经穴电信号特性分析与分类算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经络理论是中医基础理论的核心之一,在指导中医临床实践中起着决定性的作用。经络是体表与脏腑,机体环境和外环境联系的主要通道和途径,经络的生理作用是通过其对信息与物质的动态传输作用表现出来的,因此展开现代经络特性研究,特别是从电信息的角度开展经络信息传递、生理调控及其与人体生理病理状态的联系等方面的研究,将对中医经络临床诊断、预防和治疗具有重要意义,同时也为经络实质的研究提供重要的参考。本文首先对所采集的经络穴位电信号滤波预处理,然后从信号的特性分析入手对经穴电信号进行时频分析、高阶谱分析、非线性动力学特性分析等研究工作,最后对穴位信号与相对应的非穴位参照信号进行了分类研究。所取得的主要研究成果为:
     对所采集的经络穴位信号进行了滤波处理研究。针对穴位电信号的产生机理及其采集所遇到的影响因素和难点进行了分析。利用卡尔曼滤波对采集的经穴电信号进行滤波处理。由于卡尔曼滤波算法存在一定的不鲁棒特点,在存在概率模型方面的不确定情况下对其进行了鲁棒化处理,实验的结果表明基于鲁棒卡尔曼滤波方法对经穴电信号具有较好的滤波作用。
     对经穴电信号进行了时频特性分析。首先研究了短时傅里叶变换的理论与实现,然后对小波变换和Wigner分布进行了分析与研究。在研究了静态时频特性之后,利用Gabor变换和小波熵等概念对经穴电信号进行了动态时频分析。
     对经穴电信号进行了高阶谱分析。高阶谱不仅保留了信号的幅值信息而且还保留了信号的相位信息。利用双谱的切片谱很容易可以检测出信号之间的相位耦合现象。为了兼顾计算速度与信息的全面性,本文提出一种基于复合切片谱的经穴电信号特性分析方法。经时间复杂度分析与实验数据验证,表明该方法在保留了水平与垂直方向上的信息基础上,与双谱的计算量相比减少了计算量,节约了运行时间,提高了运行效率。在研究高阶谱的基础上,还分析研究了经穴电信号的Wigner时变高阶谱与Wigner时变双谱切片。实验的结果表明,健康人体的穴位信号与非穴位信号之间、饭前与饭后不同状态下的穴位信号之间、健康人体穴位信号与心脏心血管疾病患者的穴位信号之间,其高阶谱特性存在明显的差异,并且其差异表现出一定的规律性。对于小波分解后的低频子带信号,饭后穴位信号的高阶谱特征明显高于饭前;而小波分解后的高频子带信号,饭后穴位信号的高阶谱特征低于饭前。心脏心血管疾病患者的穴位信号高阶谱特征明显低于正常人的相应高阶谱特征。
     对经穴电信号进行了混沌特性分析。首先利用替代数据法对经穴电信号进行非线性检测。检测的结果表明人体经络穴位信号是一种非线性的信号。然后分别对健康人体的经穴信号与对应的非穴位信号以及心脏心血管疾病患者的穴位信号进行相空间重构,在此基础上对一些常用的非线性动力学性能指标进行了对比分析。实验的结果表明,穴位电信号表现出非线性动力学特性,并且健康人体的经穴信号与对应的非穴位信号以及心脏心血管疾病患者的穴位信号其非线性动力学参数表现出不同程度的差异。
     对健康人体的穴位信号与非穴位信号、饭前与饭后不同状态下的穴位信号以及健康人体穴位信号与心脏心血管疾病患者的穴位信号之间进行了基于优化神经网络的分类研究。传统的BP神经网络算法具体收敛速度慢,容易收敛到局部最小,对于多值分类泛化能力较弱。针对以上神经网络算法中的不足,本文提出一种基于量子进化神经网络的经穴电信号分类模型。实验结果表明,该模型能够较好地对健康人体的穴位信号与非穴位信号、饭前与饭后不同状态下的穴位信号以及健康人体穴位信号与心脏心血管疾病患者的穴位信号进行分类。
     对基于经穴电信号的支持向量机分类模型进行了研究。针对目前支持向量机分类算法还存在着惩罚函数与核函数难以确定的问题,本文提出了一种基于粒子群优化算法的经穴电信号支持向量机分类模型。实验结果表明该模型对健康人体的穴位信号与非穴位信号、饭前与饭后不同状态下的穴位信号以及健康人体穴位信号与心脏心血管疾病患者的穴位信号具有较好的分类准确率。与此同时,相比神经网络分类模型而言,基于粒子群优化算法的SVM分类算法比神经网络分类模型的分类准确率略有提高。
Meridians theory is one of the cores in the basic theory of Traditional Chinese Medicine (TCM). It plays a decisive role in the guidance of the TCM clinical practice. Meridians are the main channels and pathways between the body and organs, the physical organisms and the external environment. The physiological role of the meridian is manifested through its dynamic transmission of information and material. Therefore, the research on the meridian characteristics, especially within the information flow, physiological regulation mechanism, and the relation between the meridians and physiological and pathological states, has important implications to meridians clinical diagnosis, prevention and treatment, and of great reference to further research on the meridian substantiality. In this dissertation, the electrical signal of acupuncture point is preprocessed by a well designed Kalman Filter firstly. Then with the introduction of the time-frequency domain analysis, high-order spectrum analysis and the nonlinear dynamic systems analysis, the characteristic parameters of the acupoint signals are extracted and analyzed. Finally, the classification algorithms between the acupoint signals and the non-acupoint signals had been discussed. The main contributions of the dissertation are summarized as follows.
     A filter used for denoising the acupoint electrical signals is designed. On the basis of the analysis of the factors and difficulties encountered in the acupoint electrical signal generation mechanism and the acquisition, the Kalman filter was chosen to process the signal. Also, considering the weak robustness of the Kalman filter, the stabilization treatment is carried out in uncertainty case of the existence probability model. The experiment results show that the proposed robust Kalman filtering method has better filtering effect both on acupoint signals and non-acupoint signals.
     The characteristic analysis on acupoint signals was carried out from both the time-domain and frequency-domain. The theory and implementation of the short-time Fourier transform are firstly discussed. Then, the wavelet transform and Wigner distribution analysis are analyzed. Based on the study on static time-frequency analysis, dynamic time-frequency analysis of Gabor transform and wavelet entropy method is introduced to analyze the acupoint signals.
     Higher order spectral analysis is applied to acupoint signals. A new composite slice spectrum computing method is proposed for the analysis of the characteristics of acupoint signals, where the computing speed and comprehensiveness of the information is taken into account. Time complexity analysis and experiments results show that the proposed method retains information on the horizontal and vertical directions. Furthermore, it reduces the amount of computation, consumes less time, and improves the operating speed. On the basis of high-order spectrum analysis, the Wigner time varying higher order spectrum and its slices are applied for the analysis on acupoint signals. Experiment results show that there exist obvious differences between the healthy human body acupoint signals and the corresponding non-acupuncture point's signals, acupoint signals between different states of before meals and after meals, acupoint signals between healthy human body and patients of cardiovascular disease. For the signal from low-frequency sub-band of the wavelet decomposition, its high order spectral characteristics of after meals was significantly higher than that of before meals; while the high-frequency sub-band signals show the opposite trend. The high-order spectral features of acupoint signal from patients with cardiovascular disease significantly lower than that of healthy humam bodys.
     Chaotic Characteristic Analysis of the acupoint signals has been carried out. Firstly, the surrogate-data technique is chosen to detect the nonlinear property of the acupoint electrical signals. The results have shown the nonlinearities of the acupoint signals. Then, the phase spaces are reconstructed for the acupoint signals, the corresponding non-acupoint signals and signals from patients of cardiovascular disease respectively, and then the commonly-used nonlinear dynamics characteristics are analyzed. The experimental results reveal that the acupoint and non-acupoint signals are both chaotic, while the corresponding nonlinear dynamics parameters are different to a certain extent.
     The classification methods based on optimized neural networks are studied. To deal with the problems with the traditional BP algorithms such as the slow convergence speed, local minimum, less robustness on multivalent classification, a quantum evolution neural networks model is developed in this dissertation for the classification of the acupoint electrical signals. The experimental results have shown that the model gives satisfactory classification ability between the acupoint signals and the non-acupoint signals, acupoint signals between different states of before meals and after meals, acupoint signals between healthy human body and patients of cardiovascular disease.
     The support vector machine algorithm has also been implemented for the classification of the meridians signals. A particle swarm optimization based support vector machine classification model is proposed to meet the difficulty in the choice of the proper parameter in the support vector machine.The experiment results have shown that the model has exhibited an effective classification performance on acupoint signals and non-acupoint electrical signals, acupoint signals between different states of before meals and after meals, acupoint signals between healthy human body and patients of cardiovascular disease. Meanwhile, it gives a better performance than the neural network classification model.
引文
[1]任世超.生物电阻抗技术与人体功能信息[J].电子科技导报,1998,11:17-19.
    [2]樊祥.生物电阻抗技术在人体经络研究中的应用[J].数理医药学杂志,2008,21(4):472-474.
    [3]杨洪钦,谢树森,陆祖康.中医经络现代研究[M].福建师范大学学报(自然科学版),2005, 25(4):55-57.
    [4]Jian-liang Zhang. Effect of electro acupuncture on thalamic neuronal response to visceral nociception[J]. European Journal of Pain,2008,13(4):366-372.
    [5]Tuncer C A, Kenneth E B. Meridian Filtering for Robust Signal Processing[J]. IEEE Trans-actions on Signal Processing,2007,55(J):3949-3962.
    [6]Lee M S, Jeong S Y, Lee Y H, et al. Differences in electrical conduction properties between meridians and non-meridians[J].The American Journal of Chinese Medicine,2005,33 (5):723-728.
    [7]Liu Wei-Hong, Du Yuan-Hao. Spectrum of ocular and adnexal disease treated with acupuncture[J]. Chinese acupuncture & moxibustion,2010,30(5):423-425.
    [8]K Seki, M Chisaka, M Eriguchi. An attempt to integrate Western and Chinese medicine:rationale for applying Chinese medicine as chronotherapy against cancer[J]. Biomedicine & Pharmacotherapy,2005,59(1):132-140.
    [9]Wang Z Y, Chin J. Traditional Chinese medicine in France:French Federation of Traditional Chinese Medicine[J]. Zhong Xi Yi Jie He Xue Bao,2009,7(2):190-193.
    [10]Tang-yi Liu, Hua-yuan Yang, Le Kuai, etc. Design of acupoint electric character-istic sensing needle [J]. Chinese acupuncture & moxibustion,2007,27 (9):703-706.
    [11]Liu-Sha Lu. A hypothesis about component model of substances of channels and collaterals[J]. Chinese acupuncture & moxibustion,2008,28(10):764-766.
    [12]Yonghong Tan, Ruili Dong,Hui Chen,etc. Identification of Hysteresis in Human Meridian Systems Based on NARMAX Model [J].//In Satellite Symposium of the 34th World Congress of the International Union of Physiological Sciences. Auckand and cookkeduc,2004,1238:149-156.
    [13]李玉红.人体经络电信息处理方法研究[D].北京:北京化工大学,2006.
    [14]Anthony Masalonis, Raja Parasuraman. Anthony Masalonis, Raja Parasuraman[J]. Ergonomics, 2003,46(11):1045-1074.
    [15]徐欣,马千里,朱旭.胎儿心电提取自适应滤波器仿真对比研究[J].南京理工大学学报(自然科学版).2011,35(6):847-852.
    [16]罗志增,王占玉.基于小波域隐马尔科夫模型的肌电信号滤波[J].仪器仪表学报.2010,31(11):2447-2452.
    [17]雷培源,杨基海,陈香.基于三级滤波器的表面肌电信号降噪处理[J].北京生物医学工程.2011,30(1):62-66.
    [18]谢斌,严碧歌.基于Wigner-Ville分布的心电信号时频分析[J].陕西师范大学学报:自然科学版.2012,40(2):41-45.
    [19]李文文,徐桂芝,陈小刚,等.基于磁刺激内关穴的脑电α波时频分析[J].北京生物医学工程.2011,30(3):263-268.
    [20]严荣国,颜国正,杨帮华.基于1.5维谱的脑电非线性相位耦合分析[J].北京生物医学工程.2006,25(2):174-177.
    [21]张继红.中医脉象信号的高阶统计量分析[D].重庆大学,2005.
    [22]张婷婷,田桂林.如何去除心电仪器中的干扰信号的解决方法[J].商情.2010(17):53.
    [23]张娟,李慧,鹿晓.根据心电图判断Ⅰ度房室传导阻滞部位[J].实用医技杂志.2005,12(4):543-544.
    [24]谢洪波.基于非线性与时频分析理论的表面肌电信号特征信息提取与分类研究[D].上海交通大学,2006.
    [25]牛迅.时频谱及非线性时间序列分析在肌电信号分析中的应用[D].中国海洋大学,2004.
    [26]孙玉.基于脑电非线性动力学分析的中医针刺疗法和经皮穴位电刺激疗法研究[D].浙江大学,2007.
    [27]王炳和,相敬林.基于神经网络方法的人体脉象识别研究[J].西北工业大学学报.2002,20(3):454-457.
    [28]王震宇.人工神经网络在中医专家系统知识挖掘中的应用[J].计算机与数字工程.2006,34(10):146-148,153.
    [29]王继成.一种新的神经网络学习算法[J].计算机工程与科学.2000,22(3):6-9,17.
    [1]杨国平,贾晓航,皮肤阻抗等效电路及经络低阻抗原因探讨[J].中国医学物理学杂志,1998,15(1):31-33.
    [2]Kuo-Gen Chen. Biological implication of electrical properties of acupuncture meri-dians[A].Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,1998,20(2):1086-1087.
    [3]Kuo-Gen Chen. Electrical properties of meridians[J]. IEEE Engineering in Medicine and Biology,1996:58-63.
    [4]王超,王湘嵛,孙宏军,等.用于生物阻抗测量的双反馈电流源研究[J].生物医学工程学杂志,2006,04:704-707.
    [5]Badillo L,Ponomaryov V,Ramos E,et al. Low noise multichannel amplifier for portable EEG biomedical applications[C], In Annual International Conference of the IEEE Engineering in Medicine and Biology Proceedings.2003,4:3309-3312.
    [6]Van d O, Edwin S J, Renneboog J.Peak factor minimization of input and output signals of linear systems [J]. IEEE Transactions on Instrumentation and Measurement,1988,37(2):207-212.
    [7]张帷,张石等.便携式心电监护仪前置放大电路和抗干扰设计[J].医疗设备信息,2005,20(10):7-9
    [8]于姣,曲波.心电信号处理中的数字滤波器的设计[J].信息技术,2009,(05):61-63.
    [9]Darwish H A H, Fikri M. Practical considerations for recursive DFT implementation in numerical relays[J]. IEEE Transactions on Power Delivery,2007,22(1):42-49
    [10]Hidalgo R M, Fernandez J G, Rivera R R, Larrondo H A. Asimple adjustable window algorithm to improve FFT measurements[J]. IEEE Transactions on Instrumentation and Measurement, 2002,51(1):31-36
    [11]Ovanovic D G, Mitra S K. A new two-stage sharpened combdecimator [J].IEEE Trans on Circuits and Systems,2005,52(7):1414-1420.
    [12]Dolecek G J, Mitra S K. Stepped triangular CIC filter forrational sample rate conversion [C]//IEEE APCCAS.Singapore:IEEE,2006:916-919.
    [13]李树英,许茂增.随机系统的滤波与控制[M].北京:国防工业出版社,1991.
    [14]Narendra K S, Xiang C. Adaptive control of discrete-time systemsusing multiple models [J]. IEEE Trans on Automatic Control 2000,45(9):1669-1686.
    [15]邓自立.卡尔曼滤波与维纳滤波:现代时间序列分析方法[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [16]Mohand Mokhtari, Michel Marie.MATLAB与SIMULINK工程应用[M].北京:电子工业出版社,2002.
    [17]BELIAEV I, KOZMA R. Time series prediction using chaotic neuralnetworks on the CATS benchmark[J].Neurocomputing,2007,70(13-15):2426-2439.
    [18]YINGHao. Deriving analytical input-outputrelationship for fuzzy controller using arbitrary input fuzzy sets and Zadeh fuzzy and operator[J]. IEEE Trans on Fuzzy Systems,2006,14(5): 654-662.
    [19]MOHAN BM, SINHA A. Analytical structures for fuzzy PID controllers[J].IEEE Trans on Fuzzy Systems,2008,16(2):52-60.
    [20]HANG Xiang-yan, ZHANG Na-i yao. Analytical structure of a classic fuzzy controllerwith pimembership functions[J].CAA I Trans on IntelligentSystem s,2008,3(1):31-37.
    [21]LI Ang, XIE Pin-hua, LIU Wen-qing,et al.Monitoring of total emission volume from pollution sources based on passive differential optical absorption spectroscopy[J].Acta Optica Sinica,2007,27(9):1537-1542.
    [22]秦建华,余重秀,谭永红等.一种用于红外目标信号接收的稳健匹配滤波算法[J].光子学报.2011,40(1):112-115.
    [23]罗永光,王海云.稳健信号处理概论[M].长沙:国防科技大学出版社,1987.
    [1]Condon E.U. Immersion of the Fourier transform in a continous group of functional trans-formation[J]. Acad Sci USA,1937,23(1):158-164.
    [2]Jang S., Choi W., Sarkar T. K., et al. Exploiting early time response using the fractional Fourier transform for analyzing transient radar returns[J]. IEEE Tran Antennas and Propagation,2004, 52(11):3109-3121.
    [3]Ertosun M. G., Atli H., Ozaktas H. M, et al. Complex signal recovery from two fractional Fourier transform intensities order and noise dependence[J]. Optics Communications,2005,244(1-6): 61-70.
    [4]杨帆.数字图像处理与分析[M].北京:北京航空航天大学出版社,2007,37-138.
    [5]Allen D.P., Mackinnon C. D..Time-frequency analysis of movement-related spectral power in EEG during repetitive movements:A comparison of methods[J].Journal of Neuroscience Methods, Elsevier,2010,186:107-115.
    [6]akiguchi K., Oguma M., Shibata T., et al., Demultiplexer for optical orthogonal frequency-division ultiplexing using an optical fast-Fourier-transform circuit[J]. Opt. Letters,2009, 34:1828-1830
    [7]Lei H., Qian K., Bing P., et al., Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry[J]. Optics and Lasers in Engineering,2010,48:141-148.
    [8]Henry, K.Kwok, Douglas L. Jones.Improved instantaneous frequency estimation using an adaptive short-time Fourier transform[J].IEEE Tran.SP,2000,(48):2964-2972.
    [9]蔡立羽.基于短时傅里叶变换的肌电信号识别方法[J].中国医疗器械杂志.2000,(24)133-136.
    [10]周霞.中医脉象信号的短时傅里叶分析.重庆大学学报[J].2003,(26)47-51.
    [11]张榆锋.基于小波变换与基于短时傅里叶变换的超声多普勒血流信号时频分布比较研究[J].中国生物医学工程学报,2005,(24):107-109.
    [12]张大波.基于第二代小波变换的心电信号分析算法[J].数据采集与处理.2006:450-453.
    [13]唐晓初.小波分析及其应用[M].重庆大学光电工程学院,2003.
    [14]姜印平.基于提升方法的脉搏波信号处理[J].计算机仿真.2006:98-100.
    [15]M Maslen, P Abbott. Automation of the lifting factorisation of wavelet transforms[J]. Computer Physics Communications 127,2000:309-326.
    [16]胡昌华,张军波,夏军,等.基于Matlab的系统分析与设计--小波分析[M].西安:西安电子科技大学出版社,2000.
    [17]N G Nikolaou, I A Antoniadis. Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted Morlet wavelets[J]. Mechanical Systems and Signal Processing,2005,4:1-24.
    [18]Cheng Junsheng,Yu Dejie,Yang Yu. Application of an impulse response wavelet to fault diagnosis of rolling bearings[J]. Mechanical Systems and Signal Processing,2005,9:1-10.
    [19]M Haase, J.Widjaja kusuma. Damage identification based on ridges and maxima lines of the wavelet transform[J], International Journal of Engineering Science,2003,41:1423-1433.
    [20]岳林,张令弥.基于Morlet小波的信号滤波方法及在频率响应测试中的应用[J].数据采集与处理,2002,17(4):459-462.
    [21]刘锐.非平稳信号时频分析技术研究[D].山东大学2009.
    [22]张哗.信号时频分析及应用[M].哈尔滨工业大学出版社,2006.
    [23]Bianu M,Isar A.The reduction of interference terms in the time-frequency plane[J]. Signals Circuits and Systems,2003,12:461-464.
    [24]张晔.信号时频分析及应用[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [25]叶继伦,郑崇勋,郭耸峰,等.一种改进的时频分布算法及其在医学信号处理中的应用[J].重庆医科大学学报,1998,23(3):230-233.
    [26]季忠,曹怡,秦树人.应用多分辨率小波变换提取脑电信号异常节律[J].重庆大学学报(自然科学版),2002,25(7):144-147.
    [27]王勇,姜义成.一种抑制时频分布交叉项的新方法[J].电子学报,2008,36(12):161-165.
    [28]邹虹,保铮.基于频域”CLEAN"Wigner-Ville分布中交叉项的抑制[J].电子与信息学报,2002,24(1):1-5.
    [1]Chua Kuang C, Chandran Vinod, Acharya Rajendra. Higher Order Spectral (HOS) Analysis Of Epileptic EEG Signals[C]//In Proceedings 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France,2007:6495-6498.
    [2]张贤达.现代信号处理(第二版)[M].北京:清华大学出版社,2002.
    [3]张贤达.时间序列分析--高阶统计量方法[M].清华大学出版社,1996.
    [4]黄绣坤.高阶谱估计技术概述[J].北方交通大学学报,1991,15(2):29-44.
    [5]牛海军,万明习,王素品.不同种类肺音信号的双谱分析[J].仪器仪表学报,2001,22(5):486-490.
    [6]Nikias C L, Petroplus A P. Higher order spectra Analysis[M]. Englewood cliffs, Prentice-Hall, 1993.
    [7]邱天爽,张旭秀,李小兵等.统计信号处理:非高斯信号处理及其应用[M].北京:电子工业出版社,2004.
    [8]李军伟.双谱分析新方法及其工程应用研究[D].郑州大学硕士学位论文,2006.
    [9]Gang Liu, Stephen D.Gedney. High-Order Method of Moment Solution for Penetrable Scatterers[J]. IEEE Antennas and Propagation Society, AP-S International Symposium (Digest),2001,4:356-359.
    [10]Wei Cai, Tiejun Yu,Han Wang. High-Order Mixed RWG Basis Functions for Electro magnetic Applications[J]. IEEE Transactions On Microwave Theory and Techniques, 2001,49(7):1295-1303.
    [11]G. Kang, J. M. Song, W. C. Chew. Grid-Robust Higher-Order Vector Basis Functions for Solving Integral Equations[J]. IEEE Antennas and Propagation Society, AP-S International Symposium (Digest),2000,1:468-471.
    [12]Gang Kang, Jiming Song, Weng Cho Chew. A Novel Grid-Robust Higher Order Vector Basis Function for the Method of Moments[J]. IEEE Transactions on Antennas and Propagation, 2001,49(6):908-915.
    [13]B Hudgins, P Parker, R Scott. A new strategy for multi-function myoelectric control[J], IEEE Trans.Biomed.Eng.,1993,40(1):82-94.
    [14]Dario Farina, Marie-Francoise Lucas, Christian Doncarli. Optimized wavelets for blind separation of nonstationary surface myoelectric signals[J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING,2008,55(1).
    [15]Yang M H, Ahuja N, Kriegman D.Face recognition using kerel eigenface[J]. Pro-ceedings, International Conference on Image Processing,2000,1:37-40.
    [16]乐建威,莫国民,林敏.麻醉镇静深度的脑电双谱指数监护技术[J].中国医疗器械杂志,2005,29(:5):321-324.
    [17]吕泽均.基于累积量的盲自适应波束形成技术.电讯技术,2001,1(4):31-34.
    [18]Ramon Miralles, I Vegrara, Jogre Gosalbez. Material grain nosie analysis by using hihger odrer statisties[J]. Singal Poreessing,2004,(84):197-205.
    [19]杨军.基于高阶统计量的表面肌电信号模式识别研究[D].上海:上海交通大学,2009.
    [20]高庆华.人脸自动识别方法的研究[D].大连:大连理工大学,2007.
    [21]许崇涛,沈民奋,朱国平.大脑安静与积极思维状态下脑电波双谱分析6例报告[J].中国心理卫生杂志,2004,18(6):392-394.
    [22]艾玲梅,黄力宇,黄远桂,等.利用双谱分析的癫痫脑电特征研究[J].西安交通大学学报,2004,38(10):1097-1100.
    [23]刘曾荣,文铁桥,姚晓东.脑与非线性动力学[M].北京:科学出版社,2006.
    [24]郝志华,马孝江.高阶非线性时频表示在故障特征提取中的应用[J].农业机械学报,2006,37(2):106-109.
    [25]Fonoliosa J R, Nikias C T. Analysis of finite-energy signals using higher order moments- and spectra-based time-frequency distributions[J]. Signal Processing,1994,36(3):315-328.
    [1]Holger K, Thomas S. Nonlinear Time Series Analysis [M]. U. K. Cambridge shire:Cam bridgeI University Press,2000.
    [2]赵贵兵,石炎福,段文锋,等.从混沌时间序列同时计算关联维和Kolmogorov[J]计算物理,1999,163:309-31.
    [3]Widman G, Leb Lnertz K,Jansen P,et al.A fast general Purpose algorithm for the eom Putation of auto-andeross-eorrelation integrals from single channe ldata[J]. Physiea D,1998,121:65-74.
    [4]Thelier J,Etlbank S.Longtin A,et al.Testing for nonliear it yin time series:the method of surrogate data[J]. PhysiesD,1992,58:77-94.
    [5]Swani A, Mwndel M, Nikias C L. High-order spectral analysis tool box user's guide [M]. INC: The Math works,1999.
    [6]杨位钦,顾岚.时间序列分析动态数据建模(第二版)[M].北京理工大学出版社,1995.
    [7]Packard N H.Crutehfield J P,Farme rJ D.et al.Geometry from a Time Series[J]. Phys. Rev. Lett, 1980,43(9):712-71.
    [8]Eekmann J P, Kam Phorst S O, Ruelle D,et al. Lya Punovex Ponenis from time series[J]. Phys. Rev.A,1986,34:4971-4979.
    [9]Takens F. Detecting strange attraet or sintur buleneel A8. Lecture Notes In Mathematies [M]. Berlin:SPringer,1981.
    [10]马红光,李夕海,王国华.相空间重构中嵌入维和时间延迟的选择[J].西安交通大学学报,2004,38(4):335-338.
    [11]Stefansson A, Koncar N, Jones A J. A note on the gamma test [J]. Neural Computing and Applications 1999,5(2):131-133.
    [12]Otani M, Jones A. Automated embedding and creep phenomenon in chaotic time series [EB/OL]http://www.cs.cf.ac.uk/ec/aecp.html,2000-10-14/2003-05-15.
    [13]Kugiumtzis D. State space reconstruction parameters in the analysis of chaotic time series-the role of the time window length [J]. Physica:D,1996,95(1):13-28.
    [14]Rossenstein M T, Colins J J, De Luca C J. Reconstruction expansion as a geometry based framework for choosing proper delay times [J]. Physica:D.1994,73(1):82-98.
    [15]林嘉宇,王跃科,黄芝平,等.语音信号相空间重构中时间延迟的选择·复自相关法[J].信号处理,1999,15(3):220-225.
    [16]Hung Chin-Pao, Su Hong-Jhe, Yang Shih-Liang. Melan- cholia diagnosis based on GDS evaluation and meridian energy measurement using CMAC neural network approach [J]. Transactions on Information Science and Applications,2009,6(3):500-509.
    [17]Kong Esheng, Ren Shu. The preliminary study on the method of meridian recognition [J]. International Society for Optical Engineering,2001,4414:121-122.
    [18]Dhir Chandra S, Lee Soo Young. Information theoretic feature extraction and sele- ction for robust classification[J]. The International Society for Optical Engineering,2009,7343:1-12.
    [19]Vidyasagar M, Karandikar Rajeeva L. System identification:A learning theory approach [J]. Proceedings of the IEEE Conference on Decision and Control,2001,2:2001-2006.
    [20]Broekwell P J,Davis R A. Time series:theory and methods[M]. Zndedition, New York: Springer-Verlag,1991.
    [21]杨志家,赵光宙.关于关联积分和关联维[J].浙江大学学报(工学版),32(5):523-526.
    [22]Peter Grassberger. An optimized box-assisted algorithm for fractal dimensions[J]. Phy Lett A, 1990,148:63-68.
    [23]杨福生,廖旺才.近似熵:一种适用于短数据的复杂性度量[J].中国医疗器械杂志,1997,21(5):283-286.
    [24]Hasan Ocak. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy [J]. Expert Systems with Application,2009,36,2027-2036.
    [1]Silnon Haykin著,叶世伟,史忠植译.神经网络原理[M].北京:机械工业出版社,2004.
    [2]韩力群编著.人工神经网络理论设计及应用[M].北京:化学工业出版社,2002.
    [3]Wang L,Feng G,Hesketh T. Piece wise generalized HZ eontroller synthesis of discrete time fuzzy systems[J].IEE Control Theory and APPlication,2004,9(5):554-560.
    [4]Maritin, Hagan Howard B, Demuth Mark H Beale著.戴葵译.神经网络设计[M].北京:机械工业出版社,2005.
    [5]李朝峰,屈颖歌,夏德深.BP网络改进模型的性能对比研究=J].计算机工程与应用,2003,19:120-122.
    [6]王震宇.人工神经网络在中医专家系统知识挖掘中的应用[J].计算机与数字工程,2006,34(10):146.
    [7]王继成,吕维雪.一个基于符号人工神经网络的心电图分类系统[J].中国生物医学工程学 报,1996,15(3):202-207.
    [8]王炳和,相敬林.基于神经网络方法的人体脉象识别研究[J].西北工业大学学报,2002,20(3):454-457.
    [9]郭艳兵,齐庆,干雪光.一种改进的BP网络学习算法[J].自动化技术与应用,2002,(2):13-14.
    [10]戚德虎,康继昌.BP神经网络的设计[J].计算机工程与设计,1998(4):48-51.
    [11]闵惜琳,刘国华.用Matlab神经网络工具箱开发BP网络应用[J].计算机应用,2001,21(8):163-641.
    [12]楼顺天,施阳.基于Matlab的系统分析与设计模糊系统[M].西安:西安电子科技大学出版社,1999.
    [13]Nussbaum M A. Fundamentals of Artificial Neural Networks[J]. Journal of Biome-chanics, 1994,29(10).
    [14]吴秀清,徐云翔,周蓉.面向Matlab神经网络工具箱的图像数据融合算法及实现[J].计算机工程,2000,26(4):16-71.
    [15]云庆夏.进化算法[M].北京:冶金工业出版社,2000.
    [16]Narayanan A, Moore M. Quantum-inspired genetic algorithm[C]//Proceedings of IEEE International Conference on Evolutionary Computation,1999:61-66.
    [17]Han K H, Kim J H. Quantum-inspired evolutionary algorithm for a class of combin-atorial optimization[J].IEEE Trans on Evolutionary Comprtion,2002,6(6):580-593.
    [18]唐春明.进化神经网络的研究进展[J].系统工程与电子技术,2001,23(10):93-97.
    [19]Martin Plenio B.Basic of quantum computation[J]. Process in Quantum Electronics,1998.
    [20]Vladimir N. Vapnik著,张学工.统计学习理论的本质[M].北京:清华大学出版社,2000.
    [21]T Evgeniou, M Pontil, T Poggio. Regularization networks and support vector machines [J]. Advances in Computational Mathematics.2000.13(1):1-50.
    [22]Chang C C, Lin C J. Training nu-support vector regression:theory and algorithms [J]. Neural Computation,2002,14(1):1959-1977.
    [23]范听炜.支持向量机算法的研究及其应用[D].杭州:浙江大学,2003:50-61.
    [24]Kreel U. Pairwise Classification and support vector machines[J].The MIT Press,1999:255-268.
    [25]潘明清.基于支持向量机的机械故障模式分类研究[D].杭州:浙江大学,2005.
    [26]Scholkopf B, Burges C, Smola A. Advances in kernel methods-support vector learning [M]. Cambridge MA:MIT Pres,1999.
    [27]Suykens J A K, Lukas L, Vandooren P, et al. Least square support vector machine classifiers:a large scale algorithm[C]//Proceedings of the European Conference on Circuit Theory and Design,ECCTD'99.1999,2:839-842.
    [28]Chua K S.Efficient computations for large least squares support vector machine classifiers [J]. Pattern Recognition Letters,2003,24 (1):75-80.
    [29]Zheng L G, Zhou H,Wang C L, et al. Combing support vector regression and ant colony optimization NOx emission in coal fired utility boiler[J]. Energy and Fuels,2008,22: 1034-1040.
    [30]Smola A 1. Scholkope B. A tutorial on support vector regression [J]. Statistics and Computing,2004,14:199-222.
    [31]顾燕萍,赵文杰,吴占松.最小二乘支持向量机的算法研究[J].清华大学学报(自然科学版),2010,50(7):1063-1066.
    [32]Weston J, Watkins C. Support vector machines for multi-class pattern recognition [D]. In Proceedings of 7th European Symposium on Artificial Neural Networks,1999:219-224.
    [33]Feng Guohe. Parameter optimizing for Support Vector Machines classification [J].Computer Engineering and Applications,2011,47(3):123-124.
    [34]Wang Liguo,Zhang Ye,Zhang Junping. A new weighted least squares support vector machines and its sequential minimal optimization algorithm[J].Chinese Journal of Electronics,2008, 17(2):285-288.
    [35]Si Gangquan,Cao Hui,Zhang Yanbin,et al. Density weighted pruning method for sparse least squares support vector machines[J].Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University,2009,43(10):p11-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700