改善锂离子电池高温性能用新型电解质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展和文明的进步,人类对于能源的依赖越来越偏向于可持续、环境友好的新能源体系。锂离子二次电池由于具备高能量密度、无记忆效应、无污染等突出优势,成为最受青睐的二次电池。经过多年的发展,锂离子电池已在移动电话、笔记本电脑、数码相机等便携式电子设备上得到广泛应用。但迄今为止,锂离子电池在性能上还不能完全满足动力锂离子电池的要求,尤其是其高温循环稳定性,例如:目前电池的循环寿命仅为5年左右,低于电动汽车或混合动力汽车所要求的10-15年的使用年限;在较高的环境温度下(>50oC)电池容量快速下降等。电解质作为锂离子电池的关键材料之一,对电池的性能和成本有着重要的影响。本文拟通过新型添加剂改善锂离子电池的电解液和开发新型的聚合物电解质两种途径,旨在解决锂离子电池目前存在的高温循环稳定性问题。
     本文首先选取3-三甲基-硅烷硼酸酯(TMSB)作为锂离子电池的添加剂,以改善电解液的高温稳定性,进而提高电池的高温循环稳定性,同时通过相关的交流阻抗、电镜扫描、循环伏安、红外、表面元素分析等测试验证了TMSB对电解液稳定性的作用,并研究其作用机理。研究发现, 55℃下,电解液中含有1wt% TMSB的LiFePO4/Li电池经过80次循环之后的容量衰减仅为6%,而不含添加剂的电池经过同样的循环之后的容量衰减达到25%。交流阻抗测试表明,在55℃时,含有1wt%的TMSB添加剂的电池经过循环之后比不含添加剂的电池的界面阻抗更低。SEM以及XPS表明添加剂的使用对电极的界面形貌以及表面组分都有较大的影响。研究表明,TMSB的缺电子结构,使其易与PF6-相互作用,降低LiPF6的热分解能力,提高电解液的热稳定性,从而提高了锂离子电池的循环性能,特别是高温下的循环性能。
     另外,本文制备了全氟磺酸锂离子交换膜聚合物电解质,并首次验证其在锂离子电池中的应用可行性。通过溶液浇铸成膜、锂化、脱水、溶胀等过程制得碳酸丙烯酯溶胀的全氟磺酸锂聚合物电解质(PC-PFSA-Li膜)。交流阻抗测试显示,所制得PC-PFSA-Li膜的室温电导率为4.63×10-4 S/cm,而其在60℃时的电导率达到1.03×10-3 S/cm;同时,通过阻抗分析表明PC-PFSA-Li膜和Li金属具有良好的界面稳定性。循环伏安测试表明,PC-PFSA-Li膜具备良好的电化学稳定性,在2.5-4.35V(vs. Li/Li+)内并没有发生氧化分解反应。LiFePO4/PC-PFSA-Li膜/Li电池在80℃时具有良好的循环性能,其经过100次循环之后的容量保存率在90%以上,而使用传统电解液的LiFePO4/LiPF6-EC-DMC/Li电池,在同样条件下经过45次循环之后,电池的容量迅速衰减,在第58次循环时,其容量的保存率仅有75%。相比于传统的液态电解质,新型的全氟磺酸锂聚合物电解质由于避免锂盐的使用,提高了电池的高温循环性能的同时,也降低了电池的成本,因而是一种具备良好应用前景的聚合物电解质。
With the development of the economy and society, much more attention has been paid to the utilization of the new energy for the shortage of traditional energy. Due to its high energy density, high voltage and long cycle life, lithium-ion battery becomes the most popular secondary battery since it was firstly introduced in 1990. After many years’development, lithium-ion batteries have been widely used as power source of cell phones, laptops and digital cameras, as well as other potable electric devices. However, lithium-ion battery still cannot be used as the power source for electric vehicles (EV) or plug-in hybrid electric vehicles (PHEV) because of safety concerns, short cycle life and high cost. For example, the battery can only work less than 5 years at room temperature, which is much shorter for the requirements of electric vehicles, 10 to 15 years; the battery will cause safety problems such as explosion under abused conditions; and the battery decays quickly at elevated temperatures (≥50oC). These problems are closely related to the electrolyte used in the battery. In this paper, we try to use electrolyte additives and develop a new polymer electrolyte to solve the existing high temperature cycle stability problems of the lithium ion battery.
     Tris(trimethylsilyl) borate (TMSB) was used as a new electrolyte additive to improve high temperature performance of LiFePO4 based lithium-ion battery. The effects of the TMSB on the LiFePO4 electrode are investigated via a combination of electrochemical impedance spectroscopy (EIS), cyclability, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). It is found that the LiFePO4 battery with a composite LiPF6-based electrolyte containing 1 wt% TMSB additive exhibits higher discharge retention and better cycling performance than the battery without TMSB additive at both 30°C and 55°C. SEM and XPS measurements show the changes of surface morphology and formation of solid electrolyte interface (SEI). EIS results indicate that the interfacial impedances of the batteries after cycled at 55°C with the electrolyte containing TMSB additive are significantly smaller than the batteries without additive. The improved performances are ascribed to the enhancement of the thermal stability of the electrolyte and the modification of SEI component on the LiFePO4 electrode. New polymer electrolyte based on lithiated perfluorinated sulfonic ionomer with high ion exchange capacity for lithium-ion battery is investigated.
     Through polymerization, solution-casting, salification and dehydration/swelling processes, lithiated perfluorinated sulfonic polymer electrolyte swelled with PC (PC-PFSA-Li) is prepared. The PC-PFSA-Li polymer electrolyte shows ionic conductivity of 4.63×10-4 S/cm at room temperature and 1.03×10-3 S/cm at 60 oC, respectively. Cyclic voltammetry indicates that the PC-PFSA-Li polymer electrolyte possessed good electrochemical stability in the range 2.5-4.5 V (vs. Li/Li+). EIS shows that PC-PFSA-Li polymer electrolyte is compatible with lithium foil. The LiFePO4/PC-PFSA-Li/Li batteries show higher capacity retention at 80 oC after 100 cycles than that of the battery using the LiPF6-EC-DMC conventional liquid electrolyte. The replacement of conventional liquid electrolytes and the use of polymer electrolytes with the ion-exchange membranes not only gives an extra contribution in improving the performance and safety of the lithium-ion battery, but also reduces the cost of the battery system. Therefore, this novel lithium-ion polymer battery would be used as new, advanced types of power sources for hybrid and electric vehicles.
引文
[1] Abraham, K. Directions in secondary lithium battery research and development[J]. Electrochimica Acta. 1993, 38: 1233-1248.
    [2] Abraham, K. Recent developments in secondary lithium battery technology[J]. Journal of Power Sources. 1985, 14: 179-191.
    [3] Brandt, K. Historical development of secondary lithium batteries[J]. Solid State Ionics. 1994, 69: 173-183.
    [4] Scrosati, B. Recent advances in lithium ion battery materials[J]. Electrochimica Acta. 2000, 45: 2461-2466.
    [5] Tarascon, J.,Armand, M. Issues and challenges facing rechargeable lithium batteries[J]. 2001.
    [6]吴宇平,戴晓兵,马军旗,程预江锂离子电池一应用与实践[M][J].北京:化学工业出版社. 2004: 3-4.
    [7] Whittingham, M. S. Electrical energy storage and intercalation chemistry[J]. Science. 1976, 192: 1126.
    [8] Liu, S.,Imanishi, N.,Zhang, T.,Hirano, A.,Takeda, Y.,Yamamoto, O.,Yang, J. Lithium Dendrite Formation in Li/Poly (ethylene oxide)–Lithium Bis (trifluoromethanesulfonyl) imide and N-Methyl-N-propylpiperidinium Bis (trifluoromethanesulfonyl) imide/Li Cells[J]. Journal of The Electrochemical Society. 2010, 157: A1092.
    [9]吴宇平,万春荣,姜长印.锂离子二次电池[M][J]. 2002:北京:化学工业出版社.
    [10]吴宇平,张汉平,吴锋,李朝晖聚合物锂离子电池[M][J].北京:化学工业出版社. 2007.
    [11] Wakihara, M. Recent developments in lithium ion batteries[J]. Materials Science and Engineering: R: Reports. 2001, 33: 109-134.
    [12] Whittingham, M. S. Lithium batteries and cathode materials[J]. Chemical Reviews. 2004, 104: 4271-4302.
    [13] Yoshio, M.,Tanaka, H.,Tominaga, K.,Noguchi, H. Synthesis of LiCoO2 from cobalt--organic acid complexes and its electrode behaviour in a lithium secondary battery[J]. Journal of Power Sources. 1992, 40: 347-353.
    [14] Ebner, W.,Fouchard, D.,Xie, L. The LiNiO2/carbon lithium-ion battery[J]. Solid State Ionics. 1994, 69: 238-256.
    [15] Momchilov, A.,Manev, V.,Nassalevska, A.,Kozawa, A. Rechargeable lithium battery with spinel-related MnO2 II. Optimization of the LiMn2O4 synthesis conditions[J]. Journal of Power Sources. 1993, 41: 305-314.
    [16] Yang, S.,Song, Y.,Ngala, K.,Zavalij, P. Y.,Stanley Whittingham, M. Performance of LiFePO4 as lithium battery cathode and comparison with manganese and vanadium oxides[J]. Journal of Power Sources. 2003, 119: 239-246.
    [17]彭春丽锂离子电池正极材料LiFeP04与Li2FeSi04的合成及性能研究[J]. 2011: 5-6.
    [18] Barker, J.,Pynenburg, R.,Koksbang, R.,Saidi, M. An electrochemical investigation into the lithiuminsertion properties of LixCoO2[J]. Electrochimica Acta. 1996, 41: 2481-2488.
    [19] Shiraishi, K.,Dokko, K.,Kanamura, K. Formation of impurities on phospho-olivine LiFePO4 during hydrothermal synthesis[J]. Journal of Power Sources. 2005, 146: 555-558.
    [20] Li, Z.,Zhang, D.,Yang, F. Developments of lithium-ion batteries and challenges of LiFePO 4 as one promising cathode material[J]. Journal of Materials Science. 2009, 44: 2435-2443.
    [21] Padhi, A.,Nanjundaswamy, K.,Goodenough, J. B. Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries[J]. Journal of The Electrochemical Society. 1997, 144: 1188.
    [22] Delacourt, C.,Laffont, L.,Bouchet, R.,Wurm, C.,Leriche, J. B.,Morcrette, M.,Tarascon, J. M.,Masquelier, C. Toward Understanding of Electrical Limitations (Electronic, Ionic) in LiMPO (M= Fe, Mn) Electrode Materials[J]. Journal of The Electrochemical Society. 2005, 152: A913.
    [23] Wang, Y.,He, P.,Zhou, H. Olivine LiFePO4: development and future[J]. Energy Environ. Sci. 2010.
    [24] Ohzuku, T.,Makimura, Y. Layered lithium insertion material of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 for lithium-ion batteries[J]. Chemistry Letters. 2001, 30: 642-643.
    [25] Yabuuchi, N.,Ohzuku, T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries[J]. Journal of Power Sources. 2003, 119: 171-174.
    [26] Koyama, Y.,Tanaka, I.,Adachi, H.,Makimura, Y.,Ohzuku, T. Crystal and electronic structures of superstructural Li1-x [Co1/3Ni1/3Mn1/3] O2 (0<= x<= 1)[J]. Journal of Power Sources. 2003, 119: 644-648.
    [27] Kim, J. M.,Chung, H. T. The first cycle characteristics of Li [Ni1/3Co1/3Mn1/3] O2 charged up to 4.7 V[J]. Electrochimica Acta. 2004, 49: 937-944.
    [28]米常焕,郭炳馄,曹高韵,赵新兵锂离子蓄电池负极材料最新研究进展[M][J].电源技术. 2004, 28(3): 180一183.
    [29]郭炳馄,徐徽,王先友等锂离子电池[J].中南大学出版社. 2002: 146-147.
    [30] Shu, Z. X.,Davidson, I. J.,McMillan, R. S.,Murray, J. J. Electrochemistry of LiMnO2 over an extended potential range[J]. Journal of Power Sources. 1997, 68: 618-622.
    [31] Yao, J.,Wang, G.,Ahn, J.,Liu, H.,Dou, S. Electrochemical studies of graphitized mesocarbon microbeads as an anode in lithium-ion cells[J]. Journal of Power Sources. 2003, 114: 292-297.
    [32] Ein Ely, E.,Aurbach, D.,Babai, M.,Carmeli, Y. Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems[J]. Journal of Power Sources. 1993, 43: 47-64.
    [33] Yamamoto, O.,Imanishi, N.,Takeda, Y.,Kashiwagi, H. Rechargeable Carbon Anode[J]. Journal of Power Sources. 1995, 54: 72-75.
    [34] Yazami, R.,Zaghib, K.,Deschamps, M. The Carbon-Lithium Negative Electrode - Effects of the Carbon Origin and of the Electrolyte[J]. Molecular Crystals and Liquid Crystals Science and Technology Section a-Molecular Crystals and Liquid Crystals. 1994, 244: A165-A170.
    [35] Yang, H. X.,Ai, X. P.,Lei, M.,Li, S. X. Studies of Carbon as Negative Electrode Materials for Secondary Lithium Batteries[J]. Journal of Power Sources. 1993, 44: 399-403.
    [36] Dahn, J. Phase diagram of Li_ {x} C_ {6}[J]. Physical Review B. 1991, 44: 9170.
    [37] Ohzuku, T.,Iwakoshi, Y.,Sawai, K. Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell[J]. Journal of The Electrochemical Society. 1993, 140: 2490.
    [38] Balasubramanian, M.,Lee, H. S.,Sun, X.,Yang, X.,Moodenbaugh, A.,McBreen, J.,Fischer, D.,Fu, Z.Formation of SEI on cycled lithium-ion battery cathodes: Soft X-ray absorption study[J]. Electrochemical and Solid-State Letters. 2002, 5: A22.
    [39] Besenhard, J.,Yang, J.,Winter, M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?[J]. Journal of Power Sources. 1997, 68: 87-90.
    [40] Shodai, T.,Okada, S.,Tobishima, S.,Yamaki, J. Study of Li< sub> 3? x M< sub> x N (M: Co, Ni or Cu) system for use as anode material in lithium rechargeable cells[J]. Solid State Ionics. 1996, 86: 785-789.
    [41] Wang, C.,Wu, G.,Zhang, X.,Qi, Z.,Li, W. Lithium Insertion in Carbon‐Silicon Composite Materials Produced by Mechanical Milling[J]. Journal of The Electrochemical Society. 1998, 145: 2751.
    [42] Li, H.,Huang, X.,Chen, L.,Wu, Z.,Liang, Y. A high capacity nano-Si composite anode material for lithium rechargeable batteries[J]. Electrochemical and Solid-State Letters. 1999, 2: 547.
    [43] Idota, Y.,Kubota, T.,Matsufuji, A.,Maekawa, Y.,Miyasaka, T. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material[J]. Science. 1997, 276: 1395.
    [44] Poizot, P.,Laruelle, S.,Grugeon, S.,Dupont, L.,Tarascon, J. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature. 2000, 407: 496-499.
    [45] Skotheim, T. A.,Kovalev, I. P.; Google Patents, 1997.
    [46] Guyomard, D.,Sigala, C.,de Gal La Salle, A.,Piffard, Y. New amorphous oxides as high capacity negative electrodes for lithium batteries: the LixMVO4 (M= Ni, Co, Cd, Zn; 1< x<= 8) series[J]. Journal of Power Sources. 1997, 68: 692-697.
    [47] Piffard, Y.,Leroux, F.,Guyomard, D.,Mansot, J. L.,Tournoux, M. The amorphous oxides MnV2O6+[delta](0<[delta]< 1) as high capacity negative electrode materials for lithium batteries[J]. Journal of Power Sources. 1997, 68: 698-703.
    [48] Kim, S. S.,Ikuta, H.,Wakihara, M. Synthesis and characterization of MnV2O6 as a high capacity anode material for a lithium secondary battery[J]. Solid State Ionics. 2001, 139: 57-65.
    [49] Leroux, F.,Goward, G.,Power, W.,Nazar, L. Understanding the Nature of Low-Potential Li Uptake into High Volumetric Capacity Molybdenum Oxides[J]. Electrochemical and Solid-State Letters. 1998, 1: 255.
    [50]龚正良聚阴离子型硅酸盐铿离子电池正极材料研究[博士论文][J].厦门大学. 2007: 5-6.
    [51] Aurbach, D.,Talyosef, Y.,Markovsky, B.,Markevich, E.,Zinigrad, E.,Asraf, L.,Gnanaraj, J.,Kim, H. Design of electrolyte solutions for Li and Li-ion batteries: a review[J]. Electrochimica Acta. 2004, 50: 247-254.
    [52] Blomgren, G. E. Electrolytes for advanced batteries[J]. Journal of Power Sources. 1999, 81: 112-118.
    [53]郑洪河锂离子电池电解质[J].北京:化学工业出版社. 2006.
    [54] Xiao, L.,Cao, Y.,Ai, X.,Yang, H. Optimization of EC-based multi-solvent electrolytes for low temperature applications of lithium-ion batteries[J]. Electrochimica Acta. 2004, 49: 4857-4863.
    [55] Schmidt, M.,Heider, U.,Kuehner, A.,Oesten, R.,Jungnitz, M.,Ignat'ev, N.,Sartori, P. Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries[J]. Journal of Power Sources. 2001, 97: 557-560.
    [56] Vallee, A.,Besner, S.,Prud'Homme, J. Comparative study of poly (ethylene oxide) electrolytes made with LiN (CF3SO2) 2, LiCF3SO3 and LiClO4: Thermal properties and conductivity behaviour[J]. Electrochimica Acta. 1992, 37: 1579-1583.
    [57] Kilroy, W. P. Solubility and solvate formation of lithium hexafluoroarsenate in acetonitrile[J]. Journal of Solution Chemistry. 1977, 6: 487-490.
    [58] Xu, K.,Zhang, S.,Jow, T. R.,Xu, W.,Angell, C. A. LiBOB as salt for lithium-ion batteries: A possible solution for high temperature operation[J]. Electrochemical and Solid-State Letters. 2002, 5: A26.
    [59] Shui Zhang, S. An unique lithium salt for the improved electrolyte of Li-ion battery[J]. Electrochemistry communications. 2006, 8: 1423-1428.
    [60] Botte, G. G.,White, R. E.,Zhang, Z. Thermal stability of LiPF6-EC: EMC electrolyte for lithium ion batteries[J]. Journal of Power Sources. 2001, 97: 570-575.
    [61] Li, J.,Xie, K.,Lai, Y.,Zhang, Z.,Li, F.,Hao, X.,Chen, X.,Liu, Y. Lithium oxalyldifluoroborate/carbonate electrolytes for LiFePO< sub> 4/artificial graphite lithium-ion cells[J]. Journal of Power Sources. 2010, 195: 5344-5350.
    [62] Ue, M. Role-Assigned Electrolytes: Additives[J]. Lithium-Ion Batteries, by Yoshio, Masaki; Brodd, Ralph J.; Kozawa, Akiya, ISBN 978-0-387-34444-7. Springer-Verlag New York, 2009, p. 75. 2009, 1: 75.
    [63] Buqa, H.,W¨1rsig, A.,Vetter, J.,Spahr, M.,Krumeich, F.,Nov¨¢k, P. SEI film formation on highly crystalline graphitic materials in lithium-ion batteries[J]. Journal of Power Sources. 2006, 153: 385-390.
    [64] Doughty, D.,Roth, E.,Crafts, C.,Nagasubramanian, G.,Henriksen, G.,Amine, K. Effects of additives on thermal stability of Li ion cells[J]. Journal of Power Sources. 2005, 146: 116-120.
    [65] Markovsky, B.,Nimberger, A.,Talyosef, Y.,Rodkin, A.,Belostotskii, A.,Salitra, G.,Aurbach, D.,Kim, H. On the influence of additives in electrolyte solutions on the electrochemical behavior of carbon/LiCoO2 cells at elevated temperatures[J]. Journal of Power Sources. 2004, 136: 296-302.
    [66] Peled, E.,Golodnitsky, D.,Ardel, G.,Eshkenazy, V. The sei model--application to lithium-polymer electrolyte batteries[J]. Electrochimica Acta. 1995, 40: 2197-2204.
    [67] Giattino, L. R.; Google Patents, 1981.
    [68] Besenhard, J.,Wagner, M.,Winter, M.,Jannakoudakis, A.,Jannakoudakis, P.,Theodoridou, E. Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon--lithium electrodes[J]. Journal of Power Sources. 1993, 44: 413-420.
    [69] Besenhard, J.,Winter, M.,Yang, J.,Biberacher, W. Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes[J]. Journal of Power Sources. 1995, 54: 228-231.
    [70] Ein‐Eli, Y.,Thomas, S.,Koch, V. The Role of SO as an Additive to Organic Li‐Ion Battery Electrolytes[J]. Journal of The Electrochemical Society. 1997, 144: 1159.
    [71] El Ouatani, L.,Dedryv¨¨re, R.,Siret, C.,Biensan, P.,Gonbeau, D. Effect of Vinylene Carbonate Additive in Li-Ion Batteries: Comparison of LiCoO¨M C, LiFePO¨M C, and LiCoO¨M LiTiO Systems[J]. Journal of The Electrochemical Society. 2009, 156: A468.
    [72] Lee, H.-H.,Wang, Y.-Y.,Wan, C.-C.,Yang, M.-H.,Wu, H.-C.,Shieh, D.-T. The function of vinylene carbonate as a thermal additive to electrolyte in lithium batteries[J]. Journal of Applied Electrochemistry. 2005, 35: 615-623.
    [73] Aurbach, D.,Gnanaraj, J.,Geissler, W.,Schmidt, M. Vinylene Carbonate and Li Salicylatoborate as Additives in LiPF (CFCF) Solutions for Rechargeable Li-Ion Batteries[J]. Journal of The Electrochemical Society. 2004, 151: A23.
    [74] Xu, K.,Zhang, S.,Jow, T. R. LiBOB as Additive in LiPF-Based Lithium Ion Electrolytes[J].Electrochemical and Solid-State Letters. 2005, 8: A365.
    [75] Heider, U.,Oesten, R.,Jungnitz, M. Challenge in manufacturing electrolyte solutions for lithium and lithium ion batteries quality control and minimizing contamination level[J]. Journal of Power Sources. 1999, 81: 119-122.
    [76] Fenton, D.,Parker, J.,Wright, P. Complexes of alkali metal ions with poly (ethylene oxide)[J]. Polymer. 1973, 14: 589.
    [77] Aricò, A. S.,Bruce, P.,Scrosati, B.,Tarascon, J. M.,Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature materials. 2005, 4: 366-377.
    [78] Wen, T. C.,Du, Y. L.,Digar, M. Compositional effect on the morphology and ionic conductivity of thermoplastic polyurethane based electrolytes[J]. European Polymer Journal. 2002, 38: 1039-1048.
    [79] Wen, T. C.,Kuo, H. H.,Gopalan, A. Studies on composite electrolytes composed of thermoplastic polyurethane and polyacrylonitrile[J]. Macromolecules. 2001, 34: 2958-2963.
    [80] Suzuki, M.,Yoshida, T.,Koyama, T.,Kobayashi, S.,Kimura, M.,Hanabusa, K.,Shirai, H. Ionic conduction in partially phosphorylated poly (vinyl alcohol) as polymer electrolytes[J]. Polymer. 2000, 41: 4531-4536.
    [81] Tanaka, R.,Sakurai, M.,Sekiguchi, H.,Inoue, M. Improvement of room-temperature conductivity and thermal stability of PEO-LiClO4 systems by addition of a small proportion of polyethylenimine[J]. Electrochimica Acta. 2003, 48: 2311-2316.
    [82]何昌君,陈维孝,董西侠高分子物理[M][J].上海:复旦大学出版社. 1990.
    [83]任齐都,藤祥国,马培华锂离子二次电池聚合物电解质的研究进展[J][J].盐湖研究. 2005, 13 (1): 49-53.
    [84] Passerini, S.,Lisi, M.,Momma, T.,Ito, H.,Shimizu, T.,Osaka, T. Gelified co-continuous polymer blend system as polymer electrolyte for Li batteries[J]. Journal of The Electrochemical Society. 2004, 151: A578.
    [85] Sannier, L.,Bouchet, R.,Santinacci, L.,Grugeon, S.,Tarascon, J. M. Lithium metal batteries operating at room temperature based on different PEO-PVdF separator configurations[J]. Journal of The Electrochemical Society. 2004, 151: A873.
    [86] Reddy, M. J.,Chu, P. P.,Kumar, J. S.,Rao, U. Inhibited crystallization and its effect on conductivity in a nano-sized Fe oxide composite PEO solid electrolyte[J]. Journal of Power Sources. 2006, 161: 535-540.
    [87]齐力,董邵俊含聚氧化乙烯侧链的聚合物凝胶电解质的动力学性能和离子导电性[J].功能高分子材料. 2005 18 ( 2 ): 232-237.
    [88] Yoshimoto, N.,Nomura, H.,Shirai, T.,Ishikawa, M.,Morita, M. Ionic conductance of gel electrolyte using a polyurethane matrix for rechargeable lithium batteries[J]. Electrochimica Acta. 2004, 50: 275-279.
    [89] Feuillade, G.,Perche, P. Ion-conductive macromolecular gels and membranes for solid lithium cells[J]. Journal of Applied Electrochemistry. 1975, 5: 63-69.
    [90] Appetecchi, G.,Scrosati, B. A lithium ion polymer battery[J]. Electrochimica Acta. 1998, 43: 1105-1107.
    [91] Groce, F.,Gerace, F.,Dautzemberg, G.,Passerini, S.,Appetecchi, G.,Scrosati, B. Synthesis and characterization of highly conducting gel electrolytes[J]. Electrochimica Acta. 1994, 39: 2187-2194.
    [92] Kim, D. W.,Kim, Y. R.,Park, J. K.,Moon, S. I. Electrical properties of the plasticized polymer electrolytes based on acrylonitrile-methyl methacrylate copolymers[J]. Solid State Ionics. 1998, 106: 329-337.
    [93] Rajendran, S.,Babu, R.,Sivakumar, P. Optimization of PVC–PAN‐based polymer electrolytes[J].Journal of Applied Polymer Science. 2009, 113: 1651-1656.
    [94] Choi, B.,Kim, Y.,Shin, H. Ionic conduction in PEO-PAN blend polymer electrolytes[J]. Electrochimica Acta. 2000, 45: 1371-1374.
    [95] Iijima, T.,Toyoguchi, Y.,Eda, N., 1985.
    [96] Rajendran, S.,Kannan, R.,Mahendran, O. Ionic conductivity studies in poly (methylmethacrylate)-polyethlene oxide hybrid polymer electrolytes with lithium salts[J]. Journal of Power Sources. 2001, 96: 406-410.
    [97] Rhoo, H. J.,Kim, H. T.,Park, J. K.,Hwang, T. S. Ionic conduction in plasticized PVC/PMMA blend polymer electrolytes[J]. Electrochimica Acta. 1997, 42: 1571-1579.
    [98] Ahmad, S.,Agnihotry, S. Nanocomposite electrolytes with fumed silica in poly (methyl methacrylate): thermal, rheological and conductivity studies[J]. Journal of Power Sources. 2005, 140: 151-156.
    [99] Tsunemi, K.,Ohno, H.,Tsuchida, E. A mechanism of ionic conduction of poly (vinylidene fluoride)-lithium perchlorate hybrid films[J]. Electrochimica Acta. 1983, 28: 833-837.
    [100] Tsuchida, E.,Ohno, H.,Tsunemi, K. Conduction of lithium ions in polyvinylidene fluoride and its derivatives--I[J]. Electrochimica Acta. 1983, 28: 591-595.
    [101] Quartarone, E.,Brusa, M.,Mustarelli, P.,Tomasi, C.,Magistris, A. Preparation and characterization of fluorinated hybrid electrolytes[J]. Electrochimica Acta. 1998, 44: 677-681.
    [102] Krause, L. J.,Lamanna, W.,Summerfield, J.,Engle, M.,Korba, G.,Loch, R.,Atanasoski, R. Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells[J]. Journal of Power Sources. 1997, 68: 320-325.
    [103] Sloop, S. E.,Pugh, J. K.,Wang, S.,Kerr, J.,Kinoshita, K. Chemical Reactivity of PF and LiPF in Ethylene Carbonate/Dimethyl Carbonate Solutions[J]. Electrochemical and Solid-State Letters. 2001, 4: A42.
    [104] Sun, X.,Lee, H.,Yang, X.,McBreen, J. Improved Elevated Temperature Cycling of LiMnO Spinel Through the Use of a Composite LiF-Based Electrolyte[J]. Electrochemical and Solid-State Letters. 2001, 4: A184.
    [105] Larush-Asraf, L.,Biton, M.,Teller, H.,Zinigrad, E.,Aurbach, D. On the electrochemical and thermal behavior of lithium bis (oxalato) borate (LiBOB) solutions[J]. Journal of Power Sources. 2007, 174: 400-407.
    [106] Sun, X.,Lee, H.,Yang, X. Q.,McBreen, J. Using a Boron-Based Anion Receptor Additive to Improve the Thermal Stability of LiPF-Based Electrolyte for Lithium Batteries[J]. Electrochemical and Solid-State Letters. 2002, 5: A248.
    [107] Tasaki, K.,Nakamura, S. Computer Simulation of LiPF Salt Association in Li-Ion Battery Electrolyte in the Presence of an Anion Trapping Agent[J]. Journal of The Electrochemical Society. 2001, 148: A984.
    [108] Lee, Y. M.,Lee, Y. G.,Kang, Y. M.,Cho, K. Y. Nature of tris (pentafluorophenyl) borane as a functional additive and its contribution to high rate performance in lithium-ion secondary battery[J]. Electrochemical and Solid-State Letters. 2010, 13: A55.
    [109] Chang, C. C.,Chen, T. K. Tris (pentafluorophenyl) borane as an electrolyte additive for LiFePO< sub> 4 battery[J]. Journal of Power Sources. 2009, 193: 834-840.
    [110] Shi, Z.,Attia, A.,Ye, W.,Wang, Q.,Li, Y.,Yang, Y. Synthesis, characterization and electrochemical performance of mesoporous FePO4 as cathode material for rechargeable lithium batteries[J]. ElectrochimicaActa. 2008, 53: 2665-2673.
    [111] Okada, S.,Yamamoto, T.,Okazaki, Y.,Yamaki, J.,Tokunaga, M.,Nishida, T. Cathode properties of amorphous and crystalline FePO4[J]. Journal of Power Sources. 2005, 146: 570-574.
    [112] Aurbach, D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries[J]. Journal of Power Sources. 2000, 89: 206-218.
    [113] Aurbach, D. Electrode-solution interactions in Li-ion batteries: a short summary and new insights[J]. Journal of Power Sources. 2003, 119: 497-503.
    [114] Zhong, Y.,Zhao, X.,Cao, G. Characterization of solid-state synthesized pure and doped lithium nickel cobalt oxides[J]. Materials Science and Engineering B. 2005, 121: 248-254.
    [115] Andersson, A.,Edstr?m, K. Chemical composition and morphology of the elevated temperature SEI on graphite[J]. Journal of The Electrochemical Society. 2001, 148: A1100.
    [116] Andersson, A.,Herstedt, M.,Bishop, A.,Edstr?m, K. The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes[J]. Electrochimica Acta. 2002, 47: 1885-1898.
    [117] Bryngelsson, H.,Stjerndahl, M.,Gustafsson, T.,Edstr?m, K. How dynamic is the SEI?[J]. Journal of Power Sources. 2007, 174: 970-975.
    [118] Li, W.,Lucht, B. L. Lithium-ion batteries: Thermal reactions of electrolyte with the surface of metal oxide cathode particles[J]. Journal of The Electrochemical Society. 2006, 153: A1617.
    [119] Armand, M. Polymers with ionic conductivity[J]. Advanced materials. 1990, 2: 278-286.
    [120] MacGlashan, G. S.,Andreev, Y. G.,Bruce, P. G. Structure of the polymer electrolyte poly (ethylene oxide) 6: LiAsF6[J]. Nature. 1999, 398: 792-794.
    [121] Epps III, T. H.,Bailey, T. S.,Pham, H. D.,Bates, F. S. Phase behavior of lithium perchlorate-doped poly (styrene-b-isoprene-b-ethylene oxide) triblock copolymers[J]. Chemistry of Materials. 2002, 14: 1706-1714.
    [122] Tarascon, J. M.,Gozdz, A.,Schmutz, C.,Shokoohi, F.,Warren, P. Performance of Bellcore's plastic rechargeable Li-ion batteries[J]. Solid State Ionics. 1996, 86: 49-54.
    [123] Sirisopanaporn, C.,Fernicola, A.,Scrosati, B. New, ionic liquid-based membranes for lithium battery application[J]. Journal of Power Sources. 2009, 186: 490-495.
    [124] Kim, G. T.,Appetecchi, G. B.,Alessandrini, F.,Passerini, S. Solvent-free, PYR1ATFSI ionic liquid-based ternary polymer electrolyte systems:: I. Electrochemical characterization[J]. Journal of Power Sources. 2007, 171: 861-869.
    [125] Angell, C.,Liu, C.,Sanchez, E. Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity[J]. Nature. 1993, 362: 137-139.
    [126] Angell, C.,Xu, K.,Zhang, S.,Videa, M. Variations on the salt-polymer electrolyte theme for flexible solid electrolytes[J]. Solid State Ionics. 1996, 86: 17-28.
    [127] Croce, F.,Appetecchi, G.,Persi, L.,Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature. 1998, 394: 456-458.
    [128] Croce, F.,Sacchetti, S.,Scrosati, B. Advanced, lithium batteries based on high-performance composite polymer electrolytes[J]. Journal of Power Sources. 2006, 162: 685-689.
    [129] Riley, M.,Fedkiw, P. S.,Khan, S. A. Transport properties of lithium hectorite-based composite electrolytes[J]. Journal of The Electrochemical Society. 2002, 149: A667.
    [130] Wang, M. K.,Zhao, F.,Dong, S. J. A single ionic conductor based on Nafion and its electrochemical properties used as lithium polymer electrolyte[J]. Journal of Physical Chemistry B. 2004, 108: 1365-1370.
    [131] Navarrini, W.,Scrosati, B.,Panero, S.,Ghielmi, A.,Sanguineti, A.,Geniram, G. Lithiated short side chain perfluorinated sulfonic ionomeric membranes: Water content and conductivity[J]. Journal of Power Sources. 2008, 178: 783-788.
    [132] Liang, H. Y.,Qiu, X. P.,Zhang, S. C.,Zhu, W. T.,Chen, L. Q. Study of lithiated Nafion ionomer for lithium batteries[J]. Journal of Applied Electrochemistry. 2004, 34: 1211-1214.
    [133] Buzzoni, R.,Bordiga, S.,Ricchiardi, G.,Spoto, G.,Zecchina, A. Interaction of H2O, CH3OH,(CH3) 2O, CH3CN, and Pyridine with the superacid perfluorosulfonic membrane Nafion: An IR and Raman study[J]. The Journal of Physical Chemistry. 1995, 99: 11937-11951.
    [134] Falk, M. An infrared study of water in perfluorosulfonate (Nafion) membranes[J]. Canadian Journal of Chemistry. 1980, 58: 1495-1501.
    [135] Vijayakumar, G.,Karthick, S.,Sathiya Priya, A.,Ramalingam, S.,Subramania, A. Effect of nanoscale CeO 2 on PVDF-HFP-based nanocomposite porous polymer electrolytes for Li-ion batteries[J]. Journal of Solid State Electrochemistry. 2008, 12: 1135-1141.
    [136] Saikia, D.,Wu, H. Y.,Pan, Y. C.,Lin, C. P.,Huang, K. P.,Chen, K. N.,Fey, G. T. K.,Kao, H. M. Highly conductive and electrochemically stable plasticized blend polymer electrolytes based on PVdF-HFP and triblock copolymer PPG-PEG-PPG diamine for Li-ion batteries[J]. Journal of Power Sources. 2010.
    [137] Kuratomi, J.,Iguchi, T.,Bando, T.,Aihara, Y.,Ono, T.,Kuwana, K. Development of solid polymer lithium secondary batteries[J]. Journal of Power Sources. 2001, 97: 801-803.
    [138] Song, J. Review of gel-type polymer electrolytes for lithium-ion batteries[J]. Journal of Power Sources. 1999, 77: 183-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700