基于GIS的石头口门水库流域农业非点源污染研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非点源污染在点源污染得到有效控制之后,其危害严重性、治理困难性、时空不确定性日益显露出来,农业非点源研究尤为重要,是我国水环境恶化的主要因素之一。农业非点源污染其所含的氮、磷是造成水体富营养化以及流域景观破坏等环境问题的主要因子,由此农业非点源污染控制的研究日益受到重视。
     本研究在总结国内外非点源污染的研究进展文献的基础上,以污染物量化及非点源污染与异质景观相关性分析为研究目标,选取研究甚少的我国东北地区吉林省长春市的重要水源地——石头口门水库上游流域作为研究对象,研究内容主要有:
     1.结合GIS技术、现场踏查、径流实验污染物浓度实测等手段,采用美国土壤通用流失方程(USIE)、降雨径流模型(SCS)计算该流域的土壤侵蚀量,对非点源污染的土壤侵蚀模数,降雨径流量,污染物N、P流失量等指标进行量化。
     2.用景观分析方法,在入库的双阳河流域选取典型的具代表性的两个小流域,且该区的景观有一定的差异性。分别在降雨前后采集河流入口处的水样及不同地区、不同土地利用类型的土样进行实验测定。分析农业非点源污染与异质景观(本文采用土地利用类型)的关系,探讨了景观格局优化在非点源污染控制中的作用原理。
     该流域多年降雨量为650mm,非点源污染主要发生在雨季,7~9月份是多雨季节,引起了80%以上的非点源污染。得出以下结论:
     1.应用USLE与SCS模型结合GIS算得该流域年土壤侵蚀量2705115t,径流量1146.9184万m~3。平均侵蚀模数为508.1t/km~2·a,该区土壤侵蚀状况呈微度侵蚀。
     2.应用平均浓度法对流域的年污染负荷量进行计算,非点源污染负荷可溶N、悬浮N、可溶P、悬浮P分别为340259.5kg/a、47178.96kg/a、23419.71kg/a、42864.56kg/a。可见N流失以可溶态为主;P流失则相反,以悬浮态为主。
     3.结合景观格局指数对双阳河上杜家、蒋家小流域进行分析,并结合采集水样、土样测定N、P污染物的实验方法,得出不同土地利用类型及其空间布局对农业非点源污染影响重大。
Since the point source pollution has been controlled successfully, the influence of the non-point source (NPS) pollution to the environment has been revealed for its serious harm, hard to control, extensity and uncertainty, and one of the most serious among them is rural non-point source which become the main source of damaging the water quality. As the nitrogen and phosphorus from rural NPS pollution are significant important factors for water environment deterioration and landscape fragment of basin, the problems of controlling NPS in watershed have been focused in the world.Based on summarizing the literature domestic and abroad on NPS pollution study, the paper aim to quantify the pollutant and the pertinence analyzing between NPS pollution and the landscape's heterogeneity, focusing on Shitoukoumen reservoir up reach, which supplies drinking water for Changchun City and hardly be studied, the contend of study is as follows.1. Combining GIS technologies, locale investigation and the runoff experiment for measuring the concentration of pollutant, adopting USLE(Universal Soil Loss Equation) and SCS(the rain-runoff model from Soil Conservation Service USA), quantifying the soil erosion modulus, runoff, nitrogen and phosphorus from NPS.2. As for taking the landscape analysis method, firstly selecting two representative and different landscape region in Shuangyang reach whose river flows to Shitoukoumen reservoir. Then sampling the water in bayou and soil in different land-use type before and after rain, and then analyzing the correlation between rural NPS pollution and heterogeneity landscape (land-use especially in the paper). Last the paper probes the principle of optimizing the landscape pattern for controlling the NPS pollution.The annual rainfall of Shitoukoumen region is 650mm. More than 80% of the NPS pollution happened in rainy season, between July and September. The results show that.1. USLE and SCS models based on GIS were taken to calculate pollution load, and the soil erosion load was 2705115t, runoff was 1146.9184×10~4m~3, average erosion modulus was 508.It/km~2·a, the status of soil erosion was preferably.2. The data calculated by Mean Concentration Method in the watershed shows the output of Soluble N, Paniculate N, Soluble P, Paniculate P ware 340259.5 kg/a、 47178.96 kg/a、 23419.71 kg/a、 42864.56 kg/a respectively. So the main loss form of nitrogen is soluble, by contrast phosphorus is particulate.3. Through correlation analysis of pollutant in water-soil by local experiment and landscape pattern index in Dujia Village and Jiangjia Village basin in Shuangyang river watershed, the different land-use types were significant for the rural NPS pollution.
引文
[1] 鲍全盛,王华东.我国水环境非点源污染研究与展望[J].地理科学,1996,16(1):66-71.
    [2] 鲍全盛,王华东,毛显强.我国水环境非点源污染研究进展[J].环境科学进展,1995,3(3):31-36.
    [3] Alm, A. L. Non-point Sources of Water Pollution[J]. Environmental Science and Technology, 1990, 24(7): 967.
    [4] S. R. Capenter, et al. Nonpoint pollution of Surface Waters With Phosphorus and Nitrogen[J]. Ecology, 1998, 8(3): 559-560.
    [5] Aim A L. Non—point Sources of Water Pollution[J]. Environmental Science and Technology, 1990, 24(7): 967.
    [6] 陈利顶,傅伯杰,张淑荣.异质景观中非点源污染动态变化比较研究[J].生态学报,2002,22(6),808-816.
    [7] Lee S I. Nonpoint source pollution[J]. Fisheries, 1979, (2):50-52.
    [8] Duda.A M. Addressing nonpoint source of water pollution must become an international priority[J]. Water Science and Technology, 1993, (3-5):1-11
    [9] 付永锋,陈文辉,赵基花.非点源污染的研究进展与前景展望[J].山西水利科技,2003(3):32-35
    [10] 李怀恩,沈晋.非点源污染数学模型[M].西安:西北工业大学出版社,1996,7.
    [11] 陈育峰.环境地学分析方法及应用[M].北京:中国环境科学出版社,1994,12.
    [12] Martha W G, Wansda B P. A Geographic information System to predict nonpoint source pollution potential[J]. Water Resources Bulletin, 1987, 23(2): 281-291.
    [13] 李怀恩,沈晋.非点源污染负荷计算的单位线法[J].西北水资源与水工程.1991,2(4):19-26.
    [14] Beasley, D. B. Applying Distn'buted Modeling Techniques to watershed Hydrology and Nonpoint source Pollution. Proc, 13th Conf, Modeling and simulation, 1982, 4, 1453-1462.
    [15] Knisel, W. G. CREAM: A Field-scale Model for Chemicals Runoff, and Erosion from Agricultural Management system. Proc, 13th conf, Mdding and simulation, 1982, 4, 1555-1559.
    [16] Yong, R. A. Onstad, C. A. and Anderson, W. P. AGNPS: A Nonpoint-source pollution Model for Evaluation Agricultural watersheds[J]. J. of soil and water conservation, 1989, 2. 168-173.
    [17] Rinaldo, A. Monani, A.. Basin scale Model of solute Transport[J]. Water Resources Research, 1987, 23(11): 2107-2118.
    [18] Sivertun A, Reinelt L. E. Castensson R. A GIS method to aid in nonpoint source critical area analysis[J]. International Journal of Geographic Information systems. 1988, 2, 365-378.
    [19] 辜来章,郝淑英.滇地流域农田非点源负荷定量化的研究[J].水资源保护,1992,(1):11-19.
    [20] 刘枫.流域非点源污染的量化识别方法及其在于桥水库流域的应用[J].地理学报,1988,43(4).
    [21] 李怀恩,沈晋.流域非点源模型的建立与应用实例[J].环境科学学报,1997,17(2):141-147.
    [22] 李怀恩,沈冰,沈晋.暴雨径流污染负荷计算的响应函数模型[J].中国环境科学,1997,17(1):15-18.
    [23] 温灼如等.苏州水网城市暴雨径流污染的研究[J].环境科学,1986,7(6).
    [24] 符素华,刘宝元,吴敬东,等.北京地区坡面径流计算模型的比较研究[J].地理科学,2002,22(5):604~609.
    [25] 高超,朱继业,窦贻俭,等.基于非点源污染控制的景观格局优化方法与原则[J].生态学报,2004,24(1):109-116
    [26] 陈利项,傅伯杰,张淑荣.异质景观中非点源污染动态变化比较研究[J].生态学报,2002,22(6):808~816
    [27] 陈利顶,傅伯杰,徐建英,等.基于“源-汇”生态过程的景观格局识别方法——景观空间负荷 对比指数[J].生态学报,2003,23(11):2406-2413
    [28] 雷孝章,陈季明,赵文谦.森林对非点源污染的调控研究[J].重庆环境科学,2000,22(2):41-44
    [29] 李俊然,陈利顶,郭旭东,等.土地利用结构对非点源污染的影响[J].中国环境科学,2000,20(6):506-510
    [30] 高超,张桃林,吴蔚东.不同利用方式下农田土壤对磷的吸持与解吸特征[J].环境科学,2001,22(4):67-72
    [31] 陈晓燕.GIS技术在通用土壤流失方程中的应用研究[J].中国水土保持,2005,(5):38-39
    [32] Wischmeier W H, et al. A soil erodibility nomorgraph farm land and construction sites[J]. Journal of Soil and Water Conservation, 1971, 26:189-193.
    [33] 史志华,蔡崇法,丁树文,李朝霞,王天巍.基于GIS和RUSLE的小流域农地水土保持规划研究[J].农业工程学报,2002,V18(4):172-175
    [34] 张雪花.非点源污染量化模型中重要影响因素的研究[D]:[硕士学位论文].长春:东北师范大学,2004.
    [35] Soil Conservation Service. "Hydrology." SCS National Engineering Handbook. Science 4, Chapter 10, US Department of Agriculture, Washington C,1964
    [36] Bosznay.M, Generalization of SCS curve numeber method[J].Journal of irrigation and drainage engineering, 1989,155(1) :139-144.
    [37] 沈晓东等.基于栅格数据的流域降雨径流模型,地理科学,1995,30(5),264-271
    [38] 张美华,王晓燕,秦福来.SCS模型在密云石匣试验小区降雨径流量估算中的应用.首都师范大学学报(自然科学版)2004(25),155-158
    [39] 罗利芳,张科利,符素华.径流曲线数法在黄土高原地表径流量计算中的应用,水土保持通报,2002,22(3):58-61
    [40] 王宁,徐崇刚.GIS用于流域径流污染物的量化研究[J].东北师大学报,2002,34(2):92-98
    [41] 王晓燕,王一峋,王晓峰.密云水库小流域土地利用方式与氮磷流失规律[J].环境科学研究,2003,16(1):30-33.
    [42] 亓兴兰,刘健,余坤勇,等.基于RS与GIS的闽江流域森林景观格局分析[J],福建林学院学报.2006,26(1):36-40
    [43] 水和废水监测分析方法[M],中国环境科学出版社,国家环保局《水和废水监测分析方法》编委会,1989
    [44] 土壤理化性质分析[M],上海科学技术出版社,中国科学院南京土壤研究所编

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700