中国近海高浊度水体中光传输特征的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄海是西太平洋上一个半封闭的陆架浅海,陆源影响严重;在黄海环流系统的作用下,悬浮物质分布具有显著的区域性与季节性特征,绝大部分海域属典型的二类水体。本文首先利用SOLAS第一航次在整个黄海的现场观测资料,分析了研究海区光合有效辐射PAR的衰减特征及PAR在水体中衰减的影响因素;然后在观测资料的基础上,结合黄海海区生物光学模型的历史数据,利用水体中的光传输模式AOMC,进一步模拟了黄海不同海区光在水体中的衰减特征,探讨了影响光传输的主要衰减因子及其与光学特性量的关系,具体结论如下:
     (1)黄海海区生物光学特征:①黄海海域的浊度与叶绿素a浓度分布具有明显的区域性差异,浊度在黄海北部成山头附近的近岸水域为高值区,黄海中部与南部离岸水域为低值区;叶绿素a浓度[Chl-a]在整个海域较低,基本上随深度分布均匀,黄海南部水体中的[Chl-a]要高于北黄海,近岸水体高于离岸水体。②浊度反映水体中总悬浮颗粒物的含量,与叶绿素a浓度的相关不明显,表明非藻类的悬浮粒子是引起浊度增大的主要贡献来源。③在真光层深度以上,光合有效辐射PAR随深度以及积分浊度IT的衰减呈指数函数关系,在大多数站位的相关性显著(R2≥0.98);线性回归与指数回归法分别计算的KT(PAR)和KO(PAR)两者一致性较好,除了在离岸深水区的Gp站,相对差△=12.3%,其他站位的△均低于10%,表明PAR随深度衰减的指数率模式更适用于近岸浅水区。④PAR衰减系数K_d(PAR)存在分层结构,分别为近表面2m处的极大值层与20-30m处的渐进层。⑤不同站位影响光衰减的主要因子不同,具有一定的区域性特征。K_d(PAR)在大多数站位与[Chl-a]无明显相关性,随浊度的增加而增大,呈一定的正相关性,说明这些水体中的浮游植物不是影响光传输的主要衰减因子,主要光衰减因子为非藻类的悬浮粒子;而在某些近岸站,K_d(PAR)与浊度、叶绿素a浓度的相关均不明显,影响光传输的因子复杂。
     (2)利用水体光传输模式AOMC,在进行准确性必要验证的基础上,对黄海海区的光学衰减特征进行了模拟,研究结果表明:①在多数站位,AOMC模式模拟计算的平均PAR衰减系数K_(dM)(PAR)与实测数据计算的平均PAR衰减系数K_(dO)(PAR)具有很高的一致性,相对差控制在20%。②K_(dM)(PAR)随深度的变化规律与观测结果K_(dO)(PAR)相似,出现分层结构;近表层(1-4m),模拟值与观测值差别较大,在4m深度以下到真光层深度处,多数站位的K_(dM)(PAR)值与K_(dO)(PAR)值接近,差别很小,这是因为在表层4m以上PAR的观测值受船体阴影以及表面波浪的影响较大,从而在计算K_(dO)(PAR)时产生了一定了误差,造成模拟值与观测值差别较大,在4m以下,PAR衰减系数K_d(PAR)受环境光场的影响较小,受水体中成分的影响较大,因而模拟值与观测值接近。③指数率模型反演PAR值与实测PAR值在各深度上比较一致,相对差最大不超过45%,表明指数律模型中使用的K_(dM)(PAR)准确性较高。④光从大气中传输进入悬浮粒子含量高的黄海水体中时,下行辐照度的光谱性质发生改变,随水深增加,辐照度光谱峰值从大气中的蓝光区右移到了水体中的绿光区。⑤模式的敏感性分析表明,非藻类的悬浮粒子是影响黄海海区光传输的主要因素,非藻类粒子对海水中光的衰减作用相当于其他物质作用的总和,在PAR衰减系数中占53.3%,其次是浮游植物。⑥非藻类的悬浮粒子对光谱的影响主要集中在波长小于600nm的短波区间,与其他光传输影响因子相比,非藻类粒子的物质种类与浓度变化更容易影响光的传输特征,从而导致水体中的光量与光场性质的改变,对海洋生态系统产生深远影响。⑦黄海的光学衰减特征具有显著的区域性差异,在同一深度处,北黄海的光谱辐照度值低于南黄海,近岸水域低于离岸水域,PAR衰减系数的平均值K_d(PAR),在北黄海最大(0.298m-1),依次是近岸水域(0.276 m~(-1))、离岸水域(0.201 m~(-1)),南黄海最小(0.175 m~(-1)),在一定程度上反映了影响光传输主要因子的分布特征。⑧目前生态模式中使用的光学模型将K_d(PAR)简单表示为纯水与浮游植物的衰减系数和,该光学模型在非藻类粒子是光衰减主要因子的黄海中不适用,本文利用AOMC模式并结合实测资料,建立了浊度与K_d(PAR)的简单参数化表达式,为光学模型在海洋生态模式中的应用提供了参考。
The Yellow Sea is a semi-enclosed shallow sea on the continental shelf of the West Pacific. Large quantities of terrigenous substances are deposited into the sea by several rivers, such as Huai, Han, and Yalv rivers etc., and accordingly it has come to be seen as a sea area containing the most suspended materials in the world. Under the dynamic process of circulation system, the distribution of the suspended particulate matters has distinct regional and seasonal characteristic. As a result, optical properties of the Yellow Sea are relatively complex and the majority of it belongs to typically Case II waters.
     The optical properties, including planar PAR (Photosynthetically Available Radiation,400-700nm), scalar PAR, turbidity and concentrations of chlorophyll a ([Chl-a]), were measured across the Yellow Sea during a cruise of the China SOLAS from 19 to 27 March 2005. Based on these data, this paper first analyses the vertical attenuation characteristic of PAR and the factors that affect light attenuation in the water. Then an aquatic optical radiative transfer model (AOMC) is used to simulate the light attenuation characteristic in different sea areas of the Yellow Sea. Relationship between the main light attenuation factors and the apparent optical properties is studied. Main conclusions are as follows:
     (1) Bio-optical properties of the Yellow Sea:①The distribution of turbidity and the concentration of Chlorophyll a [Chl-a] has distinct regional difference in the sea area. For turbidity, the high value area appeared at inshore stations near Cheng Shantou which located in the northern Yellow Sea and the low value area are those offshore stations located in the middle and southern Yellow Sea. [Chl-a] is lower over the study sea areas and distributes uniformly along the water column. [Chl-a] is higher in the south Yellow Sea than in the north Yellow Sea and so is it in the near shore water than the offshore water.②Turbidity reflects the content of total suspended substances and it has no obvious relationship with [Chl-a] which indicate that non-algal suspended particles contribute most to the turbidity.③Above the euphotic depth, PAR decreases exponentially with both depth and integrated turbidity with high correlation coefficients (R2≥0.98) at most stations. The diffuse attenuation coefficient of PAR, K_d (PAR) is calculated by two kinds of regressive methods, denoted as KT(PAR) and KO(PAR). There is good agreement between KT(PAR) and KO(PAR) at all stations with the relative error△lower than 10% except offshore station Gp station which has a relative high△=12.3%. The result shows that the exponential law is more applicable to inshore shallow sea waters.④Two K_d (PAR) layers are found at the offshore stations, one layer has a maximum value appeared in the surface layer and the second layer, ranging from 20 to 33m, K_d (PAR) approaches an asymptotic.⑤The main factors causing light attenuation are different between stations which show some regional characteristic. At most stations K_d (PAR) has no coherent relationship with [Chl-a] but increase with turbidity which implied that not the phytoplankton but the non-algal particles are the primary light attenuation factors. But at some nearshore stations there is no obvious relationship between K_d (PAR) and turbidity and [Chl-a], and accordingly the controlling factors are complex in inshore waters.
     (2) It is difficult to study the light attenuation characteristic over the whole sea area with full observed optics data during different season. But the problem can be largely solved by numerical models without limit of time and place. AOMC model developed on the basis of Monte Carlo method. After the necessary validation of exact degree, it is used to study the light attenuation characteristic of the Yellow Sea. The results are showed below:
     ①at most stations, the depth averaged PAR attenuation coefficient computed by AOMC K_(dM)(PAR) has a high agreement with that calculated by the observed data. The relative errors between K_(dM)(PAR) and K_(dO)(PAR) are within the range of 20%.②The vertical distribution of K_(dM)(PAR) with depth has come to be the layer structure which is similar to the shape of K_(dO)(PAR). In the near surface layer (1-4m), the modeled values have large differences with the measured value. From 4m down to the euphotic depth the differences between modeled value and measured value are relative small. PAR is influenced by ship shadow and surface waves when measured above 4m which causes the calculation error of K_(dO)(PAR) and results in the large difference. The environmental factors have little influence on K_d (PAR) below 4m, so the modeled value approaches to the measured value.③The inversion value of PAR derived by an exponential model has small difference with the measured PAR and the lager relative error is less than 45% which indicates that the K_(dM)(PAR) used in the exponential model has a high degree of exact.④When light propagates from the atmosphere to the ocean which contained a high quantity of suspended particles, the spectrum property of the downwelling irradiance is changed. The spectrum peak value shifts rightward from the blue region to the red region.⑤Sensitive study shows that the non-algal particles are the main factor influencing light propagation in the Yellow Sea and phytoplankton is the secondary factor. Light attenuation by the particles accounts for about 53.3% of average K_d(PAR) and phytoplankton accounts for 27.4%.⑥The non-algal particles have great effect on the spectrum less than 600nm. Compared with other factors, changes in the composition and concentrations of the non-algal particles can more easily alter the light attenuation characteristics, and accordingly have a profound effect on the marine ecosystem.⑦Light attenuation characteristic of the Yellow Sea has distinct regional differences. At the same depth the irradiance was lower in the north Yellow Sea than in the south Yellow Sea, lower in the inshore water than in the offshore water.⑧At present, the optical model used in the marine ecosystem model expresses K_d(PAR) as the sum of light attenuation by water Kw(PAR) and phytoplankton Kph(PAR) which is no longer applicable to the Yellow Sea. On the basis of the AOMC model simulation results and the observed data in the Yellow sea, an simple relationship between turbidity and K_d(PAR) has been derived which can serve as a referenced parameterized optical model for the marine ecosystem model.
引文
[1] Bostater, C. R., Wei-ming Ma, Ted McNally, Manuel Gimond, and A. P. Lamb. Application of an optical remote sensing model. Global Process Monitoring and Remote Sensing of the Ocean and Sea Ice, Paris: Donald W. Deering, 1995. 32-43.
    [2] Morris, L.J. and D.A. Tomasko. Proceedings and conclusions of workshops on: submerged aquatic vegetation and photosynthetically active radiation. 1993. Special Publication SJ93-SP13. Palatka, FL: St. Johns River Water Management District: 244pp.
    [3] 李四海. 海洋水色遥感原理与应用-国际海洋水色协调工作组(IOCCG)报告. 第一版.北京:海洋出版社,2002.
    [4] Arnone, R.A. Coastal Secchi Depth Atlas, Naval Ocean Research and Development Activity, NSTL, 1985, Mississippi 39529, NORDA Rep. No.83.
    [5] Jerlov, N.G. Optical studies of ocean water. Rep. Swedish Deep-Sea Exped, 1951, 3: 1-59.
    [6] Gordon, H. R., Morel, A. Y. Remote Assessment of Ocean Color for interpretation of satellite visible imagery. A review, New York: Springer-Verlag. 1983,1-181.
    [7] Carder, K.L., S.K. Hawes, K.A. Baker, R.C. Smith, R.G. Steward, et al. Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products. J. Geophys. Res., 1991.96(C11): 20,599-20,611.
    [8] Schuster, A. Radiation through a foggy atmosphere. Astrophys J,1905,21(1):1-22.
    [9] Gjerstad, K.I, J.J .Stamnes, B. Hamre, J.K. Lotsberg, B. Yan, and K. Stamnes. Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system. Appl. Opt., 2003, 42:2609–2622.
    [10] Mobley, C. D., B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn. Comparison of numerical models for computing underwater light fields. Appl. Opt., 1993, 32: 7484-7504.
    [11] Simpson, J.J. and T.D. Dickey, The relationship between downward irradianceand upper ocean structure. J. Phys. Oceanogr, 1981, 11: 309-323.
    [12] Preisendorfer, R.W. Hydrologic Optics, Hawaii: Spring field, 1976, 727pp.
    [13] Gordon, H. R., Radiative transfer in the ocean: a method for determining absorption and scattering properties, Appl. Opt., 1976,15: 2611-2613.
    [14] Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems. 2nd. British: Cambridge University Press,1994, 47-144.
    [15] Mobley, C. D. Light and Water, San Diego: Academic Press, 1994.
    [16] Bricaud, A., M. Babin, A. Morel, and H. Claustre. Varibility in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterisation, J. Geophys.Res., 1995, 100:13321-13332.
    [17] Bricaud, A., A. Morel, M. Babin, K. Allali, and H. Claustre. Variations of light absorption by suspended particles with chlorophyll-a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models, J. Geophys. Res., 1998, 103: 31033-31044.
    [18] Bricaud, A., A. Morel, and L. Prieur, Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains, Limnol. Oceanogr., 1981, 26: 43-53.
    [19] Loisel, H., and A. Morel, Light scattering and chlorophyll concentration in Case I waters: A reexamination, Limnol. Oceanogr., 1998, 43: 847-858.
    [20] Mueller, J L, Lange R. E. Bio-optical provinces of the northeast Pacific Ocean: a provisional analysis [J]. Limnol. Oceanogr., 1989, 34: 1572-1586.
    [21] Babin, M. Coastal surveillance through observation of ocean colour (COASTLOOC), Final Report, France, Laboratoire de Physique et Chimie Marines, Villefranche-sur-mer, 2000, Project ENV4-CT96-0310: pp233.
    [22] Reynolds, C.S. The Ecology of Freshwater Phytoplankton. New York: Cambridge University Press,1984: 355.
    [23] Philips, E.J., Lynch, T.C., Badylak, S. Chlorophyll a, tripton, color, and light availability in a shallow tropical inner-shelf lagoon, Florida Bay, USA: Marine Ecology Progress Series,1995, 127:223—234.
    [24] McMahon,T.G.,Raine et al. Phytoplankton biomass, light attenuation and mixingin the Shannon estuary, Ireland. Journal of the Marine Biological Association of the UK, 1992, 72:709-720.
    [25] Bowers,D.G.,Harker,et al. Optical properties of a region of freshwater influence (The Clyde Sea). Estuarine,Coastal and Shelf Science,2000, 50:717—726.
    [26] Bowers, D G, Mitchelson-Jacob E. G. Inherent optical properties of the Irish Sea determined from underwater irradiance measurements [J].Estuar Coast and Shelf Sci, 1996, 43:433-447.
    [27] H?jerslev, N. K., N. Holt, and T.Aarup, Optical measurements in the North Sea-Baltic Sea transition zone. I. On the origin of the deep water in the Kattegat. Cont. Shelf Res., 1996, 16: 1329-1342.
    [28] H?jerslev, N .K. and Aarup, T. Optical Measurements on the Louisiana Shelf off the Mississippi River. Estuar. Coast. Shelf Sci., 2002, 55: 599–611.
    [29] Sosik, H. M. and Mitchell B. G. Light absorption by phytoplankton, photosynthetic pigments and detritus in the California Current System. Deep-sea Res., 1995, 42: 1717-1748.
    [30] Dierssen, H. M. Bio-optical properties and remote-sensing ocean-color algorithms for Antarctic Peninsula waters, J. Geophys. Res., 2000, 105: 26301 -26312.
    [31] Mitchell, B. G, and O. Holm-Hansen, Bio-optical properties of Antarctic Peninsula waters: differentiation from temperate ocean models, Deep-Sea Res., 1991, 38: 1009-1028.
    [32] Reynolds, R.A., Stramski D., Mitchell B.G. A chlorophyll-dependent. Semianalytical reflectance model derived from field measurements of absorption and backscattering coefficients within the Southern Ocean, Journal of Geophysical Research, 2001, 106(C4): 7125-7138.
    [33] Mitchell B. G., D. A., Kiefer. Variability in pigments specific particulate fluorescence and absorption spectra in northeastern Pacific Ocean [J]. Deep-sea Res., 1988, 35: 665-689.
    [34] Hoepffner, N, S.Sathyendranath. Bio-optical characteristics of coastal waters:Absorption spectra of phytoplankton and pigment distributions in the western North Atlantic [J]. Limnol. Oceanogr., 1992, 37: 1660-1679.
    [35] 曹文熙, 杨跃忠, 钟其英等. 热带西太平洋海区生物-光学变异性. 热带海洋, 1998, 17(1):1-8.
    [36] Kahru, M, Mitchell B G. Spectral Reflectance and Absorption of a Massive Red Tide off Southern California [J]. Journal of Geophysical Research, 1998, 103:21601-21609.
    [37] Stramski, D., E. Boss, D. Bogucki, and K. J. Voss. The role of seawater constituents in light backscattering in the ocean. Progress in Oceanography, 2004, 61: 27-56.
    [38] Wozniak, S. B., D. Stramski. Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms. Applied Opt. 2004 Jun 10, 2004, 43(17):3489-3503.
    [39] 杨平, 蔡启铭. 太湖水体光学特性的理论研究[J]. 中国科学院南京地理与湖泊研究所集刊, 1990, 7:1-9.
    [40] 杨顶田, 陈伟民, 张运林. 太湖梅梁湾水体中悬浮质及光谱的分布特征[J]. 生态科学,2002(4):1-5.
    [41] 张运林, 秦伯强, 陈伟民等.太湖水体光学衰减系数的分布及变化特征.水科学进展,2003,14(4):447-453.
    [42] 张运林, 秦伯强, 陈伟民.湖泊光学研究动态及其应用[J].水科学进展,2003,14(5):653-659.
    [43] 张运林, 秦伯强, 陈伟民等. 太湖水体光学衰减系数的特征及参数化[J]. 海洋与湖沼,2004,35(3): 209-213.
    [44] 张运林, 朱广伟, 吴生才等. 巢湖秋冬季水体生物光学特性对比研究. 农业环境科学学报,2004,23(5):949-953
    [45] 张运林, 秦伯强, 马荣华, 朱广伟, 陈伟民. 太湖典型草、藻型湖区紫外辐射的衰减及影响因素分析[J].生态学报,2005,25(9):2354-2361.
    [46] 汪小勇, 李铜基, 朱建华. 青海湖水表光学特性分析. 海洋技术, 2005, 24(2):50-54.
    [47] 周虹丽, 朱建华, 李铜基等. 青海湖水色要素吸收光谱特性分析-黄色物质、非色素颗粒和浮游植物色素, 海洋技术, 2005, 24(2):55-58.
    [48] 曹文熙, 杨耀忠, 许晓强等. 珠江口悬浮颗粒物的吸收光谱及其区域模式. 科学通报, 2003, 48(17):1876-1882.
    [49] 吴景瑜, 商少凌, 洪华生等. 珠江口海域基于吸收测量的 MODIS 半分析算法修正. 海洋科学进展, 2004, 22(增刊):90-94.
    [50] 许晓强, 曹文熙, 杨跃忠. 珠江口颗粒物吸收系数与盐度及叶绿素 a 浓度的关系. 热带海洋学报, 2004, 23:63-71.
    [51] 席红艳.珠江口及附近海域水色要素吸收光谱分析, 第五届二类水体研讨会报告集. 2006.
    [52] 王桂芬, 曹文熙, 许大志. 南海北部水体浮游植物比吸收系数的变化, 热带海洋学报, 2005, 24(5):1-10.
    [53] 王桂芬. 南海北部海区悬浮颗粒物吸收系数的变化, 第五届二类水体研讨会报告集.
    [54] 李铜基, 陈清莲, 杨安安等. 黄东海春季水体后向散射系数的经验模式研究. 海洋技术, 2004, 23(3):10-14.
    [55] 汪小勇 李铜基 杨安安等. 黄东海海区表现光学特性和固有光学特性春季模式研究. 海洋技术, 2004,23(4):123-126.
    [56] 朱建华, 李铜基. 黄东海非色素颗粒与黄色物质的吸收系数光谱模型研究[J].海洋技术, 2004, 23(2):7-13.
    [57] 朱建华, 李铜基. 黄东海海区浮游植物色素吸收系数与叶绿素 a 浓度关系研究. 海洋技术, 2004b,23(4):117-122.
    [58] Chandrasekhar,S. Radiative Transfer. Dover,1960, 393pp
    [59] Plass G. N., Kattawar G. W. and Catchings F. E. “Matrix-operator theory of radiative transfer. 1: Rayleigh scattering”, Applied Optics, 1973, 12: pp. 314-329.
    [60] Jin Y Q. Electromagnetic Scattering Modelling for Quantitative Remote Sensing (Singapore World Scientific), 1994.
    [61] Stamnes, K. and P. Conklin, A new multi-layer discrete ordinate approach to radiative transfer in vertically inhomogeneous atmospheres J. Quant. Spectrosc. Radiat. Transfer,1984, 31:273-282
    [62] Liou, K.N. A numerical experiment on Chandrasekhar’s discrete ordinate methodfor radiative transfer: Applications to cloudy and hazy atmospheres. J. Atmos. Sci., 1973, 30:1303–1326.
    [63] Liou, KN, Analytic two-stream and four-stream solutions for radiative transfer. J. Atmos. Sci.,1974, 31:1473-1475.
    [64] Piotrowski,S. Asymptotic case of the diffusion of light through an optically thick scattering layer. Acta Astron, 1956,6:61-73.
    [65] Yamamoto, G., Tanaka, M. and Asano, S. Radiative Heat Transfer in Water Clouds in the Infrared Radiative, J. Quant. Spectrosc. Radiat. Trans.,1971, 11: 697-708.
    [66] Liou, K.N. An introduction to atmospheric radiation. International geophysics series, vol.26. San Diego: Academic Press,1980, 192–200.
    [67] Liou, K.N. Radiation and cloud processes in the atmosphere. New York: Oxford, 1992, 108–113.
    [68] Lenoble, J. Radiative transfer in absorbing and scattering atmospheres: standard computational procedures. Hampton, VA: Deepak Publishing,1985, 36 –39.
    [69] Nakajima, T., Tanaka M. Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. J. Quant. Spectrosc. Radiat. Trans., 1988, 40:51-69.
    [70] Stamnes, K, Swanson R. A new look at the discrete ordinate method for radiative transfer calculations in anisotropically scattering atmospheres.J. Atmos. Sci., 1981, 38: 387-99.
    [71] Stamnes, K, Dale, H. A. new look at the discrete ordinate method for radiative transfer calculations in anisotropically scattering atmospheres. II: intensity computations. J. Atmos. Sci., 1981, 38:2696–706.
    [72] Stamnes, K. On the computation of angular distributions of radiation in planetary atmospheres. J. Quant. Spectrosc. Radiat. Trans., 1982, 28:47–51.
    [73] Stamnes, K, Conklin P.A new multi-layer discrete ordinate approach to radiative transfer in vertically inhomogeneous atmospheres. J. Quant. Spectrosc. Radiat. Trans., 1984, 31:273–82.
    [74] Stamnes, K, Tsay S. C, Wiscombe W, Jayaweera K. A numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 1988, 27:2502–2509.
    [75] Schulz, FM, Stamnes K. Angular distribution of the Stokes vector in a plane-parallel vertically inhomogeneous medium in the vector discrete ordinate radiative transfer (VDISORT) model. J. Quant. Spectrosc. Radiat. Trans., 2000, 65:609–620.
    [76] Thomas ,GE, Stamnes K. Radiative transfer in the atmosphere and ocean. Cambridge: Cambridge University Press,1999, 281pp.
    [77] Collins D. G., W. G. Blattner, M. B. Wells, and H. G. Horak,Backward Monte Carlo calculations of the polarization characteristics of the radiation field emerging from spherical shell atmospheres,Appl. Opt., 1972, 11: 2684–2705.
    [78] Karp et al. The spherical harmonics discrete ordinatemethod for threedimensional atmospheric radiative transfer. J. Atmos. Sci. 1998, 55: 429–446.
    [79] Richard, B, K. Robert, K. Bella. Polynomial approximation a new computational technique in dynamic programming. Mathematics of Computation, 1963, 17(8):155–161.
    [80] Irvine, W M. Multiple scattering in planetary atmospheres. Icarus, 1975, 25:175-204.
    [81] Kneizys, F.X., E.P. Shettle, W.O. Gallery, J.H. Chetwynd, L.W., Abreu, J.E.A. Selby, S.A. Clough and R.W. Fenn, Atmospheric transmittance/radiance: computer code LOWTRAN 6. Air Force Geophysics Laboratroy , Report AFGL-TR-83-0187, Hanscom AFB, MA. 1983.
    [82] David, C, Robertson, Alexander Berk, Lawrence S. Bernstein,MODTRAN: A Moderate Resolution Model for LOWTRAN 7,OCEANOGRAPHY AND ATMOSPHERIC SCI.: Atmospheric Physics,1989.
    [83] Kneizys, F. X, G. P. Anderson, E. P. Shettle, L. W. Abreu. Users Guide to LOWTRAN 7,Environmental Research Papers, No. 1010, dated 16 August 1988, 146 pages.
    [84] 吴北婴,吕达仁. 用离散坐标法检验 LOWTRAN 的辐射传输计算. 大气科学,1994,18(2):252-255.
    [85] Berk, A, Bernstein L. W and Robertson D C. MODTRAN:A moderate resolution model for LOWTRAN 7. Air Force Geophysical Laboratory, 1983, Rep. AFGL-TR-83-0187:261
    [86] Acharya, P.K. MODTRAN4: Multiple Scattering and Bi-Directional Reflectance Distribution Function (BRDF) Upgrades to MODTRAN SPIE Proceeding, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III,1999, Volume 3756.
    [87] Anderson, G. P., J. H. Chetwynd, J. M. Theriault, P. K. Acharya, A. Berk, D. C. Robertson, F. X. Kneizys, M. L. Hoke, L. W. Abreu and E. P. Shettle, MODTRAN2: Suitability for Remote Sensing Proceedings of the SPIE,Remote Sensing,1993.
    [88] Anderson, G. P., F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, R. E. Huffman, and L. A. Hall, “UV Spectral Simulations Using LOWTRAN7,” Atmospheric Propagation in the UV, Visible, IR and MM-Wave Region and Related Systems Aspects, AGARD-CP-454, 1990.
    [89] Berk A. “Upgrades to the MODTRAN Layer Cloud/Rain Models,” Rpt. No. SSI-SR-56, Spectral Sciences, Inc.,99 S. Bedford St., Burlington, MA 01803,1995, 1-18pp.
    [90] Berk A. “MODTRAN Band Model Transmittance,” Rpt. No. SSI-SR-69, Spectral Sciences, Inc., 99 S. Bedford St., Burlington, MA, 1996, 01803: p1-11
    [91] Berk A., L. S. Bernstein, D. C. Robertson, “MODTRAN: A Moderate Resolution Model for LOWTRAN7,” Rpt. No. GL-TR-89-0122, Air Force Geophys. Lab., Bedford, 1989, MA 01731,1-38pp.
    [92] Bernstein, L. S., Treatment of the Layer Temperature-Gradient Problem in Band-Model Emission Codes,Appl. Opt., 1995, 34:507-513.
    [93] Bernstein L. S., A. Berk, P. K. Acharya, D. C. Robertson, G. P. Anderson, J. H. Chetwynd, and L. M. Kimball, Very Narrow Band Model Calculations of Atmospheric Fluxes and Cooling Rates Using the MODTRAN Code, J. Atmos. Sci., 1996, 53: 2887-2904.
    [94] Acharya P.K. MODTRAN4: Multiple Scattering and Bi-Directional Reflectance Distribution Function (BRDF) Upgrades to MODTRAN SPIE Proceeding, OpticalSpectroscopic Techniques and Instrumentation for Atmospheric and Space Research III,1999, Volume 3756.
    [95] Ricchiazzi, Paul, S. Yang, Catherine Gautier, and David Sowle, SBDART: A research and teaching software tool for Plane-parallell radiative transfer in the earth's atmosphere. Bulletin of the American Meteorological Society, 1998, 79(10): 2101-2114.
    [96] O'Hirok, W., C. Gautier. A Three-Dimensional Radiaitve Transfer Model to Investigate the Solar Radiation within a Cloudy Atmosphere, Part I: Spatial Effects. Journal of the Atmospheric Sciences, 1998, 55: 2162-2179.
    [97] O'Hirok, W., R. Ellingson, F. Valero, P. Pilewskie, J. Michalsky, S. Asano, G. Stephens and T. Tooman,Comparisons between 3-D model computations and spectral and broadband observations of column solar radiation absorption during ARESE II, Proceedings of the Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting, 19 - 23 March, Atlanta, Georgia.
    [98] Kisselev , V.B., L. Roberti, G. Perona, An Application of the Finite Element Method to the Solution of the Radiative Transfer Equation, J. Quant. Spectrosc. Radiat. Trans., 1994, 51: 603.
    [99] Kisselev ,V.B., L.Roberti, G. Perona, A Finite Element Algorithm for Radiative Transfer in Vertically Inhomogeneous Media: Numerical Scheme and Applications, Applied Optics, 1995,34(36):8460-8471
    [100] Mobley, C. D. Light and water: radiative transfer in natural waters. San Diego:Academic Press,1994.
    [101] Devred Emmanuel, Dubuisson Phillipe And Chami Malik. Radiative transfer code: Application to the calculation of PAR. Proc. Indian Acad. Sci. (Earth Planet. Sci.),2000, 109(4):407-413.
    [102] Liu, C.-C., Carder, K.L., Miller, R.L. and Ivey, J.E. Fast and accurate model of underwater scalar irradiance, Applied Optics, 2002, 41(24): 4962-4974.
    [103] Manuel Gimond. Description and verification of an aquatic optics Monte Carlo model. Environmental Modelling and Software, 2004, 19(12):1065-1076.
    [104] Jin, Z., T. Charlock and K. Rutledge, Analysis of broadband solar radiationand albedo over the ocean surface at COVE. J. Atmos. Oceanic Technol.,2002,19: 1585-1601.
    [105] Jin Z, Stamnes K. Radiative transfer in nonuniformly refracting layered media: atmosphere–ocean system.Appl. Opt., 1994, 33:431–42.
    [106] Yan,B.and K.Stamnes. Fast yet accurate computation of the complete radiance distribution in the coupled atmosphere-ocean system , Spectrosc. Radiat. Transfer,2003, 76:207-223.
    [107] Morel, A. Light and marine photosynthesis: A spectral model with geochemical and climatological implications, Progress in Oceanography,1991, 26:263-306.
    [108] Fischer, J., H. Grassl. Radiative transfer in an atmosphere-ocean system: an azimuthally dependent matrix-operator approach, Appl. Opt., 1984, 23:1032-1039.
    [109] Fell, F., J. Fischer. Numerical simulation of the light field in the atmosphere-ocean system using the Matrix-Operator method, J. Quant. Spectrosc. Radiat. Transfer,2001, 69: 351-388.
    [110] Armbruster,W. and J. Fischer. Improved method of exponential sum fitting of transmission to describe the absorption of atmospheric gaes. Applied Optics, 1996, 35(12): 1931-1941.
    [111] Heinemann, Th., B. Gentili. Comparison between Radiances calculated by the Villefranche Monte-Carlo Model and the Berlin Matrix-Operator-Model (MOMO), WP5000 Radiative Transfer Simulations Preliminary Report. 1995.
    [112] Gjerstad ,K. I, J. J. Stamnes, B. Hamre, J.K. Lotsberg, B. Yan, K. Stamnes. Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system. Appl. Opt., 2003, 42:2609–2622.
    [113] Gordon, H. Ship perturbation of irradiance measurements at sea. I: Monte Carlo simulations. Appl. Opt., 1985, 24: 4172-4182.
    [114] George W., Kattawar, Charles N. Adams. Stokes Vector Calculations of the Submarine Light Field in an Atmosphere-Ocean with Scattering According to a Rayleigh Phase Matrix: Effect of Interface Refractive Index on Radiance and Polarization. Limnology and Oceanography, 1989, 34(8):1453-1472.
    [115] Morel A, Gentili B. Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by molecular scattering contribution. Appl. Opt., 1991, 30(4): 427-4438.
    [116] 唐军武, 陈清莲, 田国良. 离水辐射非朗伯特性的Monte Carlo模拟及分析. 海洋学报,2000, 22(2):48-57.
    [117] 曹文熙,杨跃忠. 海洋光合有效辐射分布的计算模式. 热带海洋学报, 2002, 21(3):47-54.
    [118] 张鉴, 何晓雄, 赵凤生. 利用大气-海洋系统辐射传输模拟水色遥感信息量的变化特性. 量子电子学报, 2003, 20(5): 623-628.
    [119] 何贤强, 潘德炉, 白雁. 基于矩阵算法的海洋-大气耦合矢量辐射传输数值计算模型. 中国科学 D 辑, 2006, 36(9): 860-870.
    [120] Pelevin V.N., Rutkovskaya V.A.,, On the optical classification of the ocean waters by the spectral solar light attenuation,Oceanology,1977, 17 (1): 15–21.
    [121] Smith, R. C. and K. S. Baker. Optical classification of natural waters Limnology and Oceanography. 1978, 23(2): 260-267.
    [122] Kirk, J. T. O. Light and photosynthesis in aquatic ecosystems. Britain: Cambridge University Press, 1983, 401pp.
    [123] Prieur, L., S. Sathyendranath. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter and other particulate materials. Limnol. Oceanogr., 1981,26(4): 671-689.
    [124] Morel, M., Prieur. L. Analysis of Variations in Ocean Color. Limnology and Oceanography,1977, 22(4): 709.
    [125] Gordon, H. R., O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith , K. S. Baker , and D. K. Clark. A semianalytic radiance model of ocean color. J. Geophys. Res.,1988,93:10909-10924.
    [126] Kennish, M. J. Practical handbook of marine science [M]. Boca Raton, Florida: CRC Press, 2001.
    [127] Spinrad, R. W., H. Glover, B. B. Ward, L. A. Codispoti, G. Kullenberg. Suspended particle and bacterial maxima in Peruvian coastal waters during a coldwater anomaly. Deep-Sea. Res., 1989, 36(5):715-733.
    [128] Morel, A., Y.H. Ahn. Optical efficiency factors of free-living marine bacteria: Influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters, Journal of Marine Research, 1990, 48:145.
    [129] Stramski, D., D. A. Kiefer. Light scattering by microorganisms in the open ocean, Prog. Oceanogr., 1991, 28:343-383.
    [130] Bukata, R. P., J. H. Jerome. Optical Properties and Remote Sensing of Inland and Coastal Water. Boca Raton, Florida: CRC Press, 1995, 362 pp.
    [131] Kishino M., N. Okami, S. Ichimura. Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bulletin of Marine Science, 1985, 37: 634-642.
    [132] Roesler, C. S., M. J. Perry, and K. L. Carder. Modelling in situ phytoplankton absorption from total absorption spectra. Limnol. Oceanogr., 1989,34:1510-1523.
    [133] Sawyer, W. R. The spectral absorption of light by pure water and Bay of Fundy water, Contrib. Can. Biol. Fisheries, 1931, 20(7): 75-89.
    [134] Hodgman, Charles D. Transmission of ultraviolet radiation by water. Journal of the Optical Society of America, 1933, 23(12): 426pp.
    [135] Grundinkina, N. P. Absorption of ultraviolet radiation by water, Opt. Spektrosk., 1956, 12(1):658-662.
    [136] Sullivan, S. A. Experimental study of the absorption in distilled water, artificial sea water and heavy water in the visible region of the spectrum. Opt. Soc. Amer. J., 1963, 53:962-968.
    [137] Hale, G.M, Querry M.R. Optical constants of water in 200 nm to 200m wavelength region [J], 1973, 12: 555-568.
    [138] Quickenden, T. I., J. A. Irvin. The ultraviolet absorption spectrum of liquid water [J]. J. Chem. Phys., 1980, 72(8):4416-4428
    [139] Smith, R. C., K. S. Baker. Optical properties of the clearest natural waters (200-800nm). Appl. Opt. 1981, 20(1):177-184.
    [140] Sogandares, F. M., E. S. Fry. Absorption spectrum. (340-640nm) of pure water. I. I. Photothermal. Measurements, Appl. Opt., 1997, 36(33): 8699-8709.
    [141] Pope, R, Fry E. Absorption spectrum (380-700nm) of pure water: II. Integrating cavity measurements, 1997, 36(33): 8710-8722.
    [142] Pegau, W. S., J. R. V. Zaneveld. Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum. Limnol. Oceanogr, 1993, 38:188-192.
    [143] H?jerslev, N. K., I. Trabjerg. A new perspective for remote sensing of plankton pigments and water quality, Phys. Oceanogr.Rep.,1990, 51:10pp.
    [144] Buiteveld, H., J. H. M. Hakvoort, M. Donze. The optical properties of pure water. Ocean Optics XII, SPIE.1994, 2258:174.
    [145] Fry, E. S. Visible and Near-Ultraviolet Absorption Spectrum of Liquid Water: Comment. Appl. Opt., 2000, 39:2743-2744.
    [146] Morel, A. Optical properties of pure water and pure sea water. Optical Aspects of Oceanography, 1974, 32:1-24.
    [147] Chang, C. H., L. A. Young. Seawater temperature measurement from Raman spectra. Research Note 920, N62269-720204, ARPA Order 1911 Advanced Research Projects Agency, Washington, D.C., 1972.
    [148] Sugihara, S., M. Kishino, N. Okami. Contribution of Raman scattering to upward irradiance in the sea, J. Oceanogr. Soc., 1984, 40:397-404.
    [149] Marshall, B. R., R. C. Smith. Raman scattering and in-water ocean optical properties, 1990, 29: 71-84.
    [150] Haltrin, V. I., Kattawar. G. W. Light fields with Raman. scattering and fluorescence in sea water. Technical Report. College. Station, Department of Physics, Texas A&M University, 1991, 74pp.
    [151] Haltrin, V. I. G. W. Kattawar. Self-consistent solutions to the equation of transfer with elastic and inelastic scattering in oceanic optics: I Model. Appl. Opt. 1993, 32: 53-56.
    [152] Morel, A. Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters). J. Geophys. Res., 1988, 93:10749-10768.
    [153] Hoepffner, N., S. Sathyendranath. Determination of the major groups of phytoplankton pigments from absorption spectra of total particulate matter, J. Geophys. Res., 1993, 98: 22789-22803.
    [154] Sathyendranath. Variations in the Spectral Values of Specific Absorption of Phytoplankton,Shubha Sathyendranath, Luigi Lazzara, Louis Prieur,Limnology and Oceanography, 1987, 32(2): 403-415.
    [155] Stramski. D., D. A. Kiefer. Light scattering by microorganisms in the open ocean, Prog. Oceanogr. 1991,28:343-383.
    [156] Yentch, C. S. Measurement of visible light absorption by particulate matter in the ocean, Limnol. Oceanogr., 1962, 7:207—217.
    [157] Morrow, J. H. A two-component description of spectral absorption by marine particles.Limnol. Oceanogr., 1989, 34(8):1500-1509.
    [158] Gallegos, C.L., P. W. Bergstrom. Effects of a Procentrum minimum bloom on light availability for and potential impacts on submersed aquatic vegetation in upper Chesapeake Bay. Harmful Algae. 2005, 4:553-574.
    [159] Kishino, M., N. Okami, M Takahashi, S. I. Chimura. Light utilization efficiency and quantum yield of phytoplankton in a thermally stratified sea. Limnol. Oceanogr., 1986, 31:557-566.
    [160] Maske, H., H. Haardt. Quantitative in vivo absorption spectra of phytoplankton: detrital absorption and comparison with fluorescence excitation spectra, Limnol. Oceanogr., 1987,32:620-633.
    [161] Iturriaga, R., D.A. Siegel. Microphotometric characterization of phytoplankton and detrital absorption properties in the Sargasso Sea. Limnology and Oceanography, 1989, 34:1706-1726.
    [162] Preisendorfer, R.W. Application of Radiative Transfer Theory to Light Measurements in the Sea, Int. Union Geodesy Geophys. Monogr., 1961, 10:11-30.
    [163] 宋庆军, 唐军武. 黄海、东海海区水体散射特性研究. 海洋学报,2006, 28 4:56-63.
    [164] Petzold, T. J. Volume scattering functions for selected ocean waters.SIO Ref.72-78, Scripps Inst. Oceanogr, La Jolla, 1972, 79pp.
    [165] Haltrin, V. I. An analytic Fournier-Forand scattering phase function as an alternative to the Henyey-Greenstein phase function in hydrologic optics, IEEE 1998 International Geoscience and Remote Sensing Symposium Proceedings, 1998:910-912.
    [166] Kopelevich, O. V., V. I. Burenkov. Relation between the spectral values of the light absorption coefficients of sea water, phy- toplanktonic pigments, and the yellow substance. Oceanology, 1977, 7:278-282.
    [167] Kishino, M., C. R. Booth, N. Okami. Underwater radiant energy absorbed by phytoplankton, detritus, dissolved organic matter, and pure water, Limnol. Oceanogr., 1984, 29:340-349.
    [168] 苏纪兰, 袁业立. 中国近海水文. 北京:海洋出版社, 2005.
    [169] 苏健, 江文胜, 孙文心. 渤海中南部悬浮物海洋调查资料分析. 中国海洋大学学报,2001,31(5):647—652.
    [170] 谷传国. 我国沿海近岸带水域的悬沙分布特征. 地理研究,1989,8(2):2-15.
    [171] 秦蕴珊, 李凡. 渤海海水中的悬浮体的研究. J 海洋学报, 1982,4(2):191-204.
    [172] 江文胜. 渤海悬浮物输运的动力模型和数值研究博士学位论文, 中国海洋大学 1997.
    [173] 江文胜, 苏健, 杨华, 张英娟等. 渤海悬浮物浓度分布与水动力特征的关系. 海洋学报, 2002, 24(增 1): 212-217.
    [174] 秦蕴珊,李凡,徐善民. 南黄海海水中悬浮体的研究[J].海洋与湖沼, 1989, 20(2): 101-112.
    [175] 郑铁民,赵一阳,李凡.南黄海夏季海水中悬浮体的研究[J].海洋学报,1990, 12(6): 649-757.
    [176] 郑铁民, 赵一阳, 李凡, 秦蕴珊, 米里曼 J D. 南黄海夏季海水中悬浮体的研究[J].海洋学报, 1990, 12(6): 749~757.
    [177] 郭志刚, 杨作升. 冬、夏季东海北部悬浮体分布及海流对悬浮体输运的阻隔作用,海洋学报,2002, 24(5): 71-80.
    [178] 刘芳, 黄海军, 郜昂春. 秋季黄东海海域悬浮体平面分布特征及海流对其分布的影响,海洋科学,2006, 30(1):68-72.
    [179] 庞重光, 白虹, 杨作升, 雷坤. 东海泥质和砂质沉积区悬浮物垂向分布的季节变化特征,海洋科学,2001,25(8):34-36.
    [180] 费尊乐, 毛兴华, 朱明远等. 渤海生产力研究-叶绿素 a、初级生产利与渔业资源开发潜力.[J] 海洋水产研究,1991,17:55~70.
    [181] 吕瑞华, 夏滨, 李宝华等. 渤海水域初级生产力 10 年间的变化[J].黄渤海海洋, 1999, 17(3):80-86.
    [182] 孙军, 刘东艳, 柴心玉等. 1998~1999 年春秋季渤海中部及其邻近海域叶绿素a 浓度及初级生产力估箅生态学报, 2003, 23(3):5l7—526.
    [183] 王俊, 李洪志. 渤海近岸叶绿素和初级生产力研究[J].海洋水产研究, 2002, 23 (1):22-28.
    [184] 李宝华, 傅克忖, 曾晓起. 南黄海夏末叶绿素 a 的分布特征.海洋与湖沼, 1999, 30(3):300-305.
    [185] 林学举, 黄邦钦, 洪华生. 东、黄海典型海域叶绿素 a 含量的垂向变化与周日波动[J].海洋科学, 2002, 26 (11):57-63.
    [186] Longhurst, A. R., Harrison W. G. The biological pump: Profiles of plankton production and consumption in the upper ocean, Progr. Oceanogr, 1989, 22: 47-123.
    [187] 周伟华, 霍文毅, 袁翔城. 东海赤潮高发区春季叶绿素 a 和初级生产力的分布特征.应用生态学报,2003,14(7):1055-1059.
    [188] 鲁北伟, 王荣. 春季东海表层水叶绿素 a 含量分布特征[J].海洋与湖沼, 1996, 27(5):487-492.
    [189] 赵辉, 唐丹玲, 王素芬. 南海西北部夏季叶绿素 a 浓度的分布特征及其对海洋环境的响应, 热带海洋学报, 2005, 24(6):31-37.
    [190] 邵秘华, 李炎, 王正方, 张素香. 长江口海域悬浮物的分布时空变化特征. 海洋环境科学, 1996, 15(3):36-39.
    [191] 曹沛奎, 严肃庄. 长江口悬沙锋及其对物质输移的影响,华东师范大学学报(自然科学版),1996, 01:85-94.
    [192] 顾新根, 袁骐, 杨蕉文等. 长江口外水域浮游植物垂直分布研究[J].中国水产科学, 1995, 2(1):28-38.
    [193] 沈新强, 胡方西. 长江口外水域叶绿素 a 分布的基本特征[J].中国水产科学,1995,2(1):71—80.
    [194] 黄邦钦, 洪华生, 柯林, 曹振锐. 珠江口分粒级叶绿素 a 和初级生产力研究,海洋学报,2005,27(6):180-186.
    [195] 邓明, 黄伟, 李炎. 珠江河口悬浮泥沙遥感数据集[J].海洋与湖沼, 2002, 33(4): 341-348.
    [196] 李肖娜, 周伟华, 刘索美.东海赤潮高发区沉积物中叶绿素的分析. 应用生态学报,2003, 14(7):1102—1106.
    [197] 吴乃薇, 边文冀, 姚宏禄. 饲养青鱼的池塘生态系统的能量转化率. 应用生态学报,1992, 3(4):333—338.
    [198] 赵文, 董双林, 张兆琪. 盐碱池塘浮游植物初级生产力日变化的研究. 应用生态学报,2003, l4(2):234—236.
    [199] Stramski, D., A. Shalapyonok, R. A. Reynolds. Optical characterization of the oceanic unicellular cyanobacterium Synechococcus grown under a day-night cycle in natural irradiance. J. Geophys. Res., 1995, 100:13295-13307.
    [200] Dickey, T.D., Recent advances and future directions in multi-disciplinary in situ oceanographic measurement systems. In: Toward a Theory on Biological-Physical Interactions in the World Ocean, B.J. Rothschild, editor, Kluwer Academid, Dordrecht, 1988, 555-598pp.
    [201] Aguirre-Hernández, E., G. Gaxiola-Castro, S. Nájera-Martínez, T. Baumgartner, M. Kahru, B. G. Mitchell. Phytoplankton absorption, photosynthetic parameters, and primary production off Baja California: summer and autumn 1998. Deep-Sea Res. II, 2004, 51:799-816.
    [202] Pfannkuche, J. Optical properties of the Otago Shelf waters: South Island New Zealand. Estuar. Coast. Shelf Sci., 2002, 55:613-627.
    [203] 李武, 张士魁, 吴曙初等. 北黄海水中辐照度的分布变化特征. 黄渤海海洋,1997, 15(2):16—24.
    [204] 彭海龙, 孙从容, 张正等. 黄、东海区光谱漫衰减系数特性研究. 海洋通报,2004, 23(4):15—18.
    [205] 张彩云, 商少平, 胡建宇等. 台湾海峡 1997 年 8 月至 1999 年 8 月份海水光学衰减系数的分布特征. 台湾海峡,2001, 20(1):127—131.
    [206] Huovinen, P. S., H. Penttila, M. R. Soimasuo. Spectral attenuation of solarultraviolet radiation in humic lakes in Central Finland. Chemosphere, 2003, 51: 205-214.
    [207] Morel, A, F. B. Jean. Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote-sensing applications. Limnol. Oceanogr.,1989, 34:1545-1562.
    [208] Wang, G. Z., Gao, S. Characteristics of Yellow-Bohai Sea Water Exchange and Suspended Sediment: Their Effects on Sedimentation in the Bohai Strai. Chin. J. Mar. Sci. Bul., 2002, 21: 43-48.
    [209] Lance A. F., S. M. Fernando,H. Cecelia. Hawaii Ocean Time-series Data Report 14,July 2005:1-279.
    [210] Lund-Hansen, L.C., Diffuse attenuation coefficients Kd(PAR) at the estuarine North Sea-Baltic Sea transition: Time-series, partitioning, absorption, and scattering. Estuar. Coast. Shelf Sci., 2004, 61: 251-259.
    [211] Darecki, M., Weeks, A., Sagan, S., Kowalczuk, P. and Kaczmarek, S., Optical characteristics of two contrasting case 2 waters and their influence on remote sensing algorithms. Cont. Shelf Res., 2003, 23: 237-250.
    [212] Howard-Williams, C., Davies-Colley, R. and Vincent, W. F., 1995. Optical properties of the coastal and oceanic waters off South Island, New Zealand: regional variation. N.Z. J. Mar. Freshwater Res., 29: 589-602.
    [213] Jones, D., M. S. Wills. The attenuation of light in sea and estuarine waters in relation to the concentration of suspended solid matter. J. Mar. Biol. Assoc. U. K., 1965, 35:431-444.
    [214] 马树斌, 钱正绪. 南黄海水团和悬浮体分布及其光学性质. 海洋与湖沼增刊, 1995, 26(5):8-15.
    [215] 孙效功, 方明, 黄伟. 黄、东海陆架区悬浮体输运的时空变化规律. 海洋与湖沼,2000, 31(6):581-587.
    [216] Lee,Zh.P.,Models, parameters, and approaches that used to generate wide range of absorption and backscattering spectra ,Ocean Color Algorithm Working Group ,IOCCG, 2003.
    [217] Jerlov N.G. Marine optics, Amsterdam: Elsevier, 1976, 231pp.
    [218] Smith, R.C. and K.S. Baker, The analysis of ocean optical data, SPIE Ocean Optics VII, 1984, 489: 119-126,
    [219] Lewis, M.R., J.J.Cullen and T.Platt. Phytoplankton and thermal structure in the upper ocean: consequences of nonuniformity in chlorophyll profile. J. Geophys. Res., 1983, 88: 2565-2570.
    [220] Mcgillicuddy D, Mccarthy J J, Robinson A R, 1995. Coupled physical and biological modeling of the spring bloom in the North Atlantic (l): model formulation and one dimensional bloom processes. Deep-Sea Res., 42(8):1 313-1357.
    [221] Wong, C. S., F. A. Whitney, K. Iseki, J. S. Page, and J. Zeng, Analy-sis of trends in primary production and chlorophyll-a over two decades at Ocean Station P (50°N, 145°W) in the subarctic North-east Pacific Ocean, R.J. Beamish, Climate change and northern fish populations, Can. Spec. Publ. Fish. Aquat. Sci. 1995. 121: 107-117.
    [222] Radach G. and A. Moll. Estimation of the variability of production by simulating annual cycles of phytoplankton in the central North Sea. Prog. Oceanogr. 1993, 31: 339-419.
    [223] Varela R A, et al. Modeling the deep-chlorophyll maximum: A couple physical-biological approach [J]. J. Mar. Res., 1992, 50: 441-463.
    [224] Stigebrandt, A., Wulff, F. A. Model for the dynamics of nutrients and oxygen in the Baltic Proper. J. Mar. Res., 1987, 45: 729-759.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700