诸多无铅钎料进行了探索,在这当中Sn-Ag-Cu系无铅钎料以其较优良的润湿性能及力学性能已被普遍认为是传统含铅钎料的最有潜力的替代者。本文研究了向Sn-3.0Ag-0.5Cu中同时掺入微量的RE(富Ce混合稀土)和P(磷)元素制备Sn-Ag-Cu-RE-P无铅钎料的工艺和方法,以期得到成本低廉、性能优良电子级无铅钎料。本文主要考察了Sn-Ag-Cu-RE-P无铅钎料的物理性能、力学性能、润湿能力以及钎焊接头的性能,重点分析了RE的添加和快速冷却工艺对Sn-Ag-Cu-RE-P无铅钎料各种性能的影响。
     研究结果表明,在常速冷却条件下,Sn-Ag-Cu-RE-P无铅钎料的显微组织由树枝状初晶的β-Sn和分布其间的共晶组织以及IMC(金属间化合物)Ag3Sn和Cu6Sn5组成。在快速冷却工艺条件下,Sn-Ag-Cu-RE-P无铅钎料的组织得到了极大程度的细化,树枝状初晶被细小的等轴晶代替了,Ag3Sn和Cu6Sn5的尺寸也显著减小了。RE可以细化Sn-Ag-Cu-RE-P无铅钎料的组织,它的细化作用在常速冷却条件下比在快速冷却条件下表现的更为明显。在添加RE和快速冷却工艺的共同作用下,Sn-Ag-Cu-RE-P无铅钎料的显微组织细小且分布均匀。
     在所研究的各冷却工艺条件下的无铅钎料中,添加微量的RE和P不会使Sn-Ag-Cu-RE-P无铅钎料产生低熔点组分,这有利于钎料在钎焊过程中形成可靠的焊点。RE和快速冷却工艺对无铅钎料的固、液相线的温度影响不大,但可以适当减小熔程,提高其流动性,无铅钎料的润湿性得到显著改善。同时,稀土会使无铅钎料的密度有所下降,说明合金具有一定的比重优势;无铅钎料的导电性稍有下降,但Sn-Ag-Cu-RE-P无铅钎料仍具有优良的导电能力。
     RE的介入可以显著提高Sn-Ag-Cu-RE-P电子级无铅钎料钎焊接头的剪切性能,使剪切强度提高35.84%~51.26%,最高达到44.9MPa。150℃下时效过程中Sn-Ag-Cu-RE-P无铅钎料钎焊接头中的IMC层生长主要由扩散机制决定,RE的存在可以延缓IMC层的生长。
With the European“WEEE”and“RoHS”directives, the provision and the regulation made by American, Japan, China and other countries promulgated and implemented, the trend of being lead-free for electronic products has reached an agreement all over the world. Several lead-free solder with different compositions were studied by researchers, among these compositions Sn-Ag-Cu family has been commonly regarded as the most possible candidate for replacing the tradition lead-containing solder in terms of their good wettability and remarkable mechanical property. In this paper, to obtain an electronic lead-free solder with low price and good property, the preparation method and process of Sn-Ag-Cu-RE-P solder which designed by adding trace RE and P elements into Sn-3.0Ag-0.5Cu solder were studied. The physical property, mechanical property and wettability of Sn-Ag-Cu-RE-P solder along with the property of the soldered joint were mainly investigated in this paper, especially the effect of adding small amount of RE and fast cooling process on the solder.
     The results indicated that the microstructure of Sn-Ag-Cu-RE-P solder under common cooling process were made up ofβ-Sn dendrites and eutectic structures between them and intermetallic compounds Ag3Sn and Cu6Sn5 distributed on them. While under fast cooling process, the microstructure of Sn-Ag-Cu-RE-P solder were changed greatly that it became finer: the dendrites replaced by equiaxial structure, the sizes of Ag3Sn and Cu6Sn5 decreased notably. RE could refine the microstructure of Sn-Ag-Cu-RE-P solder and the refinement effect was more obvious under common cooling process compared with that under fast cooling process. The microstructure of Sn-Ag-Cu-RE-P solder was very fine and even by both the effect of adding RE and fast cooling process.
     In all the Sn-Ag-Cu-RE-P solders obtained under different cooling processes, there were no low melting point phases which do harm to reliability of the joints formed with the addition of trace RE and P elements. Adding RE and fast cooling process had little to do with the temperature of solidus and liquidus, but it can decrease melting range properly and thus improve the liquidity. Meanwhile, the density decreased which means certain low-density advantage of the solders. Though the conductivity of the solders went down slightly, the Sn-Ag-Cu-RE-P solder still had good conductivity.
     The addition of RE can greatly increase the shear property of the solder joint of Sn-Ag-Cu-RE-P electronic lead-free solder with its shear strength increased 35.84%~51.26%, the highest shear strength was 44.9MPa. Aging at 150℃, the growth of the IMC layer at the solder joint of Sn-Ag-Cu-RE-P solder was mainly decided by diffusion mechanisms. The existence of RE element can defer the growth of IMC layer according to the aging test results.
引文
[1]田民波编著.电子封装工程[M].北京:清华大学出版社,2003.
    [2]李言荣,恽正中.电子材料导论[M].北京:清华大学出版社,2001.
    [3]张文典编著.实用表面组装技术[M].北京:电子工业出版社,2005.
    [4] (美)Dongkai Shangguan著.无铅焊料互联及可靠性[M].北京:电子工业出版社,2008.
    [5]邹增大主编.焊接材料、工艺及设备手册[M].北京:化学工业出版社,2001.
    [6]龚建荣,殷晓莹编.现代电子技术[M].北京:人民邮电出版社,2008.
    [7]王志刚主编.电子信息技术[M].北京:中国人民解放军出版社,2003.
    [8]黄载禄主编.电子信息技术导论[M].北京:北京邮电大学出版社,2009.
    [9]吴兆华,周德俭编.表面组装技术基础[M].北京:国防工业出版社,2002.
    [10]吴懿平,鲜飞编著.电子组装技术[M].武汉:华中科技大学出版社,2006.
    [11]赵越等编著.钎焊技术及应用[M].北京:化学工业出版社,2004.
    [12] (日)菅沼克昭著,宁晓山译.无铅焊接技术[M].北京:科学出版社,2004.
    [13]郭福等.无铅钎焊技术与应用[M].北京:科学出版社,2005.
    [14]邓健编著.钎焊[M].北京:机械工业出版社,1979.
    [15]张征权,唐福庆著.金属的钎焊[M].北京:机械工业出版社,1982.
    [16]方洪渊主编.简明钎焊工手册[M].北京:机械工业出版社,2000.
    [17]司乃钧,许德珠主编.热加工工艺基础[M].北京:高等教育出版社,2001.
    [18]苏达根,钟明峰编著.材料生态设计[M].北京:化学工业出版社,2006.
    [19]黄亚军,屈明.铅对健康的影响[J].现代预防医学,2004,31(1):95-98.
    [20]辛鹏举,金银龙.铅的毒性效应及作用机制研究进展[J].国外医学卫生学分册,2008,35(2):70-74.
    [21] Regina A. Shih, Howard Hu, et al. Cumulative Lead Dose and Cognitive Function in Adults: A Review of Studies That Measured Both Blood Lead and Bone Lead [J]. Environmental Health Perspectives, 2007, 115(3):483-491.
    [22] Enrico Rossi. Low Level Environmental Lead Exposure– A Continuing Challenge[J]. Clin Biochem Rev,2008,29:63-70.
    [23]秦俊法等主编.微量元素铅与人[M].郑州:河南医科大学出版社,2001.
    [24] Aulugeta Abtew, Guna Selvaduray. Lead-Free in Micro-electronics [J]. Materials Science and Engineering,2000,27:95-141.
    [25] Oladele A. Ogunseitan. Public Health and Environmental Benefits of Adopting Lead-Free Solders [J].JOM,2007,7:12-17.
    [26] Newmaker.欧盟指令、PCB行业禁卤禁铅及环境相关物质的管理标准[EB/OL].http://ceo.newmaker.com/art_32575.html,2009-2-9/2009-7-19.
    [27] Jusheng Ma, Guohai Chen. Lead-Free Solder Materials for Sustainable Development of Green Electronics in China [C]. 2005 6th International Conference on Electronic Packaging Technology,ShenZhen,China,2005: 21-27.
    [28] IPC roadmap. A guide for assembly of lead-free electronics 4th draft [R]. Sanders road:northbrool, 2000:2215.
    [29] GB/T 20422-2006,无铅钎料[S].
    [30]鲜飞.无铅焊料的新发展[J].电子与封装,2006,6(4):6-9.
    [31]郭福等.无铅钎焊技术与应用[M].北京:科学出版社,2005.
    [32] Karl Seelig. A Study of Lead-Free Solder Alloys [J].AIM,1995,1(1):9-12.
    [33]刘一波,吴懿平,吴丰顺,邬博义,张金松.无铅焊料的知识产权状况分析[J].电子元件与材料,2004,4:39-41.
    [34]徐喜前,曾明,沈保罗.中国无铅钎料专利研究报告[J].印刷电路资讯,2007,1: 51-55.
    [35] Jost, J.Patent cover for lead-free soldering processes [J]. Elektronik, 2004, 53 (22):80-84.
    [36] J.Shen,Y.C.Liu,Y.J.Han,Y.M.Tian,H.X.Gao. Strengthing Effects of ZrO2 Nanoparticles on the Microstructure and Microhardness of Sn-3.5Ag Lead-Free Solder [J].Journal of Electronic Materials,2006,35(8):1672-1679.
    [37]刘朋,郭福,何洪文,夏志东,史耀武.颗粒增强Sn-Ag基无铅复合钎料显微组织与性能[J].电子元件与材料,2007,26(6):28-30.
    [38] Jun Shen,Shiqiang Lai,Yongchang Liu,Houxiu Gao,Jun Wei.The effects of third alloying elements on the bulk Ag3Sn formation in slowly cooled Sn–3.5Ag lead-free solder[J].Journal of Materials Science: Materials in Electronics,2008,19:275-280.
    [39] Mustafa Kamal,El Said Gouda.Effect of zinc additions on structure and properties of Sn–Ag eutectic lead-free solder alloy[J]. Journal of Materials Science: Materials in Electronics,2008,19:81-84.
    [40]杨海平.冷却速度对无铅焊料Sn-3.5Ag合金微观组织和显微硬度的影响[J].材料导报,2007,21(8):378-380.
    [41]沈骏,高后秀,刘永长,韦晨,杨渝钦.冷却速度对Sn-Ag无铅焊料微观组织和机械性能的影响[J].功能材料,2005,36(1):47-49.
    [42]潘建军,于新泉,龙伟民,乔培新.元素Ga、Bi对Sn-Ag-Cu无铅钎料性能的影响[J].焊接设备与材料,2007,36(4):55-56.
    [43]卢斌,泉慧,王娟辉,朱华伟,焦羡贺.稀土Er对Sn-3.0Ag-0.5Cu无铅焊料合金组织与性能的影响[J].中国有色金属学报,2007,17(4):518-524.
    [44]梁丽超,桂太龙,许晶,殷景华,王玥.掺杂Sb对Sn-Ag-Cu焊料性能的影响[J].应用科技,2007,34(8):62-64.
    [45] Yaowu Shi,Jun Tian,Hu Hao,Zhidong Xia,Yongping Lei,Fu Guo. Effects of small amount addition of rare earth Er on microstructure and property of Sn-Ag-Cu solder [J].Journal of Alloys and Compounds,2008,453:180-184.
    [46] John H. Lau, John H. L. Pang, Ning-Cheng Lee,Luhua Xu. Material Properties and Intermetallic Compounds of Sn3wt%Ag0.5wt% Cu0.019wt% Ce(SACC) [C].2007 Electronic Components and Technology Conference,Nevada, USA, 2007:211-218.
    [47]祝清省,张黎,王中广,吴世丁,尚建库.金属间化合物Ag3Sn对Sn3.8Ag0.7Cu焊料合金拉伸性能的影响[J].金属学报,2007,43(1):41-46.
    [48] Szu-TsungKao,Yung-ChiLin,Jenq-GongDuh.Controlling Intermetallic Compound Growth in SnAgCu/Ni-P Solder Joints by Nanosized Cu6Sn5 Addition[J]. Journal of Electronic Materials,2006,35(3):486-493.
    [49] K.MohanKumar,V.Kripesh,AndrewA.O.Tay.Single-wall Carbon Nanotube(SWCNT) Functionalized Sn-Ag-Cu lead-free composite solders[J].Journal of Alloys and Compounds,2008,450:229-237.
    [50]陈燕,薛松柏,吕晓春,廖永平.稀土元素Ce对锡银铜无铅钎料显微组织的影响[J].焊接学报,2005,26(12):69-72.
    [51]许天旱,王宇,黄敏.Ce对SnAgCu系无铅焊锡力学性能的影响[J].电子工艺技术,2006,27(3):135-138.
    [52] H.Hao,J.Tian,Y.W.Shi,Y.P.Lei,Z.D.Xia.Properties of Sn-3.8Ag-0.7Cu Solder Alloy with Trace Rare Earth Element Y Additions[J]. Journal of Electronic Materials,2007,36(7):766-773.
    [53]沈萌,华彤,邵丙铣,王珺.IMC生长对无铅焊球可靠性的影响[J].半导体技术,2007,32(11):929-932.
    [54] M. Erinc,P.J.G. Schreurs,M.G.D. Geers. Intergranular thermal fatigue damage evolution in SnAgCu lead-free solder [J].Mechanics of Materials,2008, 40: 780-791.
    [55]刘艳斌,兑卫真,吴本生,杨晓华.等温时效对SnAgCu/Cu焊接接头纤维组织及强度的影响[J].理化检验-物理分册,2007,43(4):163-166.
    [56] X. P. Zhang,L. M. Yin,C. B. Yu.Thermal creep and fracture behaviors of the lead-free Sn–Ag–Cu–Bi solder interconnections under different stress levels[J]. Journal of Materials Science: Materials in Electronics,2008,19: 393-398.
    [57] Chung-Nan Peng, Jenq-Gong Duh.Mechanical Test after Temperature Cyclingon Lead-free Sn-3Ag-0.5Cu Solder Joint[C].2008 International Conference on Electronic Packaging Technology & High Density Packaging, ShangHai, china,2008.
    [58] Xiaoyan Li,Zhisheng Wang.Thermo-fatigue life evaluation of SnAgCu solder joints in ?ip chip assemblies[J].Journal of Materials Processing Technology, 2007,183:6-12.
    [59]王慧,薛松柏,韩宗杰,王俭辛.Sn-Zn系无铅钎料的研究现状及发展趋势[J].焊接,2007,2:31-35.
    [60]张品,郭宏,杨福宝,徐骏. Sn-Zn系无铅焊料合金的可靠性研究进展[J].金属功能材料,2007,14(2):41-45.
    [61]袁宜耀,孙勇.无铅焊料Sn-Zn-In系列合金的研究[J].电子元器件与材料,2007,26(8):39-41.
    [62] Katsuaki Suganuma,Kuen-Soo Kim. Sn–Zn low temperature solder[J]. Journal of Materials Science: Materials in Electronics,2007,18:121-127.
    [63]魏秀琴,黄惠珍,周浪.微合金化对Sn-9Zn基无铅钎料润湿性能的影响[J].电子元件与材料,2003,22(11):38-40.
    [64] Xiuqin Wei,Huizhen Huang,Lang Zhou,Meng Zhang,Xiaodong Liu.On the Advantages of Using a Hypoeutectic Sn–Zn as Lead-free Solder Material[J]. Materials Letters ,2007,61:655–658.
    [65] C.M.L.Wu,C.M.T.Law,D.Q.Yu,L.WANG.The Wettability and Microstructure of Sn-Zn-RE Alloys [J].Journal of Electronic Materials,2003,32(2):63-69.
    [66]夏志东,穆楠,史耀武.Sn-Zn钎料的腐蚀行为[J].中国腐蚀与防护学报,2003,23(4):234-237.
    [67]贾红星,黄金亮,张柯柯.Ag对Sn-57Bi无铅焊料组织和性能的影响[J].河南科技大学学报(自然科学版),2004,25(3):10-13.
    [68]李元山,雷晓娟,陈振华,杨石强.新型锡铋系无铅焊料的开发[J].机械工程材料,2007,31(5):24-26.
    [69] Mahmudi,A.R.Geranmayyeh,S.R.Mahmoodi,A.Khalatbari. Room-temperature indentation creep Of Lead-Free Sn-Bi solder alloys[J]. Mater Electronic, 2007,18:1071-1078.
    [70]史益平,薛松柏,王俭辛,顾荣海.Sn-Cu系无铅钎料的研究现状及发展[J].焊接,2007,4:14-18.
    [71]于登云,张亚辉,钟喜春,曾德长.锡铜共晶合金焊料的机械性能[J].材料研究与应用,2007,1(2):127-131.
    [72] Kazuhiro Nogita,Jonathan Read,Tetsuro Nishimura,Keith Sweatman, et al. Microstucture Control in Sn-0.7mass%Cu Alloys[J]. Materials Transactions,2005,46(11):2419-2425.
    [73]卢斌,王娟辉,栗,慧,牛华伟,焦羡贺.微量铈对Sn-0.7Cu-0.5Ni焊料合金组织与性能的影响[J].中国稀土学报,2007,25(2):217-223.
    [74]闫焉服,陈拂晓,张鑫,马景灵,陈慧敏.温度对Ag颗粒增强SnCu基复合钎料蠕变性能的影响[J].稀有金属,2006,30(5):610-614.
    [75]闫焉服,徐健,郭晓晓,冯丽芳,赵培峰.应力对Ag颗粒增强SnCu基复合钎料蠕变性能的影响[J].材料研究学报,2009,23(1):69-72.
    [76]张新平,尹立孟,于传宝.电子和光子封装无铅钎料的研究和应用进展[J].材料研究学报,2008,22(1):1-9.
    [77]杨艳,尹立孟,冼健威,马鑫,张新平.绿色电子制造及绿色电子封装材料[J].电子工艺技术,2008,29(5):256-261.
    [78]闵文锦,宣天鹏.锡基无铅电子焊料的研究进展与发展趋势[J].金属功能材料,2009,16(2):55-59.
    [79]刘光华主编.稀土材料学[M].北京:化学工业出版社,2007.
    [80]刘光华主编.稀土材料与应用技术[M].北京:化学工业出版社,2005.
    [81]苏锵.稀土化学[M].河南:河南科学技术出版社,1993.
    [82]江祖成等著.稀土元素分析化学[M].北京:科学出版社,2000.
    [83]刘小珍,孙小玲编著.稀土功能材料学[M].南昌:江西高校出版社,2003.
    [84]黄拿灿,胡社军.稀土表面改性及其应用[M].北京:国防工业出版社,2007.
    [85]王倩,李青春,常国威.快速凝固技术的发展现状与展望[J].辽宁工学院学报,2003,23(5):40-45.
    [86]梁玮,劳远侠,徐云庆,孙仙奇.快速凝固技术在新材料开发中的应用及发展[J].广西大学学报(自然科学版),2007,32(SUP.):36-40.
    [87]杨海平.冷却速度对无铅钎料Sn-3.5Ag合金微观组织和显微硬度的影响[J].材料导报,2007,21(8):378-380.
    [88] SHEN Jun,LIU Yong,HAN Ya-jing,et al.Effects of cooling rates on microstructure and microhardness of Lead-free Sn-3.5AgSolders[J]. Transactions of Nonferrous Metals Society of China,2006,16(1):59-64.
    [89]翟秋亚,杨金山,徐峰,徐锦锋.急冷Cu-Sn合金的快速凝固焊接接头组织特征[J].焊接学报,2009,30(4):49-56.
    [90] Qiang Hu,Zhong-suo Lee,Zhi-li Zhao,Da-le Lee.Study of Cooling Rate on Lead-free Soldering Microstructure of Sn-3.0Ag-0.5Cu Solder[C]. 2005 International Conference on Asian Green Electronics,ShangHai, China, 2005:156-160.
    [91] GB/T 1423-1996.贵金属及其合金密度的测试方法[S].
    [92] GB/T 113364-2008.钎料润湿性试验方法[S].
    [93] GB/T 113363-2008.钎焊接头强度试验方法[S].
    [94]戴永年主编.二元合金相图集[M].北京:科学出版社,2009.
    [95] K.-W.Moon and W.J.Boettinger.Accurately Determining Eutectic Compositions: The Sn-Ag-Cu Ternary Eutectic[J]. JOM,2004,56(4):22-27.
    [96]陈念贻著.键参数函数及其应用[M].北京:科学出版社,1976.
    [97]赵振国编著.吸附作用应用原理[M].北京:化学工业出版社,2005.
    [98]夏志东.锡锌系无铅钎料的性能及其评价[D].北京:北京工业大学出版社,2003:50-55.
    [99]傅献彩等编.物理化学·下册[M].北京:高等教育出版社,2006.
    [100] Zhigang Chen,YaoWu Shi,ZhiDong Xia,YanFu Yan.Properties of Lead-Free Solder SnAgCu Containing Minute Amounts of Rare Earth[J]. Journal of Electronic Materials,2003,32(4):235-243.
    [101] M.A. Dudek,R.S. Sidhu, N. Chawla.Novel Rare-Earth-Containing Lead-Free Solders with Enhanced Ductility[J].JOM,2006,6:57-62.
    [102] M.A.DUDEK,R.S. SIDHU,N. CHAWLA,M. RENAVIKAR.Microstructure and Mechanical Behavior of Novel Rare Earth–Containing Pb-Free Solders [J]. Journal of Electronic Materials,2006,35(12):2088-2097.
    [103] Z.G. Chen,Y.W. Shi,Z.D. Xia,Y.F. Yan. Study on the Microstructure of a Novel Lead-Free Solder Alloy SnAgCu-RE and Its Soldered Joints[J]. Journal of Electronic Materials,2002,31(10):1122-1128.
    [104]董翠粉,米国发.快速凝固技术及在铝合金材料中的应用[J].航天制造技术,2008,4:43-46.
    [105]胡汉起.金属凝固原理[M].北京:机械工业出版社,1991.
    [106]苑旺.Sn基无铅钎料/Cu界面反应行为研究[D].哈尔滨:哈尔滨工业大学出版社,2003:20-43.
    [107]陈燕.稀土铈对锡银铜无铅钎料组织性能的影响[D].哈尔滨:机械科学研究院哈尔滨焊接研究所硕士学位论文,2006:50-53.
    [108]王要利.RE对低银Sn-Ag-Cu焊点蠕变及时效特性的影响[D].洛阳:河南科技大学学位论文,2007:43-46.
    [109] Hefei Zou,Qingsheng Zhu,Zhefeng Zhang.Growth kinetics of intermetallic compounds and tensile properties of Sn–Ag–Cu/Ag single crystal joint[J]. Journal of Alloys and Compounds,2008,461:410-417.
    [110] D.Q.Yu,L.Wang.The growth and roughness evolution of intermetallic compounds of Sn–Ag–Cu/Cu interface during soldering reaction[J].Journal of Alloys and Compounds,2008,458:542-547.
    [111] Changqing Liu,Zhiheng Huang,Paul P. Conway. Materials behaviour andintermetallics characteristics in the reaction between SnAgCu and Sn–Pb solder alloys[J]. J Mater Sci,2007,42:4076-4086.
    [112] Hao Yu and Jorma K. Kivilahti. Nucleation Kinetics and Solidification Temperatures of SnAgCu Interconnections During Re?ow Process[J]. TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES,2006,29(4):778-786.
    [113] C. K. Alex,Y.C. C han.Aging Studies of Cu-Sn Intermetallic Compounds in Annealed Surface Mount Solder Joints[C].1996 Electronic Components and Technology Conference.1996:1164-1171.
    [114] P.T. Vianco,P.F. Hlava,A.C. Kilgo. Intermetallic Compound Layer Formation Between Copper and Hot-Dipped 100In,50In-50Sn,l00Sn and 63Sn37Pb Coatings[J].Electron Materials,1994, 23:583-586.
    [115]李兴华编著.密度计量[M].北京:中国计量出版社,2002.
    [116]田莳,李秀臣,李邦淑等编.金属物理性能[M].北京:国防工业出版社,1985.
    [117]张宇航,卢斌,戴贤斌等.Ce对SnAgCu系无铅焊料合金组织和性能的影响[J].材料研究与应用,2007,1(4):295-299.
    [118]宋学孟主编.金属物理性能分析[M].北京:机械工业出版社,1981.
    [119]张富文,刘静,杨福宝等.Sn-Ag-Cu无铅焊料的发展现状与展望[J].稀有金属,2005,29(5):619-624.
    [120]陈挣主编.材料连接原理[M].哈尔滨:哈尔滨工业大学出版社, 2001: 160- 184.
    [121]邹茉莲主编.焊接理论及工艺基础[M].北京:北京航空航天大学出版社, 1994.
    [120]孙韡,周浪,金泉军.电子钎料润湿性测量表征方法研究[J].江西师范大学学报(自然科学版),2005,29(5):397-399.
    [123]张建纲,黄继华,戴志峰,张华,赵兴科.含稀土Sn-Zn-Bi系无铅钎料润湿性能的研究[J].中国稀土学报,2006,24(5):586-891.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700