典型北方水源地藻类特征及其对自来水厂处理效率的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的城市水源有30%以上是湖库型水源,对于干旱缺水的北方地区来说其地位更加重要。然而近年来受到各种因素影响,湖库水体富营养化情况不断加剧、水华频发,对城市供水安全构成了严重威胁。常规给水处理工艺对高藻水的净化能力较差,生产成本成倍增加,供水水质却难以保障。由此,研究开发经济有效的除藻技术就成为饮用水处理领域亟待解决的问题。
     本文以长春市某自来水厂为对象,在研究水源地——石头口门水库中藻类的种群结构及变化规律的基础上,结合水厂多年生产数据,系统分析了藻类对常规工艺自来水厂处理效率的影响。
     针对水库高藻期水质特征以及藻类对水厂混凝反应的影响,自主研发制备了新型除藻混凝剂一钙硅复聚氯化铝铁(CSPAFC);采用透射电镜、X射线衍射及电动性等方法研究新型混凝剂的品质特征;并通过冬季微污染水及高藻期水库两项实验,对新型混凝剂的除藻混凝性能进行考察,反馈到制备工艺中,确定合适的制备条件;最后在自来水厂对所制备的混凝剂进行了生产应用试验。
     在常规工艺优化方面:通过现场实测校核及实验室模拟,对自来水厂絮凝池的工艺参数进行了详细的试验;通过实验室模拟混凝试验条件,从优化混凝水力条件角度提出工艺改造方案,并在该自来水厂进行实施;在自来水厂改造期间通过平行处理实验及极限负荷实验检验了所提改造方案的运行效果,得到了自来水厂的一致认可。成果实施后,2008年水厂运行稳定,出水浊度在0.3NTU之下,达到水司的生产考核标准;虽然当年高藻期有所延长,但过滤后藻类总去除率保持在95.9%~96.8%之间。
     此外,论文还研究了滤池反冲洗水回用对自来水厂生产所带来的生物因素(包括藻类、细菌及剑水蚤)影响。
     综上所述,本文针对水库原水藻类的影响从药剂强化和工艺优化两个方向进行除藻技术的研究及应用,取得了较好的成果,达到了控制藻类影响,保障供水安全的目标。对于深受藻类影响又无力大规模增加预处理及深度处理系统的现有水厂来说,本研究成果提供了一条具有实用价值的挖掘常规工艺潜力、提高供水安全之路。
Above 30%of our city water resources are the lakes and reservoirs,providing more than 20% supply water.In the drought northern city,lakes play more important roles.However,in recent years,due to various factors,such as internal and external pollution,globe warming and adverse management,lakes and reservoirs water quality deteriorating keep worsening and eutrophication become worse and worse.Associated with eutrophication,many species of phytoplankton, especi(?)of algae cause the water bloom.
     A large number of algae not only affect the water landscape,but also deteriorate the water quality,and increase drinking water treatment difficulty and cost.Furthermore,the algae toxin causes serious health hazards released by algae,which pose a serious threat to urban water supply security.However,the conventional treatment process,in which solid and bacteria suspended is used as treatment aim,is limited for algae-laden water.The production costs are doubled,while it is hard to guarantee the supplying water quality.Thus,the algae impact has become a common problem to drinking water industry,.Reasonable and effective algaecide technology becomes a research focus.
     At present,the algaecide technology in drinking water develops rapidly,and has developed a series of treatment technologies such as the physical,chemical and biological methods.However, there are two problems of these results mentioned above:ⅰ) the research only focuses on the treatment process improvement,but gives little regard to the community structures of algae, which is real determinant factor for water quality characteristics and treatment difficulty;ⅱ) most of these algaecide process need increasing facilities and equipments and operation costs.
     In this paper,a water plant in Changchun has been taken as the study object.First the algae species structure and its changes regulation in the Shitoukoumen reservoir is studied.The evaluation results of the reservoir water quality in 2005~2008 show that except iron,other targets can meet surface water environmental standardsⅢand the reservoir are suitable as a source of city drinking water.But the nitrogen and phosphorus of reservoir has reached the level of middle eutrophication.The monitoring results showed that algae indexes indicate obvious seasonal characteristics:in winter,algae concentration is 5,000~10,000/L,chl-a is 0.8~1.2μg/L; in spring,algae outbreak increase sharply,from 10,000/L to 300~400×10~4/L.In summer and autumn,algae density can achieve 1100×10~4/L.The algae species proportion are significantly different in different seasons:in spring,green algae and diatoms dominate,while cyanobacteria and green algae dominate in summer and winter.Monitoring results also showed that,a strong hydraulic disturbance prevented the stratified water bodies,which make algae distribution was essentially the same on the vertical direction.Comparative analysis from temperature,light intensity,N/P,DO,pH,turbidity and Fe,come to the conclusion:to the northern reservoir algae, the water temperature and the water body changes is the most critical factor.
     The effect of algae on water plant treatment has been analyzed systematically considering the production data,from treatment efficiency,agent consume and filter running.In treatment efficiency:sedimentation and the filter effluent turbidity are 4.5NTU和1.3NTU in high algae period,which are higher than that of other period.The small size floating particles,floats out of the sedimentation tanks,increases the filter handle load.The consumption of agent:the average dosage in high algae period is 1.7 times of that in other period,even reachs 2.8 times in 2000.It can be seen that the existence of algae has made a substantial increase in the chlorine and coagulant agent of water plants in order to guarantee the water quality.In filter running:filter is plugged rapidly by the algae and the filtration cycles(serious only 2~3 hours) is reduced sharply. In severe cases,a chain of filter failure may even trigger.Over the years,the chain of filter failure is most serious in Jul and Aug,which is just the Shitoukoumen reservoir maximum period of the algae outbreak.
     The monitoring results of the algae removal rate of the plant process show:algae removal rate of sedimentation tanks is low at 40.4%~56.8%;the total removal rate of water plant can only reachs 54.6%~76.4%.The sedimentation's algae removal rate is 45.3%in high algae period, which is lower than that in other period.The total removal rate is 73.6%higher than 67.9%of the other period.Because the recycling tank keeps more stable environmental conditions,and the filter backwash water recovery system is just in the blank area between pre-and post-filtration chlorination,the backwash water recovery system has became another source of algae,cyclops and bacteria.
     In high algae period,shitoukoumen reservoir's algae density is more than 10~7/L,and mainly of them are the small-size cyanobacteria and green algae.Because micro-algae have the larger specific surface area,a large charge is required to compress the electric double-layer.The four coagulation removal mechanisms are limited on the micro-algae.In view of this,the PS is introduced into PAFC as a catalyst and stabilizing agent,so a new type algaecide flocculant CSPAFC is developped.
     Applying composite and copolymerization method,two types CSPAFC are prepared in the laboratory.By transmission electron microscopy,X-ray diffraction and electrical experiment,the new algaecide coagulant microcosmic characteristic is studied.The CSPAFC prepared by copolymerization is less crystalline,better micro-disordered and have higher degree of polymerization,which means that the product quality is more stable;the relatively high internal spatial structure means that it has better ability to bridge and absorption in flocculate reaction;at the same time,the electrical properties experiments show that the copolymerization method CSPAFC electricity ability in flocculation is more advantaged.
     Through the coagulation experiments for Hun-River micro-polluted water in winter,the new coagulant was investigated from the treatment efficiency and economic factors.The results indicate that,assisted by PAM,CSPAFC have the better treatment capability than the conventional coagulant for the micro polluted water.CSPAFC,prepared by copolymerization, has the best removal result of turbidity,color and CODmn,and shows more obvious economic advantages.The high algae water coagulation experiment in object water plant indicates that, compared with the conventional flocculant,CSPAF has the better treatment effect,in effluent turbidity,effluent aluminum and algae remove rate.At the optimal dosage conditions,2# CSPAFC has the better treatment effect than that of 1 #,especially the algae removal capabilities. While the algae removal capacity is the key to the development of new flocculant goal.
     Detection of products microstructure and coagulation treatment experiment shows that the CSPAFC,by copolymerization,has a distinct advantage at quality and treatment performance. On this basis the copolymerization method CSPAFC production process of the preparation is carried out.
     From the three stages production applications test in object water plant,the results show that: the new coagulant is better than the traditional ones.When the raw water turbidity increased sharply from around the 10 NTU to 40 NTU,using a new flocculant,has the more stable treatment effect.The sedimentation effluent turbidity is less than 3.6 NTU.while the conventional coagulant treatment system reached 4.4 NTU.During the stability running period, the test result of organisms and algae in filter effluent and disinfection by-product in finished water show that:the new coagulant has obviously technological superiority.
     In the process optimization,through on-site verification testing of the water plant flocculation process parameters showed:the water plant flocculation tank water dynamical conditions are not reasonable,velocity gradient exist including a sudden increase in the middle of the reaction.That affected the efficiency of coagulation treatment.But the rate of perforation of the holes flower wall at the end of flocculation tank was low,easily to make particles broken.On this basis, through the simulation coagulation experiments,process reconstruct plan has been brought forward.Optimized five-stage reaction GT are,respectively,(98.1,2),(72.6,3),(49.4,5), (28.6,10),(11.3,25 ).That was the design basis for the process reconstruct.
     In order to inspect actual results of the process of reconstruct engineering,the parallel treatment experiment and limits of load test were carried out,between reconstructed flocculation tank and not modified flocculation tank,during the reconstruction engineering.The parallel experiment results show that:the water dynamical of the modified flocculation tank is more reasonable,sedimentation effluent turbidity stabilized at 1NTU below,the algae removal efficiency is better than non-modified flocculation tank.At the same time,the water plant agents consume reduced significantly,which reduce the flocculant consume by 53%and coagulation aid by 50%on average.And the limit load test shows that,to ensure that water quality in premise, the maximum capacity of non-modified flocculation tank was 2700m~3/h,while the treatment ability of the modified flocculation tank could reach 3200 m~3/h,increased by 18.5%than the original process.
     Comprehensive comparison production data,it can be concluded that:after the agent strengthening and process optimization,the treatment efficiency improved significantly in high algae period and period of low temperature and low turbidity.In high algae period,the effluent turbidity decreased from 0.96NTU to 0.21NTU,and after filtration the total removal of algae increased from 70.6%to 96.7%.While in period of low temperature and low turbidity,the effluent turbidity decreased from 0.92 NTU to 0.33NTU,and after filtration the total removal of algae increased from 81.5%to 91.3%.The water plant runs stably in the 2008,and after the implement of technical achievements,the effluent turbidity was under 0.3 NTU,meeting the production assessment standards of the water Company.Although the high algae period extended in 2008,the total algae removal rate was 95.9%~96.8%.
     Through the analysis of the agent cost of water plant,it can be concluded that:after the application of research achievement,consumption has been significantly lower than that of Compare water plant,agent costs of water gradually reduced from 0.107yuan/m~3 to 0.064yuan/m~3,the agent consumption of water plant reduced 40.2%.Accordance with the water plant design capacity of 26.5×10~4m~3/d,pharmaceutical costs saved 4,159,000 Yuan,a very significant economic benefits.
     In summary,through the agent strengthen and technology optimize to control the algae impact is feasible.To the existing water plants seriously impacted by algae,but unable to increase pretreatment and depth of the existing process,the results of this study provides a practical value.
引文
[1]郑丙辉,付青,刘琰.中国城市饮用水源地环境问题与对策[J].环境保护,2007,381(10):53-61.
    [2]刘静玲,杨志峰,盛连喜.北方地区淡水危机与湖泊生态恢复[J].东北师大学报自然科学版,2002,34(2):58-64.
    [3]Shapiro J.Blue-green algae:why they become dominant[J].Science,1972,179:382-384.
    [4]余国忠.水中藻毒素降解的影响因素及其净水工艺控制[J].信阳师范学院学报(自然科学版),2003,16(1):85-89.
    [5]乐林生,吴金明,高乃云等.太湖流域安全饮用水保障技术[M].北京:化学工业出版社,2007.
    [6]OECD.Eutrophication of Waters.Monitoring Assessment and Control[R].Final Report,OECD Cooperative Program on Monitoring of Inland Waters(Eutrophication Control),Environment Directorate,OECD,Paris,1982,154.
    [7]Ryding S O,Rast W.The control of eutrophication of lakes and reservoirs[J],Vol.1.UNESCO,London,1989:37-63.
    [8]周怀东,彭文启.水污染与水环境修复[M].北京:化学工业出版社,2005.
    [9]朴承俊,王宏山,瞿春艳,等.水体富营养化现状及对策分析[J].煤炭技术,2008,27(8):134-136.
    [10]金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社,2001.
    [11]吴国平.浮游藻类与水体富营养化[J].生物学教学,2006,31(11):13.
    [12]金根东.我国湖泊富营养化研究现状[J].现代农业科技,2008,(16):334-336.
    [13]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25(3):589-595.
    [14]张建云,王国庆,杨扬,等.气候变化对中国水安全的影响研究[J].气候变化研究进展,2008,4(9):290-295.
    [15]水利部水文局.国家“十五”科技攻关计划(2001-BA611B-02-04)“气候变化对我国淡水资源的影响阈值及综合评价”[R].北京:水利部水文局,2003.
    [16]国家发展和改革委员会.中华人民共和国气候变化初始国家信息通报[M].北京:中国计划出版社,2004.
    [17]胡鸿钧,李尧英,魏印心,等.中国淡水藻类[M].上海:上海科学技术出版社,1981.
    [18]顾夏声,李献文,竺建荣等.水处理微生物学(第三版)[M].北京:中国建筑工业出版社,1998,65-69.
    [19]刘建康.高级水生生物学(M).北京:科学出版社,2000.
    [20]Huang Y P.Contamination and control of aquatic environment in Lake Taihu[M].Beijing:Science Press,2001.
    [21]Steynberg M C,Adam K,Pieterse A J H.An algal monitoring protocol:the strategical link between reservoir and treatment process[J].Water Science and Technology,1998,37(2):153-159.
    [22]杨东平.中国环境的危机与转机[M].北京:社会科学文献出版社,2008:84-87.
    [23]周名江.藻类暴发重点事件回顾[J].水工业市场,2008(8):12-13.
    [24]新华网.长春新立城水库出现大量蓝藻[EB/OL].[2007-07-15 17:30:14]http://news.xhby.net/system/2007/07/15/010085999.shtml.
    [25]罗旭 张晓娜.济南卧虎山水库死鱼事件调查[EB/OL].[2007-8-20]http://www.jsbwater.com/list.asp?id=8919.
    [26]许应锋.汉江东荆河“污染”原因查明:硅藻过量繁殖惹祸[EB/OL].[2008-02-27 16:26].http://news.cnhubei.com/news/xwhbyw/jcwycyw/200802/t238704.shtml.
    [27]彭海清,谭章荣,高乃云,等.给水处理中藻类的去除[J].中国给水排水,2002,18(2):29-31.
    [28]Drikas M,Chow CWK,House J,et al.Using coagulation,flocculation,and settling to remove toxic cyanobacteria[J].JAWWA,2001,100-111.
    [29]隋少峰,孔凡玲,罗启芳.饮用水源水藻类繁殖的危害及处理[J].中国卫生工程学,2005,4(1):46-49.
    [30]周荣.藻类对混凝的影响[J].中国给水排水,1997,13(4):37-38.
    [31]罗晓鸿,周荣.藻类及其分泌物对混凝过程的影响研究[J].环境科学学报,1998(3):318-324.
    [32]张伟勤.水中藻类污染物去除方法研究进展[J].公用工程设计,2008,9:54-57.
    [33]吴静,朱慧刚.藻毒素与健康效应的研究进展[J].上海环境科学,1999,18(7):331-334.
    [34]陈慧中,杨宏.给水系统中藻类研究现状及进展[J].现代预防医学,2001,28(1):79-81.
    [35]张维昊,徐小清,丘昌强.水环境中微囊藻毒素研究进展[J].环境科学研究,2001,14(2):57-62.
    [36]Beaslev V R.Algae intoxication in livestock and waterflow[J].Vet Clin North Am Food An imPract,1989,5(2):345-361.
    [37]Davlin J P.anatoxin-a:A toxin alkaloid from Anabaean flons aqual NRC-44h[J].Can J Chem,1977,55:1367-1374..
    [38]Owens P N,Walling D E.The phosphorus content of fluvial sedimentation in rural and industrialize driver basins[J].Water Research,2002,36(3):685-701.
    [39]Mez K,Hanselmann K,Preisig H R.Environmental conditions in high mountain lakes containing toxic benthic cyanobacteria[J].Hydrobiologia,1998,36(8):1-15.
    [40]Vasconcelos V M,Sivonen K,Evans W R,et al.Hepatotoxic microcystin diversity in cyanobacterial blooms collected in Portuguese freshwaters[J].Water Research.1996,30(10):2377- 2384.
    [41]徐立,孙芳,陈文革,等.武汉市饮用水源水藻类污染及影响因素[J].中国公共卫生,2005,21(3):348-349.
    [42]Ingrid C,Jamie B.Toxic cyanobacteria in water[M].London and New York:E& FN Spon Publisher,1999.
    [43]田义.给水中藻类的影响及其去除方法概述[J].工业安全与环保,2005,31(1):40-42.
    [44]朱兆启.湖泊藻类对城市饮用水的影响及处理措施[J].水文水资源,2008,7:12-13.
    [45]Morris R D,Audet A M,Angelillo IF,et al.Chlorination,chlorination by-products,and cancer:a meta-analysis[J].Amer J Public Health,1992,82:955-963.
    [46]WHO.Guidelines for drinking-water quality(Third edition)[M].Geneva:World Health Organization,2004,195.
    [47]Lawton L A,Robertson P K J.Physico-chemical treatment methods for the removal of microcystins from potable waters[J].Chem Soc Rev,1999,28:217-224
    [48]雷国元,马军.微藻对混凝除藻效率的影响及改善措施[J].水处理技术,2007,33(8):58-61.
    [49]石颖.湖泊、水库水混凝处理及其投药自控应用研究[D].学位论文:哈尔滨建筑大学,1999.
    [50]Ireneusz M.,Paulina S,Tarczynska,et al.Toxicity of microcystin from cyanobacteria growing in a source of drinking water.[J]Comparative Biochemistry and Physiology,Part C, 2004,139(1-3):175-179
    [51]Geoffrey A.C.,Louise F.M.,James S.M.Cyanobacterial toxins:Risk management for health protection[J].Toxicology and Applied Pharmacology,2005,203(3):264-272
    [52]左金龙,崔福义,刘智晓.饮用水中蓝藻毒素污染研究进展[J].环境污染治理技术与设计,2006,7(3):8-13.
    [53]Datta S,Jana B B.Control of bloom in a tropical lake:grazing efficiency of some herbivorous fishes[J].Fish biology,1998,53(1):12- 24
    [54]梁文艳,曲久辉.饮用水处理中藻类去除方法的研究进展[J].应用与环境生物学报,2004,10(4):502-506.
    [55]Tom oharus,et al.Two(2) - dehydrobutyrine -containing micro-cystins from a hepatotoxic bloom of oscillatoria agardhii from soulseat loch scotland[J]JNat Prod,1998(61 ):851-853.
    [56]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999:10-12.
    [57]裴海燕,李力,胡文容,等.ClO_2杀藻效能研究[J].山东环境,2000,34(6),20-21.
    [58]曹春秋.强化混凝法去除饮用水中天然有机物评价[J].给水排水,1998,24(6):65-70.
    [59]朱惠刚.水体藻类污染与健康[J].净水技术,2000,18(1):35-39.
    [60]Tanik A,Beler Baykal B,Gonenc E.Effect and control of pollution in catchment area of the lake Sapanca[J].Environ Manage,1998,22(3):407-414.
    [61]McDorman K S,Chandra S,Hooth M J,et al.Induction of transitional cell hyperplasia in the urinary bladder and aberrant crypt foci in the colon of rats treated with individual and a mixture of drinkingwater disinfection by-products[J].Toxicol Pathol,2003,31(2):235-242.
    [62]Theodore J.Smayda.Reflections on the ballast water dispersal*harmful algal bloom paradigm [J].Harmful Algae,2007(6):601-622.
    [63]Hart J.,et al.The fate of both intra and extracellular toxins during drink water treatment[J].Water Supply,1998,16(5):611-617.
    [64]赵以军,刘永定.有害藻类及其微生物防治的基础-藻菌关系的研究动态[J],水生生物学报,1996,20(2):173-181.
    [65]Holst T,Jorgensen N O G,Jorgensen C,et al.Degradation of microcystin in sediments at oxic and anoxic denitrifying conditions[J].Water Research,2003,37(19):4748-4760.
    [66]吕锡武,稻森悠平,丁国际.有毒蓝藻及藻毒素生物降解的初步研究[J].中国环境科学,1999,19(2):138-140.
    [67]DeVries SE,et al.Clinical and pathologic findings of blue-green algae(Microcystis aeruginosa) intoxication in a dog[J],1-Vet-diagn-Invest.1993:5(3):403-408.
    [68].Belov AP,et al,Toxicity in a water column following the stratification of a cyanobacterial population development in a calm lake[J].IMA-J-Math-Appl-Med-Biol.1999:16(1):93-114.
    [69]吴彦领,刘天福,唐虎杰,等.以黄河为生活饮用水源的卫生研究(二)-藻类及藻毒素污染防治措施的研究[J].河南预防医学杂志,2000,11(2):76-78.
    [70]Jun Ma,Wei Liu.Effectivess and mechanism of potassium ferrate(Ⅵ) preoxidation for algae removal by coagulation[J].Water Research.2002,36:871- 878.
    [71]吴为中,王占生.水库水源水生物陶粒池预处理中试研究[J].环境科学研究,1999(1):36-38.
    [72]罗晓鸿,王占生,王衡,等.富营养化湖泊水生物预处理研究[J].给水排水,1996,22(7):12-15.
    [73]何文杰.安全饮用水保障技术[M].北京:建筑工业出版社,2006:25-27.
    [74]曲久辉.饮用水安全保障技术原理[M].北京:科学出版社,2007:15-18.
    [75]黎雷,高乃云,殷娣娣,等.控制饮用水原水中藻类、藻毒素的水厂处理工艺[J].中国给水排水,2008,24(6):2-6.
    [76]Gijsbertsen,Abrahamse A J,SchmidtW,Chorus I,et al.Removal of cyanotoxins by ultra filtration and nano filtration[J].Membrane Sci,2006,27(1-2):252-259.
    [77]余国忠,李灵芝,赵明云,等.纤维直接过滤去除原水藻类[J].环境污染治理技术与设备,2003,4(1):14.
    [78]Grutzmache G,Bottcher G,Chorus L,et al.Removal of microcystins by slow sand filtration [J].Environ Toxicol,2002,17(4):386-394.
    [79]Hejzlar J,Dolejs P.Effect ofbio- manipulation onthe structuring of the panktonic food web and water treat ability by coagulation[J].Water Science and Technology,1998,37(2):129-135.
    [80]薛欣喜.提高砂滤池对高含藻水的适应性方法[J],中国给水排水,1996,12(1):44-45.
    [81]张大鹏.微絮凝直接过滤技术中试研究[D].上海:同济大学硕士研究生毕业论文,1996.
    [82]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999.10.
    [83]李镜明,粟心国,徐和平.辐射流滤池直接过滤处理含藻水的试验研究[J].给水排水,1992,75(1):5-8.
    [84]余梅,卢文汉.昆明第五自来水厂常规工艺除藻效果的研究[J].中国给水五十年,1999,9.
    [85]刘广奇,刘杰,宋兰合.给水处理除藻技术最新进展[J].净水技术,2008,27(2):27-31.
    [86]Stefan E.B.Wiesner,John A.Strant,Hakan Sandsten.Mechanisms regulating abundance of submerged vegetable in shallow eutrophic lakes[J].Oecologia,1997(109):592-599.
    [87]Antoine Montiel,Benedicte Welte.Preozonation coupled flotation filtration:successful removal of algae[J].Water Science and Technology,1998,37(2):65-73.
    [88]迟玉霞,陈翼孙.臭氧-气浮联用新工艺处理含藻水[J],环境与开发,1999,14(1):14-15.
    [89]周群英.微电解杀藻研究[J].上海环境科学,1998,17(1):48-51.
    [90]郝红伟,陈以方,吴敏生,等.低功率高频超声抑制监藻生长的研究[J]生物物理学报,2003,(01):35-38.
    [9l]付琨;高云涛;刘晓海.超声波抑制滇池水华藻类生长的实验研究[J].化学与生物工程,2007,(12):21-24.
    [92]TW Lamber,C F B Holmes,S E Hrudey.Microcystin class of toxins:health effects and safety of drinking water supplies[J].Environ Rev 1994(2):167-186
    [93]樊杰,陶涛,张顺,等.紫外光预处理与预氯化强化除藻的作用比较[J].工业用水与废水,2005(7):48-50.
    [94]兰智文,赵鸣,尹澄清,等.藻类水华的化学控制研究[J].环境科学,1991,13(1):12-15.
    [95]张荣,姜建伟,董佩森.夏季高藻水的处理工艺[J].中国给水排水,2002,18(4):78-79.
    [96]裴海燕,李力,胡文容,等.ClO_2杀藻效能研究[J].山东环境,2000,(6)20-21.
    [97]程真文.巢湖藻类污染的研究和对策[J].水处理技术,2003,29(4):247.
    [98]Condie LW·Toxicological problems associated with chlorine dioxide[J].J AWWA,1986,78(5):73-77.
    [99]马军,李圭白,李晓东.高锰酸钾除微污染效能-GC-MS分析[J].中国给水排水.1999,15(5):13-15.
    [100]张杰,臧景红,刘俊良,等.高锰酸钾预氧化替代预氯化的实用性[J].中国给水排水,2002,18(1):76-78.
    [101]黄晓东,吴为中,李德生,等.S市富营养化水源水化学预氧化试验研究及初步评价[J],给水排水,2001,27(7):19-24.
    [102]李思敏,王龙,李清雪,等.高锰酸钾预氧化的除藻效果[J].中国给水排水,2002,18(3):48-50.
    [103]石颖,陈忠林,李圭白.高锰酸钾复合药剂(PPC)强化混凝除藻室内试验研究[J].哈尔滨建筑大学学报,2000,33(4):43-46.
    [104]陈忠林,王东田,李圭白,等.高锰酸钾复合药剂除藻臭试验[J].中国给水排水,2000,16(11):58-60.
    [105]许国仁,李圭白,王向东,等.高锰酸钾复合药剂对水中藻类和嗅味去除效果生产性试验研究[J].给水排水,1998,24(12):13-17.
    [106]Rencken.G.E.Ozonation at Wiggins water purification works,Durban,South Africa[J].Ozone Science& Engineering,1994,16:247- 261
    [107]孙昕,张金松.饮用水预臭氧化技术的进展[J].给水排水,2002,28(4):7-10.
    [108]Jeanine.D.P,James.K.E.Effect of ozone on disinfection byproduct formation of algae[J].Water Science and Technology.1998,37(2):49- 55.
    [109]Jinag jiaqian,Nigel J.D.GRAHAM.Removal of Algae and AriHalomethane(AHM)Precursors by Coagulation[J].Water Treatment,1992(7):155-168.
    [110]邓风.南京某自备水厂除藻对策[J].青岛建筑工程学院学报,2005,26(1):52-54.
    [111]Chow C W K,House J,Velzeboer R M A,et al.The effect of ferric chloride flocculation on (?)cells[J].Water Research,1998,32(3):808 - 814.
    [112]刘成,高乃云.微囊藻毒素在上海市水源地的分布及去除研究[D].上海:同济大学.2007.
    [113]吴为中,王占生.水库水源水生物陶粒池预处理中试研究[J].环境科学研究,1999,1:36-38.
    [114]罗晓鸿,王占生,王衡,等.富营养化湖泊水生物预处理研究[J].给水排水,1996,22(7):12-15.
    [115]余冉,吕锡武,稻森悠平.生物接触氧化预处理水中藻类及其毒素[J].中国给水排水,2002,18(12):20-23
    [116]刘辉,包承忠.全流程生物氧化法处理微污染原水研究[J].中国给水排水2002,18(5):18-22.
    [117]Wei Chen,et al.Reduction in microcystin concentrations in large and shallow lakes:Water and sediment-interface contributions[J].Water Research,2008(42):763-773.
    [118]Thomas,et al..Degradation of microcystin in sediments at oxic and anoxic denitrifying conditions[J].Water research,2003,37:4748-4760.
    [119]吕锡武等.有毒蓝藻及藻毒素生物降解的初步研究[J].中国环境科学,1999,19(2),138-140.
    [120]Ishii H,Nishijima M,Abe T.Characterization of degradation process of cyanobacterial hepatotoxins by a gramnegative aerobic bacterium[J].Water Research,2004,38(11):2667-2676.
    [121]Steynberg M C,Adam K,Pieterse A J H.An algal monitoring protocol:the strategical link between reservoir and treatment process[J].Water Science and Technology,1998,37(2):153-159.
    [122]赵兴忠,王朋,葛孝新,等.净水厂除藻及常规工艺改造的可行性分析[J].山东农业大学学报(自然科学版),2008,39(4):596-600.
    [123]肖桂义,陆继龙,蔡波,等.长春市石头口门水库水质演变及对策[J].地质与勘探,2003,39(6):61-63.
    [124]徐京萍,张柏,蔺枉,等.光谱数据反演吉林石头口门水库悬浮物含量和透明度[J].湖泊科 学,2007,19(3):267-274.
    [125]环境影响评价技术导则-地面水环境(HJ/T 2.3-93)
    [126][日]合田健著,全浩译.水环境指标[M].北京:中国环境科学出版社,1989:124.
    [127]杨艳玲,李星,李圭白.水中颗粒物的检测及应用[M].北京:化学工业出版社,2007:75.
    [128]刘京,胡章立,雷安平.藻类快速鉴定研究进展[J].生物技术通讯,2005,16(6):700-702.
    [129]夏红卫,文钰嵘.水中藻类检测技术改进[J].供水技术,2007,1(1):42-44.
    [130]马荣华,戴锦芳.应用实测光谱估测太湖梅梁湾附近水体叶绿素浓度[J].遥感学报,2005,9(1):78-86.
    [131]戴荣继,黄春,佟斌,等.藻类叶绿素及其降解产物的测定方法[J].中央民族大学学报(自然科学版,2004,13(1):75-79.
    [132]Ma Jun,Liu Wei.Effectiveness and mechanism of potassium ferrate(Ⅵ) preoxidation for algae removal by coagulation[J].Water Research,2002,36:871-878.
    [133]张军.水库中藻类生长与其影响因素的研究[J].黑龙江水专学报,2005,32(1):63-65.
    [134]Ireneusz M,Paulina S,Tarczynska,et al.Toxicity of microcystin from cyanobacteria growing in a source of drinking water[J].Comparative Biochemistry and Physiology,Part C,2004,139(1-3):175-179
    [135]Kato T.Strains of each group with the identical allozyme genotype[J].Algol Stud,1991,129.
    [136]Beleda-Baillie CA,Sison N,Silvestre V,etal.Evidence from changing symbiotic algae in juvenile tridacnids[J].J Exp Marine Biol Ecol.1999,241:207
    [137]Geoffrey A C,Louise F M,James S M.Cyanobacterial toxins:Risk management for health protection[J].Toxicologyand Applied Pharmacology,2005,203(3):264-272
    [138]胡川,康升云.蓝藻发生与控制方法初探[J].江西水产科技,2001,88(4):35-37
    [139]刘建康.高级水生生物学[M].北京:科学出版社,2000.
    [140]解岳,陈霄,黄廷林,等.北方城市供水水源藻类高发特征及其影响因素探讨[J].西安建筑科技大学学报(自然科学版),2005,37(2):184-188.
    [141]刘丽萍.滇池水华特征及成因分析[J].环境科学研究,1999,12(5):36-37.
    [142]刘光钊.水体富营养化及其藻害(M).北京:中国环境科学出版社.2005:135-136.
    [143]王志红,崔福义,安全,等.营养因子与藻生物量的回归模型[J].广东工业大学学报,2005,22(2):26-30.
    [144]Smith V H.Nutrient dependence of primary productivity in lakes[J].Limnology,Oceanography,1979,(24):1051-1064.
    [145]张澎浪,孙承军.地表水体中藻类的生长对pH值及溶解氧含量的影响[J].中国环境监测,2004,20(4):49-50.
    [146]Pollingher U,KaPlan B,Berman T.The impact of iron chelators on Lake Kinneret phytoplankton[J].Plankton Res,1995,17:1977-1992.
    [147]Imai A,Fukushima T,Matsushige K.Effeets of iron Iimitation and aequatic humic substances on the growth of Mierocystis aeruginosa[J].Can Fish Aquat Sci,1999,56:1929-1937.
    [148]Sunda W G.Low iron requirement for growth in oceanic Phytoplankton[J].Nat,1991,351(6321):55-57.
    [149]Allnutt F C T,Jr Bonnet W D.Evaluation of reduetive release as ameehanism for iron uptake from ferrioxamine B by Chlorella vulgaris[J].Plant Physiol,1987,85:751-756.
    [150]Wilhelm S W,Trick C G..Iron-limited growth of cyanobaeteria:multiple siderophore produetion is a common response[J].Limnol Oceanogr,1994,39:1979-1984.
    [151]唐汇娟,谢平,陈非洲.微囊藻的昼夜垂直变化及其迁移[J].中山大学学报(自然科学版),2003,42(2):236-239.
    [152]Oliver R,Ganf G G.Freshwater blooms//WHITTON B A,POTTS M,eds.The ecology of Cyanobacteria[M].2000:149-194.
    [153]Walsby A E,Macallister G K.Buoyancy regulation by Microcystis in Lake Okaro[J].NZJ Mar Freshwater Res,1987,21:521-524.
    [154]Walsby A E,Reynolds C S,Oliver R,et al.The role of gas vacuoles and carbohydrate content in the buoyancy and vertical distribution of Anabaena minuitissimain lake Rotongao,New Zealand[J].Arch Hydrobiol,1989(32):1-25.
    [155]Ibelings B W,Mur L M,Walsby A E.Diurnal changes in buoyancy and vertical distribution in population of Microcystisin two shallow lakes[J].J Plankton Res,1991(14):419-436.
    [156]朱广伟,秦伯强,高光.强弱风浪扰动下太湖的营养盐垂向分布特征[J].水科学进展,2004,15(6):775-779.
    [157]Oluf Hoyer,Bernhard Lusse,et al.Isolation and characterization of extracellular or ganic matter EOM from algae[J].Zwasser-Abwasser-Forsch,1985,18:76-90
    [158]Heinz,Bermhardt,Oluf Hoyer,et al.Reaction mechanisms involved in the influence of algogenic organic matter on flocculation[J].Zwasser-Abwasser-Forsch,1985,18:18-30.
    [159]Bernhardt H,Clasen J.Flocculation of micro-organisms.[J]Water SRT-Aqua,1991,40(2):76-87.
    [160]Shoichi,Kunikane,et al.Flocculation and filtration of the green algae Chorella sp.and Dictyosphaerium sp.under selected conditions[J].Zwasser-Abwasser-Forsch,1986,19:145-151.
    [161]余国忠,刘军,王占生.藻类细胞特性对净水工艺的影响研究[J].环境科学研究,2000,13(6):56-59.
    [162]刘载芳.藻类有机物对混凝和过滤过程的影响[D].北京:清华大学,1991.
    [163]郭玲;陈玉成;罗鑫,等.饮用水氯化消毒工艺现存问题及改进措施[J].净水技术,2007,26(1):70-73.
    [164]陈有军,梁再辉.北方某自来水厂生产废水的水质特性研究[J].中国给水排水,2007,23(11):90-93.
    [165]米海蓉,孙勇,王春丽.自来水厂冲洗废水的回收利用[J].工业技术,2007,8:36-37.
    [166]Arora H,Giovannid,Lechevallier GM.Spent Filter Backwash Water:Contaminants and Treatment Strategies[J].AWWA.2001,93(5):100-112.
    [167]Bourgeois J C,Walsh M E,Gagnon GA.Treatment of Drinking Water Residuals Comparing Sedimentation and Dissolved Air Flotation PerformancewithOptimalCation Ratios[J].Water Research,2004,38(1):1173-1182.
    [168]Edzwald J K,Tobiason J E.Fate and Removal of Cryptosporidium in a Dissolved Air Flotation Water Plant with and without Recycle of Waste FilterBackwashWater[J].Water Science and Technology[J].Water Supply,2002,2(2):85-90.
    [169]柯水州,袁辉洲,袁仞,等.滤池反冲洗水回用和混凝性能的改善[J].中国给水排水,2000,16(6):9-12.
    [170]吴灿东.给水厂生产废水回用对水质安全性的影响[J].给水排水,2008,34(18):13-16.
    [171]崔福义,林涛,马放,等.水源中水蚤类浮游动物的孳生与生态控制研究[J].哈尔滨工业大学学报,2002,34(3):399-403
    [172]徐林林,崔福义,宋安坤等.净水工艺中剑水蚤的二次繁殖及控制[J].给水排水,2007,33 (1):7-9.
    [173]张瑛,阮晓红.水处理混凝剂及其发展方向[J].污染防治技术,2003,16(4):45-49.
    [174]苏滕,陆中兴.混凝剂的研究应用与开发动向(一)[J].净水技术,2000,18(3):7-9.
    [175]苏滕,陆中兴.混凝剂的研究应用与开发动向(二)[J].净水技术,2000,19(4):8-12.
    [176]栾兆坤,汤鸿霄.我国无机高分子絮凝剂产业发展现状与规划[J].工业水处理,2000,20(11):1-6.
    [177]汤鸿霄.无机高分子复合絮凝剂的研制趋向[J].中国给水排水,1999,10(2):1-4.
    [178]杨少华,杨凤丽,艾光华.水处理絮凝剂应用及研究进展[J].化工时刊,2006,20(2):73-75.
    [179]曾玉彬,黄保军,王益军.无机高分子复合絮凝剂的研究进展及应用[J].江苏化工,36(1):5-9.
    [180]赵晶莹,郑卫巧.无机高分子絮凝剂研究进展及其应用[J].化工科技市场,2007,15(8):7-10.
    [181]鸿霄.无机高分子絮凝剂的几点新认识[J].工业水处理,1997.17(4):1-5.
    [182]延文,张洪林.无机高分子絮凝剂的开发与应用进展[J].辽宁城乡环境科技,2001,21(4):3-6.
    [183]孙剑辉,徐毅.聚硅酸盐类絮凝剂的研究进展[J].工业水处理,2000,20(3):4-7.
    [184]路光杰,许曼平.无机高分子混凝剂的机理与应用[J].电力建设.1996,(11):5-7
    [185]许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社,2000.
    [186]Dentel S K.Application of the precipitation - charge.Neutralization model of coation[J].J Envim Sci Technol,1988,22(7):825-841.
    [187]孟红旗,雷国元,王光辉.聚合氯化铝铁的性质与羟铁比的关系及其混凝除藻性能的研究[J].武汉科技大学学报(自然科学版),2003,26(4):363-366.
    [188]雷国元,张晓晴,王丹鸶.聚合铝盐混凝剂混凝除藻机理与强化除藻措施[J].水资源保护,2007,23(5):5-9.
    [189]周上祺.X射线衍射分析:原理方法应用[M].重庆:重庆大学出版社.1991:37-41.
    [190]时文中,李灵芝,余国忠.聚合硅酸铝铁的带电特征及X衍射分析[J].重庆环境科学.2003,8(7):3-7.
    [191]刘惠君.ζ电位作为无机混凝剂水处理性能评价指标的可行性实验研究[J].水处理技术.2002,28(2):78-81
    [192]肖树宏,王殿有,黄了如,等.长春市第四净水厂絮凝池的技术改造[J].中国给水排水,2008,24(16):30-32.
    [193]Tchen C M.Mean Values and Correlation Problems Connected with the Motion of Small Particles Suspended in a turbulent Fluid[D].Ph.D.Thesis,Delft,1947.
    [194]范瑾初.混凝技术[M].北京:中国环境科学出版社.1992:21-35.
    [195]H.B.Fischer,E.J.List,R.C.Y.Koh.Mixing in inland and coastal waters[M].New York:Academic Press,U.S.A.1979:110-130.
    [196]邓燕华,等.混凝工艺设计优化方法研究[J].安全与环境工程.2005,16(4):36-39.
    [197]T.R.Camp,P,C.Stein.Velocity Gradients and Inertial Work in Fluid Motion[J].Boston Soc.Civ.Eng.1993,30(4):219-237
    [198]方永忠.微涡流混凝给水处理新工艺[J].铁道劳动安全卫生与环保.2004,(2).
    [199]贺玉环,冯建平,余承烈.混凝动力学对混凝工艺实践的指导意义[J].工业用水与废水,2006,37(1):10-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700