miR-26b和miR-34a靶向HAS2、INHBB对猪卵巢颗粒细胞凋亡的调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哺乳动物卵巢中卵泡闭锁现象是非常普遍的,在卵泡发育过程中,绝大部分卵泡(75%-99%)发生退化现象,只有极少数卵泡能成熟排卵。随着人们对细胞凋亡研究的探索,逐渐明白到颗粒细胞的凋亡是卵泡闭锁的主要原因。近些年来,人们已经发现了许多抑制或促进卵泡闭锁的因素,但是,调控卵泡闭锁的分子机制还未完全阐明,今后仍需要做进一步的研究。研究卵泡发育和闭锁对于人类而言,将为治疗不孕、提高妊娠率有一定的指导意义;对于提高动物繁殖力和胚胎工程发展也有着十分重要的意义。
     随着人们对nicroRNA(miRNA)的研究,人们发现miRNA是一大类非编码的、有重要调控作用的、功能性RNA家族。miRNA广泛分布于各种真核生物中,参与机体细胞增殖、分化、凋亡、胚胎发育、物质代谢、肿瘤发生与抑制和细胞信号转导等各项生命活动。已有研究证实,在猪卵泡闭锁过程中,有一些miRNA的表达量是显著上调的并且对猪卵巢颗粒细胞的凋亡有促进作用。因此,本文将对miRNA与颗粒细胞的凋亡关系展开研究,以进一步阐明调控卵泡闭锁的分子机制。
     本研究试验选取猪卵巢颗粒细胞为主要研究对象,基于本课题组研究的基础和国内外文献资料报道,选取miR-26b和miR-34a做为研究卵泡闭锁和颗粒细胞凋亡的调控因子。通过生物信息学网站预测靶基因,结合靶基因的功能选取HAS2和INHBB做为候选靶基因,在HeLa229细胞中,我们利用双荧光素酶报告系统和定点突变试验去验证主效靶基因,然后,转染猪颗粒细胞,利用Real-time PCR技术、流式细胞术和Western Blotting技术检测miR-26b和miR-34a对猪卵巢颗粒细胞的作用以及与其靶基因的调控形式,进一步以阐明对猪卵泡闭锁和颗粒细胞凋亡的调控机制。全文结果如下:
     (1) RT-PCR发现靶基因HAS2在猪卵巢和颗粒细胞中表达;通过双萤光素酶报告系统和定点突变实验发现,HAS2基因是miR-26b的直接靶基因;Real-time PCR发现转染miR-26b的颗粒细胞发生凋亡;流式细胞仪检测发现miR-26b促进颗粒细胞的凋亡,miR-26b inhibitor能抑制内源性的miR-26b对颗粒细胞的凋亡作用;利用Real-time PCR和Western Blotting技术证实了miR-26b在转录后水平调节靶基因HAS2的表达。
     (2)在猪卵母细胞体外成熟培养过程中,Real-time PCR检测Oh、12h、24h、36h和44h五个时间点的HAS2表达量发现,其mRNA的表达量显著上升,由此可以推测在卵母细胞成熟过程中,HAS2对卵丘的扩张发挥着十分重要的作用。
     (3) RT-PCR发现靶基因INHBB在猪卵巢和颗粒细胞中表达;通过双萤光素酶报告系统和定点突变实验发现,INHBB基因是]niR-26b的直接靶基因;利用Real-time PCR和Western Blotting技术证实了miR-26b在转录后水平抑制靶基因INHBB的表达。(4)通过双萤光素酶报告系统和定点突变实验发现,INHBB基因是miR-34a的直接靶基因;Real-time PCR发现转染miR-34a的颗粒细胞发生凋亡;流式细胞仪检测发现miR-34a促进颗粒细胞的凋亡,miR-34a inhibitor能抑制内源性的miR-34a对颗粒细胞的凋亡作用;利用Real-time PCR和Western Blotting技术证实了miR-34a在转录后水平抑制靶基因INHBB的表达。
     本文证实了HAS2和INHBB基因是miR-26b的靶基因,INHBB基因也是miR-34a的靶基因,miR-34a对靶基因INHBB的调节能力更强;miR-26b和miR-34a都是在转录后水平抑制靶基因的表达,并且促进颗粒细胞的凋亡。从而探索了miRNA促进猪颗粒细胞凋亡的分子机制,这是对:niRNA功能在卵泡闭锁过程中作用的进一步扩展,有助于今后人们深入研究卵泡闭锁分子调控机理。
Follicular atresia is a very common phenomenon in the mammalian ovary, during follicle development, most follicles (75%-99%) degradation, only a very small number of follicles to mature and ovulate. With the exploration of the research on apoptosis, we gradually understand that granulosa cell apoptosis is the main cause of follicular atresia. In recent years, it has been found that many of the factors that inhibit or promote follicular atresia; the molecular mechanism of regulation of follicular atresia, however, has not been fully elucidated, the future remains to be done further research. Study of follicular development and atresia in humans, for the treatment of infertility, improve has some guiding significance for pregnancy rate; also has a very important significance for improving animal reproduction and embryonic development.
     Along with the microRNA (miRNA) researched, it was found that miRNAs are a large class of non-coding, an important role in the regulation of functional RNA family. MiRNA is widely distributed in various eukaryotic organisms, involved in cell proliferation, differentiation, apoptosis, embryonic development, metabolism, and tumor inhibition and cell signal transduction and other life activities. It has been confirmed that some miRNA expression is significantly up-regulated and promote apoptosis of porcine ovarian granulosa cells in porcine follicular atresia. Therefore, this article will research the relationship of miRNA and granulosa cell apoptosis, to elucidate the molecular mechanism of regulation of follicular atresia.
     The study of porcine granulosa cells were selected as the main research object. MiR-26b and miR-34a were selected as control factors of follicular atresia and granulosa cells apoptosis based on both our previous research results and abroad references. We selected HAS2and INHBB as the candidate target genes, by the bioinformatics web predicting target genes and the target gene function. In HeLa229cells, we verified the main effect target gene of miRNA by dual luciferase reporter system and site-directed mutagenesis experiments. Then, with transfected porcine granulosa cells, the mechanism of miR-26b and miR-34a regulating their target genes were verified by the Real-time PCR, flow cytometry and Western Blotting, further to clarify porcine follicular atresia and the apoptosis of granulosa cells regulation. The main results achieved were as follows:
     1.The expression of target gene HAS2was showed by RT-PCR in porcine ovaries and granulosa cells; It was verified that the HAS2gene was a direct target gene of miR-26b by dual luciferase reporter system and site-directed mutagenesis experiments; The apoptosis was found in granulosa cells transfected with miR-26b by Real-time PCR; The phenomenon was found that miR-26b promoted granulosa cells apoptosis, and miR-26b inhibitor can inhibit endogenous miR-26b on granulosa cell apoptosis. It was confirmed that miR-26b regulates HAS2gene expression at the post-transcriptional level by Real-time PCR and Western Blotting.
     2.HAS2mRNA expression levels were significantly increased with cumulus expansion during IVM, suggesting its important roles in cumulus expansion and oocyte maturation.
     3.The expression of target gene INHBB was showed by RT-PCR in porcine ovaries and granulosa cells:It was verified that the INHBB gene was a direct target gene of miR-26b by dual luciferase reporter system and site-directed mutagenesis experiments; It was confirmed that miR-26b regulates HAS2gene expression at the post-transcriptional level by Real-time PCR and Western Blotting.
     4.It was verified that the INHBB gene was a direct target gene of miR-34a by dual luciferase reporter system and site-directed mutagenesis experiments; The apoptosis was found in granulosa cells transfected with miR-34a by Real-time PCR; The phenomenon was found that miR-34a promoted granulosa cells apoptosis, and miR-34a inhibitor can inhibit endogenous miR-34a on granulosa cell apoptosis. It was confirmed that miR-34a regulates INHBB gene expression at the post-transcriptional level by Real-time PCR and Western Blotting.
     This paper confirmed that the HAS2and INHBB gene were target genes of miR-26b, also INHBB gene was a target gene of miR-34a.The regulation capability of miR-34a for target gene INHBB was more powerful than miR-26b.MiR-26b and miR-34a can both promote granulosa cells apoptosis, inhibit target genes expression at the post-transcriptional level. The study is helpful to explore the molecular mechanisms of miRNA promote pig granulosa cell apoptosis. In the meanwhile, to expands miRNA function, and contributes to in-depth study of follicular atresia molecular regulation mechanism.
引文
[1]Krol, J., Loedige, I. Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay[J].. Nat. Rev. Genet.2010,11,597-610.
    [2]Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J.et al. The nuclear RNase III Drosha initiates microRNA processing[J].. Nature,2003,425,415-419.
    [3]Bohnsack, M. T., Czaplinski, K. Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs[J]. RNA,2004 10,185-191.
    [4]Yi, R., Qin, Y., Macara, I. G. Cullen, B. R..Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs[J]. Genes Dev.2003,17,3011-3016.
    [5]Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E. Kutay, U. Nuclear export of microRNA precursors[J]. Science,2004,303,95-98.
    [6]Song L, Tuan RS. MicroRNAs and cell differentiation in mammalian development [J]. Birth Defects ResC Embryo Today,2006,78(2):140-149.
    [7]Cheng AM, Byrom MW, Shelton J,et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis[J]. Nucleic Acids Res,2005,33(4): 1290-1297.
    [8]Hwang HW, Mendel JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis[J]. Br J Cancer,2006,94(6):776-780.
    [9]Croce CM, Calin GA. miRNAs, cancer, and stem cell division[J]. Cell,2005,122(1):6-7.
    [10]Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer[J]. Nature,2007,449(7163):682-688.
    [11]Tavazoie SF, ALAR IIco C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis[J]. Nature,2008,451(7175):147-152.
    [12]Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs [J]. Science,2001,294(5543):853-858.
    [13]Reinhart BJ, Slaek FJ, Basson M, et al. The 21 nueleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature,2000,403(6772):901-906.
    [14]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that housands of human genes are microRNA targets [J]. Cell,2005,120(1):15-20.
    [15]Krek A, Gran D, Poy MN, et al. Combinatorial microRNA target predictions[J]. Nat Genet,2005, 37(5):495-500.
    [16]Morlando M, BalLAR Ilino M, Gromak N, et al. Primary microRNA transcripts are processed co-transcriptionally[J]. Nat Struct Mol Biol,2008,15(9):902-909.
    [17]Bartel,DP. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell,2004,116, 281-297.
    [18]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75(5):843-854.
    [19]Bartel DP, Chen CZ. Micromanagers of gene expression:the potentially widespread influence of metazoan microRNAs[J]. Nat Rev Genet,2004,5(5):396-400.
    [20]Zhao T, Li G, Mi S, et al. A complex system of small RNAs in the unicellular Ⅱ green alga Chlamydomonas reinhardtii[J]. Genes Dev,2007,21(10):1190-1203.
    [21]Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans[J]. Science,2001, 294(5543):862-864.
    [22]Neilson JR, Zheng GX, Burge CB, et al. Dynamic regulation of miRNA expression in ordered stages of celluLAR Ⅱ development[J]. Genes Dev,2007,21(5):578-589.
    [23]Ason B, Darnell DK, Wittbrodt B, et al. Differences in vertebrate microRNA expression[J]. Proc Natl Acad Sci USA,2006,103(39):14385-14389.
    [24]Jinek M, Doudna JA. A three-dimensional view of the molecuLAR Ⅱ machinery of RNA interference[J]. Nature,2009,457(7728):405-412.
    [25]Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets[J]. Cell, 2003,115,787-798.
    [26]Lim LP, Lau NC, Weinstein EG, et al. The microRNAs of Caenorhabditis elegans[J]. Genes Dev, 2003,17:991-1008.
    [27]Stark A, Brennecke J, Russell RB, et al. Identification of Drosophila microRNA targets[J]. PLoS Biol,2003,1(3):397-409.
    [28]Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression[J]. Genes Dev,2004,18(5):504-511.
    [29]Grimson A, Farh KK, Johnston WK, et al. MicroRNA targeting specificityin mammals: determinants beyond seed pairing[J]. Mol Cell,2007,27(1):91-105.
    [30]Shkumatava A, Stark A, Sive H, et al.Coherent but overlapping expression of microRNAs and their targets during vertebrate development[J]. Genes Dev,2009,23(4):466-481.
    [31]Griffiths-Jones S, Grocock R J, van Dongen S, Bateman A, Enright A J. miRBase:microRNA sequences, targets and gene nomenclature[J]. Nucleic Acids Res,2006,34:D140-144.
    [32]Kozomara A, Griffiths-Jones S. miRBase:integrating microRNA annotation and deep sequencing data[J]. Nucleic Acids Res,2011,39:D152-157.
    [33]Krek A, Grun D, Poy M N, Wolf R, Rosenberg L, Epstein E J, et al. Combinatorial microRNA target predictions [J]. Nat Genet,2005,37(5):495-500.
    [34]Yang Y, Wang Y P, Li K B. MiRTif:a support vector machine based microRNA target interaction filter[J]. BMC Bioinformatics,2008,9 Suppl 12:S4.
    [35]Hsu P W, Lin L Z, Hsu S D, Hsu J B, Huang H D. ViTa:prediction of host microRNAs targets on viruses[J]. Nucleic Acids Res,2007,35:D381-385.
    [36]John B, Enright A J, Aravin A, Tuschl T, Sander C, Marks D S. Human MicroRNA targets[J]. PLoS Biol,2004,2(11):e363.
    [37]Nam S, Kim B, Shin S, Lee S. miRGator:an integrated system for functional annotation of microRNAs[J]. Nucleic Acids Res,2008,36:D159-164.
    [38]Witkos T M, Koscianska E, Krzyzosiak W J. Practical Aspects of microRNA Target Prediction[J]. Curr Mol Med,2011,11(2):93-109.
    [39]高佳莉,罗玉萍,李思光.miR-34基因家族的分子进化.动物学研究,2007,28(3):271-278.
    [40]He X, He L, Hannon GJ. The guardian's little helper:microRNAs in the p53 tumor suppressor network[J]. Cancer Res,2007,67(23):11099-11101.
    [41]Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth [J]. Cancer Res,2007,67(18):8433-8438.
    [42]He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ. A microRNA component of the p53 tumour suppressor network[J]. Nature,2007,447(7148):1130-1134.
    [43]Kumamoto K, Spillare EA, Fujita K, Horikawa I, Yamashita T, Appella E, Nagashima M, Takenoshita S, Yokota J, Harris CC. Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence[J]. Cancer Res,2008,68(9):3193-3203.
    [44]Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells[J]. Proc Natl Acad Sci USA,2007,104(39):15472-15477.
    [45]Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing:miR-34a is a p53 target that induces apoptosis and G1-arrest[J]. Cell Cycle,2007,6(13):1586-1593.
    [46]Yan D, Zhou X, Chen X, Hu D, Dong XE, Wang J, Lu F, Tu L, Qu J. MicroRNA-34a inhibits uveal melanoma cell proliferation and migration through downregulation of c-Met[J]. Invest Ophthalmol Vis Sci,2009,50(4):1559-1565.
    [47]Rokhlin OW, Scheinker VS, Taghiyev AF, Bumcrot D, Glover RA, Cohen MB. MicroRNA-34 mediates AR-dependent p53-induced apoptosis in prostate cancer[J]. Cancer Biol Ther,2008,7(8): 1288-1296.
    [48]Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M.Transcriptional activation of miR-34a contributes to p53-mediated apoptosis[J]. Mol Cell,2007, 26(5):731-743.
    [49]Yamakuchi M, Ferlito M,Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis[J]. Proc Natl Acad Sci USA,2008,105(36):13421-13426.
    [50]Welch C, Chen Y,Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells[J]. Oncogene,2007,26(34):5017-5022.
    [51]Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis[J]. Mol Cell,2007,26(5):745-752.
    [52]Hermeking H. p53 enters the microRNA world[J]. Cancer Cell,2007,12(5):414-418.
    [53]Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R, Sun Z, Zheng X. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest[J]. FEBS Lett,2008,582(10):1564-1568.
    [54]Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, MacDougald OA, Cho KR, Fearon ER. p53-mediated activation of miRNA34 candidate tumor-suppressor genes[J]. Curr Biol,2007,17(15):1298-1307.
    [55]Qi R, An H, Yu Y, Zhang M, Liu S, Xu H, Guo Z, Cheng T, Cao X. Notchl signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis[J]. Cancer Res,2003,63(23):8323-8329.
    [56]徐广峰,付海龙,郭锡熔.生物信息学预测hsa-miR-26b的作用靶标及功能[J].临床检验杂志,2012,7(7).
    [57]Zhang Z. Florez S, Gutierrez-Hartmann A, et al. MicroRNAs regulate pituitary development, and microRNA 26b specifically targets lymphoid enhancer factor 1 (Lef-1), which modulates pituitary transcription factor 1(Pit-1) expression [J]. J Biol Chem,2010,285(45):34718-34728.
    [58]Dill H, Linder B, Fehr A, et al. Intronic miR-26b controls neuronal differentiation by repressing its host transcript, ctdsp2[J]. Genes Dev,2012,26(1):25-30.
    [59]Ji Y, He Y, Liu L, et al. MiRNA-26b regulates the expression of cyclooxygenase-2 in desferrioxamine-treated CNE cells[J]. FEBS Lett,2010,584(5):961-967.
    [60]Han M, Yang Z, Sayed D, et al. GATA4 expression is primarily regulated via a miR-26b-dependent post-transcriptional mechanism during cardiac hypertrophy[J].Cardiovasc Res,2012,93(4) 645-654.
    [61]Ma YL, Zhang P, Wang F, et al. Human embryonic stem cells and metastatic colorectal cancer cells shared the common endogenous human microRNA-26b[J].J Cell Mol Med,2011,15(9) 1941-1954.
    [62]Wu N, Zhao X, Liu M, et al. Role of microRNA-26b in glioma development and its mediated regulation on EphA2[J].PLoS One,2011,6(1):e16264.
    [1]Baird D T, Campbell B K, Mann G E, McNeilly A S. Inhibin and oestradiol in the control of FSH secretion in the sheep [J]. J Reprod Fertil Suppl,1991,43:125-138.
    [2]Ren L, Weng Q, Kishimoto M, Watanabe G, Jaroenporn S, Taya K. Effect of short period vasectomy on FSH, LH, inhibin and testosterone secretions, and sperm motility in adult male rats [J]. Exp Anim,2011,60:47-56.
    [3]Carroll R S, Kowash P M, Lofgren J A, Schwall R H, Chin W W. In vivo regulation of FSH synthesis by inhibin and activin [J]. Endocrinology,1991,129:3299-3304.
    [4]Wu Y J, La Pierre D P, Wu J, et al. The interaction of versican with its binding partners [J]. Cell Res, 2005,15(7):483-494.
    [5]Kikuch I S, Griffin C T, Wang S S, et al. Role of CD44 in epithelial wound repair:migration of rat hepatic stellate cells utilizes hyaluronic acid and CD44 v6 [J]. J Biol Chem[J].2005,280(15): 15398-15404.
    [6]Jensen P V, Lsrsson L I. Act in microdom ains on endothelial cells:association with CD44, ERM proteins, and signaling molecules during quiescence and wound healing [J]. Histochem Cell Biol, 2004,121:361-369.
    [7]Wai P Y, Kuo P C. The role of osteopontin in tumour metastasis [J]. J Surg Res,2004,121:228-241.
    [8]Lesley J, Hascall V C, Tammi M, et al. Hyaluronan binding by cell surface CD44 [J]. J Biol Chem, 2000,275(35):26967-26975.
    [9]Daya J, Prespwich G D. Hyaluronan-binding proteins:tying up the giant [J]. J Biol Chem,2002, 277(7):4585-4588.
    [10]Lesley J, English N M, GAL I, et al. Hyaluronan binding properties of a CD44 chimera containing the link module of TSG-6 [J]. J Biol Chem,2002,277(29):26600-26608.
    [11]Simpson M A, Reiland J, Bueger S R, et al. Hyaluronan synthase elevation in metastatic prostate carcinoma cells correlates with hyaluronan surface retention, a prerequisite for rapid adhesion to bone marrow endothelial cells [J]. J Biol Chem,2001,276(21):17949-17957.
    [12]Simpson M A, Wilson C M, Fuecht L T, et al. Manipulation of hyaluronan synthase expression in prostate adenocarcinoma cells alters pericellular matrix retention and adhesion to bone marrow endothelial cells [J]. J Biol Chem,2002,277(12):10050-10057.
    [13]Bourguignon L Y, Zhu H, Shao L, et al. CD44 interaction with tiam 1 promotes Rac1 signaling and hyaluronic acid mediated breast tumor cell migration [J]. J Biol Chem,2000,275(3):1829-1838.
    [14]Lokeshwar V B, Selzer M G. Differences in hyaluronic acid mediated functions and signaling in arterial, microvessel, and vein derived human endothelial cells [J]. J Biol Chem,2000,275(36): 27641-27649.
    [15]Hall C L, Collis L A, Boa J, et al. Fibroblasts require protein kinase C activation to respond to hyaluronan with increased locomotion [J]. Matrix Biol,2001,20(3):183-192.
    [16]Zeng C, Toole B P, Kinney S D, et al. Inhibition of tumor growth in vivo by hyaluronan oligomers [J]. Int J Cancer,1998,77(3):396-401.
    [17]Takahashi Y, Li L, Kamiryo M, et al. hyaluronan fragments induce endothelial cell differentiation in a CD44 and CXCL1/GRO1 dependent manner [J]. J Biol Chem,2005,280(25):24195-24204.
    [18]Sym S, GUO Y J, Stamenkovic I. Distinct effects of two CD44 isoforms on tumor growth in vivo [J]. J Exp Med,1991,174(4):859-866.
    [19]Schmits R, Filmus J, Gerwin N, et al. CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenicity [J]. Blood,1997,90(6):2217-2233.
    [20]Enegd B, King J A, Stylli S. et al. Overexpression of hyaluronan synthase-2 reduces the tumorigenic potential of glioma cells lacking hyaluronidase activity [J]. Neurosurgery,2002,50: 1311-1318.
    [21]Draffin J E, Mcfarlane S, Hill A, et al. CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells [J]. Cancer Res,2004,64:5702-5711.
    [22]Yu Q, Toole B P, StameNKnkovic I. Induct ion of apoptosis of metastatic mammary carcinoma cells in vivo by disruption of tumor cell surface CD44 function [J]. J Exp Med,1997,186(12): 1985-1996.
    [23]Chen M J, Peng Y, Yang Y S, et al. Increased hyaluronan and CD44 expressions in intravenous leiomyomatosis [J]. Acta Obstet Gynecol Scand,2005,84(4):322-328.
    [24]Ghatak S, Misra S, Toole B P. Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells [J]. J Biol Chem,2005,280(10):8875-8883.
    [25]Bourguignon L Y, Singleton P A, Zhu H, et al. Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor bet a receptor I in metastatic breast tumor cells [J]. J Bio Chem,2002,277(42):39703-39712.
    [26]Turley E A, Noble PW, Bourguignon L Y. Signaling properties of hyaluronan receptors [J]. J Biol Chem,2002,277(7):4589-4592.
    [27]Oliferenko S, Kaverinal I, Small J V, et al. Hyaluronic acid (HA) binding to CD44 activates Rac1 and induces lamellipodia outgrowth [J]. J Cell Biol,2000,148 (6):1159-1164.
    [28]Bourguignon L Y, Zhu H, Zhou B, et al. Hyaluronan promotes CD44v3-Vav2 interaction with Grb2-p185 (HER2) and induces Racl and Ras signaling during ovarian tumor cell migration and growth [J]. J Biol Chem,2001,276(52):48679-48692.
    [29]Marei W F, Ghafari F, Fouladi-Nashta A A. Role of hyaluronic acid in maturation and further early embryo development of bovine oocytes [J]. Theriogenology,2012,78:670-677.
    [30]Yokoo M, Kimura N, Sato E. Induction of oocyte maturation by hyaluronan-CD44 interaction in pigs [J]. J Reprod Dev,2010,56:15-19.
    [31]Crater D L, van de Rijn I. Hyaluronic acid synthesis operon (has) expression in group A streptococci [J]. J Biol Chem,1995,270:18452-18458.
    [32]Dougherty B A, van de Rijn I. Molecular characterization of hasB from an operon required for hyaluronic acid synthesis in group A streptococci. Demonstration of UDP-glucose dehydrogenase activity [J]. J Biol Chem,1993,268:7118-7124.
    [33]Itano N, Kimata K. Mammalian hyaluronan synthases [J]. IUBMB Life,2002,54:195-199.
    [34]SternR. Hyaluronan metabolism:a major paradox in cancer biology [J]. Pathol Biol,2005, 53:372-382.
    [35]Kimura N, Konno Y, Miyoshi K, Matsumoto H, Sato E. Expression of hyaluronan synthases and CD44 messenger RNAs in porcine cumulus-oocyte complexes during in vitro maturation [J]. Biol Reprod,2002,66:707-717.
    [36]Furnus C C, Valcarcel A, Dulout F N, Errecalde A L. The hyaluronic acid receptor (CD44) is expressed in bovine oocytes and early stage embryos [J]. Theriogenology,2003,60:1633-1644.
    [37]Assidi M, Dufort I, Ali A, Hamel M, Algriany O, Dielemann S, et al. Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro [J]. Biol Reprod,2008,79:209-222.
    [38]Yokoo M, Miyahayashi Y, Naganuma T, Kimura N, Sasada H, Sato E. Identification of hyaluronic acid-binding proteins and their expressions in porcine cumulus-oocyte complexes during in vitro maturation [J]. Biol Reprod,2002,67:1165-1171.
    [39]Kimura N, Konno Y, Miyoshi K, Matsumoto H, Sato E. Expression of hyaluronan synthases and CD44 messenger RNAs in porcine cumulus-ooctye complexes during in vitro maturation [J]. Biol Reprod,2002,66:707-717.
    [40]Tienthai P,Yokoo M, Kimura N, Sato E, Rodriguez-Martinez H. Immunohistochemical localization and expression of the hyaluronan receptor CD44 in the epithelium of the pig oviduct oestrus [J]. Reproduction,2003,125:119-132.
    [41]Dekel N. Spatial relationship of follicular cells in the control of the meiosis [J]. In:Heseltine FP(ed.), Meotic Inhibition:Molecular Control of Meiosis:Alan R Liss,1988,87-101.
    [42]Brower P T, Schultz R M. Intercellular communication between granulosa cells and mouse oocytes: existence and possible nutritional role during oocyte growth [J]. Dev Biol,1982,90:144-153.
    [43]Eppig J J. A comparison between oocyte growth in coculture with granulosa cells and oocytes with granulosa cell-oocyte junctional contact maintained in vitro [J]. J Exp Zool,1979,209:345-353.
    [44]Isobe N, Maede T, Terada T. Involvement of meiotic resumption in the disruption of gap junctions between cumulus cells attached to pig oocytes [J]. J Reprod Fertil,1998,113:167-172.
    [45]Isobe N, Terada T. Effect of the factor inhibiting germinal vesicle breakdown on the disruption of gap junctions and cumulus expansion of pig cumulus-oocyte complexes cultured in vitro [J]. Reproduction,2001,121:249-257.
    [46]Phillips D M, Dekel N. Maturation of the rat cumulus-oocyte complex:structure and function [J]. Mol Reprod Dev,1991,28:297-306.
    [47]Azarnia R, Reddy S, Kmiecik T E, Shalloway D, Loewenstein W R. The cellular srcgene product regulates junctional cell-to-cell communication [J]. Science,1988,239:398-401.
    [48]Crow D S, Beyer E C, Paul D L, Kobe S S, Lau A F. Phosphorylation of connexin43 gap junction protein in uninfected and Rous sarcoma virus-transformed mammalian fibroblasts [J]. Mol Cell Biol,1990,10:1754-1763.
    [49]Filson A J, Azarnia R, Beyer E C, Loewenstein W R, Brugge J S. Tyrosine phosphorylation of a gap junction protein correlates with inhibition of cell-to-cell communication [J]. Cell Growth Differ, 1990,1:661-668.
    [50]Kanemitsu M Y, Loo L W, Simon S, Lau A F, Eckhart W. Tyrosine phosphorylation of connexin43 by v-Src is mediated by SH2 and SH3 domain interactions [J]. J Biol Chem,1997,272: 22824-22831.
    [51]Lin R, Warn-Cramer B J, Kurata W E, Lau A F. v-Src phosphorylation of connexin43 on Tyr247 and Tyr265 disrupts gap junctional communicationv [J]. J Cell Biol,2001,154:815-827.
    [52]Glister C, Groome N P, Knight P G. Bovine follicle development is associated with divergent Changes in active-A, inhibin A and follistatin and the relative abundance of different follistatin isoforms in follicular fluid [J]. J Endocrinol,2006,188(2):215-225.
    [53]Welt C K. The physiology and pathophysiology of inhibin, activin and follistatin in female reproduction [J]. Curr Opin Obstet Gynecol,2002,14(3):317-323.
    [54]Wunder D M, Bersinger N A, Yared M, et al. Statistically significant changes of antimulerian hormone and inhibin levels during the physiologic menstrual cycle in reproductive age women [J]. Fertil Steril,2008,89(4):927-933.
    [55]Vaettine T, Liu J, Hyden-granskog C. Regulation of immunoreactive inhibin A and B secretion in cultured human granulose luteal cells by gonadotropins, activin A and insulinlike growth factor type2-receptor [J]. Endocrinol,2002,167 (2):289-294.
    [56]Messinis I E. Ovarian feedback mechanisn of action and possible clinical implications [J]. Hum Reprod Update,2006,12 (5):557-571.
    [57]Findlay J K, Drummond A E, Dyson M L, et al. Recruitment and development of the follicle; the roles of the transforming growth factor-bate superfamily [J]. Mol Cell Endocrinol,2002,191(1): 35-43.
    [58]Brown C W, Houston-Hawkins D E, Woodruff T K, et al. Insertion of InhbB into the Inhb Alocus rescues the InhbA-null phenotype and reveals new Activin function [J]. Nat Genet,2000,25(4): 453-457.
    [59]Silva C C, Groome N P, Knight P G. Immunohistochemical localization of inhibin/activin alpha, betaA and betaB subunits and follistatin in bovine oocytes during in vitro maturation and fertilization [J]. Reproduction,2003,125(1):33-42.
    [60]Welt C K. The physiology and pathophysiology of inhibin,activin and follistatin in female reproduction [J]. Curr Opin Obstet Gynecol,2002,14(13):317-323.
    [61]Schneyer A L, Fujiwara T, Fox J, et al. Dynamic changes in the intrafollicular inhibin/activin/follistatin axis during human follicular development:relationship to circulating hormone concentrations [J]. J Clin Endocrinol Metab,2000,85(9):3319-3330.
    [62]Jaatinen R, Bondestam J, Raivio T, et al. Activation of the bone morphogenetic protein signaling pathway induces inhibin beta(B)-subunit mRNA and secreted inhibin B levels in cultured human granulosa-luteal cells [J]. J Clin Endocrinol Metab,2002,87(3):1254-1261.
    [63]De Kretser D M, Hedger M P, Loveland K L, et al. Inhibins, activins and follistatin in reproduction [J]. Hum. Reprod Update,2002,8:529-541.
    [64]Findlay J K, Drummond A E, Dyson M L, et al. Recruitment and development of the follicle:the roles of the transforming growth factor-beta superfamily [J]. Mol. Cell Endocrinol,2002,191: 35-43.
    [65]Juengel J L and McNatty K P. The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Hum. Reprod [J].2005, Update 11:143-160.
    [66]Knight P G, Glister C. TGF-beta superfamily members and ovarian follicle development [J]. Reproduction,2006,132:191-206.
    [67]金艳梅。颗粒细胞对卵泡发育的影响[J]。中国畜牧兽医,2010,37:69-71。
    [68]Maruo T. Expression of oncogenes, growth factors and their receptors in follicular growth, regression and atresia:their roles in granulosa cell proliferation and differentiation [J]. Acta Obstet GynecolJap,1995,47:738-750.
    [69]Rodgers R J, Irving-Rodgers H F, van Wezel I L, et al. Dynamics of the membrane granulose during expansion of the ovarian follicular antrum [J]. Mol Cell Endoerinol,2001,171:41-48.
    [70]Raman R S, Chan P J, Corselli J U, et al. Comet assay of cumulus cell DNA status and the relationship to oocyte fertilization via intracytoplasmic sperm injection [J]. Hum Reprod,2001, 16(5):831-835.
    [71]Lee K S, JooB S, Na Y J, et al. Cumulus ceils apoptosis as an indicator to predict the quality of oocytes and the outcome of IVF-ET [J]. J Assist Reprod Genet,2001,18:490-498.
    [72]Manova K, Huang E J, Angeles M, De Leon V, Sanchez S, et al. The expression pattern of the c-kit ligand in gonads of mice supports a role for the c-kit receptor in oocyte growth and in proliferation of spermatogonia [J]. Dev Biol,1993,157:85-99.
    [73]Shimizu T, Kosaka N, M urayama C, et al. Apelin and APJ receptor expression in granulosa and theca cells during different stages of follicular development in the bovine ovary:Involvement of apoptosis and hormonal regulation [J]. Anim Reprod Sci,2009,116:28-37.
    [74]Chen F, Jiang X, Chen X, Liu G, Ding J. Effects of downregulation of inhibin alpha gene expression on apoptosis and proliferation of goose granulosa cells [J]. J Genet Genomics,2007,34:1106-1113.
    [75]Andreu-Vieyra C, Chen R, Matzuk M M. Effects of granulosa cell specific deletion of Rb inha-alpha null female mice [J]. Endocrinology,2007,148:3837-3849.
    [I]Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs [J]. Science,2001,294(5543):853-858.
    [2]Reinhart BJ, Slaek FJ, Basson M, et al. The 21 nueleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans [J]. Nature,2000,403(6772):901-906.
    [3]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that housands of human genes are microRNA targets [J]. Cell,2005,120(1):15-20.
    [4]Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions [J]. Nat Genet,2005, 37(5):495-500.
    [5]Barnes, N.A., Stephenson, S., Cocco, M., Tooze, R.M., Doody, G.M. BLIMP-1 and STAT3 counterregulate microRNA-21 during plasma cell differentiation [J]. Journal of Immunology 2012,189:253-260.
    [6]Sawant, D.V., Sehra, S., Nguyen, E.T., Jadhav, R., Englert, K., Shinnakasu, R., Hangoc,G., Broxmeyer, H.E.Bc16 controls the th2 inflammatory activity of regulatory T cells by repressing gata3 function[J]. Journal of Immunology,2012,189:4759-4769.
    [7]Iliopoulos, D., Jaeger, S.A., Hirsch, H.A., Bulyk, M.L., Struhl, K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer [J].Molecular Cell,2010,39:493-506.
    [8]Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth[J]. Cancer Res,2007,67(18):8433-8438.
    [9]Hermeking H. p53 enters the microRNA world[J]. Cancer Cell,2007,12(5):414-418.
    [10]Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, MacDougald OA, Cho KR, Fearon ER. p53-mediated activation of miRNA34 candidate tumor-suppressor genes[J]. Curr Biol,2007,17(15):1298-1307.
    [11]Qi R, An H, Yu Y, Zhang M, Liu S, Xu H, Guo Z, Cheng T, Cao X. Notchl signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis[J]. Cancer Res,2003,63(23):8323-8329.
    [12]Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing:miR-34a is a p53 target that induces apoptosis and Gl-arrest[J]. Cell Cycle,2007,6(13):1586-1593.
    [13]J. Takamizawa, H. Konishi, K. Yanagisawa, S. Tomida, H. Osada, H. Endoh, T. Harano, Y. Yatabe, M. Nagino, Y. Nimura, T. Mitsudomi, T. Takahashi, Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival[J]. Cancer Res,2004,64: 3753-3756.
    [14]Johnson, S.M. Grosshans, H. Shingara, J. Byrom, M. Jarvis, R. A. Cheng, E. Labourier, K.L. Reinert, D. Brown, F.J. Slack, RAS is regulated by the let-7 microRNA family[J]. Cell, 2005,120:635-647.
    [15]Mott, J.L. Kobayashi, S.. Bronk, S.F Gores, G.J. mir-29 regulates Mcl-1 protein expression and apoptosis[J]. Oncogene,2007,(26):6133-6140.
    [16]Fei Lin, Ran Li, Zeng xiang Pan, Bo Zhou, De bing Yu, Xu guang Wang, Xue shan Ma, Jing Han, Ming Shen, Hong lin Liu. miR-26b Promotes Granulosa Cell Apoptosis by Targeting ATM during Follicular Atresia in Porcine Ovary[J].PLoS One,2012,7(6):e38640.
    [17]Asselin, E. Xiao, C.W. Wang, Y.F. Tsang, B.K. Mammalian follicular development and atresia:role of apoptosis[J]. Biol Signals Recept,2000,9:87-95.
    [18]Kaipia, A. Hsueh, A.J. Regulation of ovarian follicle atresia[J]. Annu Rev Physiol,1997,59: 349-363.
    [19]Wu C, Rui R, Dai J, et al. Effects of cryopreservation on the developmental competence, ultrastructure and cytoskeletal structure of porcine oocytes [J]. Mol Reprod Dev,2006,73 (11): 1454-1462.
    [20]Marei, W.F. Ghafari, F. A.A. Fouladi-Nashta. Role of hyaluronic acid in maturation and further early embryo development of bovine oocytes [J]. Theriogenology,2012,78:670-677.
    [21]Prochazka R, Nemcova L, Nagyova E, et al. Expression of growth differentiation factor 9 messenger RNA in porcine growing and preovulatory ovarian follicles [J]. Biol Reprod,2004, 71(4):1290-1295.
    [22]Zhang Z, Florez S, Gutierrez-Hartmann A, et al. MicroRNAs regulate pituitary development, and microRNA 26b specifically targets lymphoid enhancer factor 1 (Lef-1), which modulates pituitary transcription factorl(Pit-1) expression.[J]. Biol Chem,2010,285(45):34718-34728.
    [23]Dill H, Linder B, Fehr A, et al. Intronic miR-26b controls neuronal differentiation by repressing its host transcript, ctdsp2.[J]. Genes Dev,2012,26(1):25-30.
    [24]Ji Y, He Y, Liu L, et al. MiRNA-26b regulates the expression of cyclo-oxygenase-2 in desferrioxamine-treated CNE cells.[J]. FEBS Lett,2010,584(5):961-967.
    [25]Han M, Yang Z, Sayed D, et al. GATA4 expression is primarily regulated via a miR-26b-dependent post-transcriptional mechanism during cardiac hypertrophy.[J]. Cardiovasc Res,2012,93(4): 645-654.
    [26]Ma YL, Zhang P, Wang F, et al. Human embryonic stem cells and metastatic colorectal cancer cells shared the common endogenous human microRNA-26b.[J].J Cell Mol Med,2011,15(9): 1941-1954.
    [27]Wu N, Zhao X, Liu M, et al. Role of microRNA-26b in gliomna development and its mediated regulation on EphA2.[J].PLoS One,2011,6(1):e16264.
    [28]WU Y J, LA-PIERRE D P, WU J, et al. The interaction of versican with its binding partners.[J]. Cell Res,2005,15(7):483-494.
    [29]KIKUCH I S, GRIFFIN C T, WANG S S, et al. Role of CD44 in epithelial wound repair:migration of rat hepatic stellate cells utilizes hyaluronic acid and CD44 v6.[J]. J Biol Chem,2005,280(15): 15398-15404.
    [30]JENSEN P V, LARSSON L I. Act in microdom ains on endothelial cells:association with CD44, ERM proteins, and signaling molecules during quiescence and wound healing.[J]. Histochem Cell Biol,2004,121:361-369.
    [31]DRAFFIN JE, MCFARLANE S, HILL A, et al.CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells [J]. Cancer Res,2004,64:5702-5711.
    [32]YU Q, TOOLE B P, STAMENKOVIC I. Induct ion of apoptosis of metastatic mammary carcinoma cells in vivo by disruption of tumor cell surface CD44 function [J]. J Exp Med,1997,186(12): 1985-1996.
    [33]CHEN M J, PENG Y, YANG Y S, et al. Increased hyaluronan and CD44 expressions in intravenous leiomyomatosis.[J]. Acta Obstet Gynecol Scand,2005,84(4):322-328.
    [34]Yokoo M, Miyahayashi Y, Naganuma T, Kimura N, Sasada H, Sato E. Identification of hyaluronic acid-binding proteins and their expressions in porcine cumulus-oocyte complexes during in vitro maturation[J]. Biol Reprod 2002; 67:1165-1171.
    [35]Kimura N, Konno Y, Miyoshi K, Matsumoto H, Sato E. Expression of hyaluronan synthases and CD44 messenger RNAs in porcine cumulus-ooctye complexes during in vitro maturation[J]. Biol Reprod 2002;66:707-717.
    [36]Tienthai P,Yokoo M, Kimura N, Sato E, Rodriguez-Martinez H. Immunohistochemical localization and expression of the hyaluronan receptor CD44 in the epithelium of the pig oviduct oestrus[J]. Reproduction,2003; 125:119-132.
    [37]Dekel N. Spatial relationship of follicular cells in the control of the meiosis[J]. In:Heseltine FP(ed.), Meotic Inhibition:Molecular Control of Meiosis:Alan R Liss; 1988:87-101.
    [38]Brower PT, Schultz RM. Intercellular communication between granulosa cells and mouse oocytes: existence and possible nutritional role during oocyte growth[J]. Dev Biol 1982;90:144-153.
    [39]Eppig JJ. A comparison between oocyte growth in coculture with granulosa cells and oocytes with granulosa cell-oocyte junctional contact maintained in vitro[J]. Exp Zool 1979;209:345-353.
    [40]Isobe N, Maede T, Terada T. Involvement of meiotic resumption in the disruption of gap junctions between cumulus cells attached to pig oocytes[J]. Reprod Fertil 1998;113:167-172.
    [41]Isobe N, Terada T. Effect of the factor inhibiting germinal vesicle breakdown on the disruption of gap junctions and cumulus expansion of pig cumulus-oocyte complexes cultured in vitro[J]. Reproduction 2001; 121:249-257.
    [42]Phillips DM, Dekel N. Maturation of the rat cumulus-oocyte complex:structure and function[J]. Mol Reprod Dev 1991;28:297-306.
    [43]Kyasari, O.R. Valojerdi, M.R. Farrokhi, A. Ebrahimi, B. Expression of maturation genes and their receptors during in vitro maturation of sheep COCs in the presence and absence of somatic cells of cumulus origin[J]. Theriogenology,2012,77:12-20.
    [I]Johannes Hofland, Frank H. de Jong. Inhibins and activins:Their roles in the adrenal gland and the development of adrenocortical tumors[J]. Molecular and Cellular Endocrinology, 2012,354:111-120.
    [2]David W. Burt, Andrew S. Law. Evolution of the transforming growth factor-beta superfamily[J]. Progress in Growth Factor Research,1994,5:99-118.
    [3]Findlay JK, Drummond AE, Dyson ML, et al. Recruitment and development of the follicle; the roles of the transforming growth factor-bate superfamily[J]. Mol Cell Endocrinol,2002,191(1):35-43.
    [4]Brown CW, Houston-Hawkins DE, Woodruff TK, et al. Insertion of InhbB into the Inhb Alocus rescues the InhbA-null phenotype and reveals new Activin function[J]. Nat Genet,2000, 25(4):453-457.
    [5]Silva CC, Groome NP, Knight PG. Immunohistochemical localization of inhibin/activin alpha, betaA and betaB subunits and follistatin in bovine oocytes during in vitro maturation and fertilization[J]. Reproduction,2003,125(1):33-42.
    [6]Elvin JA, Yan C, Matzuk MM. Oocyte-expressed TGF-beta superfamily members in female fertility[J]. Molecular and Cellular Endocrinology,2000,159:1-5.
    [7]Glister C, Kemp CF & Knight PG. Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells:actions of BMP-4,-6 and-1 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin[J]. Reproduction,2004,127:239-254.
    [8]E. Nagyova, S. Scsukova, L. Nemcova, A. Mlynarcikova, Y.J. Yi, M. Sutovsky, P. Sutovsky. Inhibition of proteasomal proteolysis affects expression of extracellular matrix components and steroidogenesis in porcine oocyte-cumulus complexes[J]. Domestic Animal Endocrinology,2012, 44:50-62.
    [9]Khampoun Sayasith, Jacques Lussier, Monique Dore, Jean Sirois. Human chorionic gonadotropin-dependent up-regulation of epiregulin and amphiregulin in equine and bovine follicles during the ovulatory process[J]. General and Comparative Endocrinology,2013,180:39-47.
    [10]Glister C, Groome NP, Knight PG. Bovine follicle development is associated with divergent Changes in active-A, inhibin A and follistatin and the relative abundance of different follistatin isoforms in follicular fluid[J]. J Endocrinol,2006,188(2):215-225.
    [11]Vaskivuo, T.E. Tapanainen, J.S. Apoptosis in the human ovary[J]. Reprod Biomed Online,2003,6: 24-35.
    [12]Hussein, M.R. Apoptosis in the ovary:molecular mechanisms[J], Hum Reprod Update, 2005,11:162-177.
    [13]Asselin, E. Xiao, C.W. Wang, Y.F. Tsang, B.K. Mammalian follicular development and atresia: role of apoptosis[J]. Biol Signals Recept,2000,9:87-95.
    [14]Kaipia, A. Hsueh, A.J. Regulation of ovarian follicle atresia[J], Annu Rev Physiol,1997,59: 349-363.
    [15]Dana V. Lagaly, Pauline Y. Aad, Juan A. Grado-Ahuir, Laura B. Hulsey, Leon J. Spicer. Role of adiponectin in regulating ovarian theca and granulosa cell function. [J] Molecular and Cellular Endocrinology,2008,284:38-45.
    [16]Elikplimi K Asem, Shulin Feng, Susan R Stingley-Salazar, John J Turek, Augustine T Peter, J.Paul Robinson. Basal lamina of avian ovarian follicle:influence on morphology of granulosa cells in-vitro. Comparative Biochemistry and Physiology Part C:Pharmacology[J], Toxicology and Endocrinology,2000,125:189-201.
    [17]Jong Yeob Choi, Min Wha Jo, Eun Young Lee, Byung-Koo Yoon, Doo Seok Choi. The role of autophagy in follicular development and atresia in rat granulosa cells[J]. Fertility and Sterility, 2010,93:2532-2537.
    [18]Dong-Wook Park, Taesup Cho, Mi Ran Kim, Young Ah Kim, Churl K Min, Kyung Joo Hwang. ATP-induced apoptosis of human granulosa luteal cells cultured in vitro[J]. Fertility and Sterility, 2003,80:993-1002.
    [19]Craig L. Best, Patricia M. Griffin, Joseph A. Hill. Interferon gamma inhibits luteinized human granulosa cell steroid production in vitro[J]. American Journal of Obstetrics and Gynecology, 1995,172:1505-1510.
    [20]JoAnne S. Richards, Zhilin Liu, Tomoko Kawai, Kei Tabata, Hirohiko Watanabe, Deepa Suresh, Fang-Ting Kuo, Margareta D. Pisarska, Masayuki Shimada. Adiponectin and its receptors modulate granulosa cell and cumulus cell functions, fertility, and early embryo development in the mouse and human[J]. Fertility and Sterility,2012,98:471-479.
    [21]Ravid Sasson, Neomi Winder, Salem Kees, Abraham Amsterdam. Induction of apoptosis in granulosa cells by TNFa and its attenuation by glucocorticoids involve modulation of Bcl-2[J]. Biochemical and Biophysical Research Communications,2002,294:51-59.
    [22]Violeta Glamoclija, Katarina Vilovic, Mirna Saraga-Babic, Anamarija Baranovic, Damir Sapunar. Apoptosis and active caspase-3 expression in human granulosa cells[J]. Fertility and Sterility,2005,83:426-431.
    [23]Richard H Hildebrandt, Robert V Rouse, Teri A Longacre. Value of inhibin in the identification of granulosa cell tumors of the ovary[J]. Human Pathology,1997,28:1387-1395.
    [24]Hanne G Pedersen, Elaine D Watson, Evelyn E Telfer. Effect of ovary holding temperature and time on equine granulosa cell apoptosis, oocyte chromatin configuration and cumulus morphology[J]. Theriogenology,2004,62:468-480.
    [25]Li-Sha An, Xiao-Hua Yuan, Ying Hu, Zi-Yun Shi, Xiao-Qin Liu, Li Qin, Gui-Qing Wu, Wei Han, Ya-Qin Wang, Xu Ma. Progesterone production requires activation of caspase-3 in preovulatory granulosa cells in a serum starvation model[J]. Steroids,2012,77:1477-1482.
    [26]Xuesong Wen, Amanda J. Tozer, Dong Li, Suzanne M. Docherty, Talha Al-Shawaf, Ray K. lles. Human granulosa-lutein cell in vitro production of progesterone, inhibin A, inhibin B, and activin A are dependent on follicular size and not the presence of the oocyte[J]. Fertility and Sterility,2008, 89:1406-1413.
    [27]Runjun Yang, Shangzhong Xu, Zhihui Zhao, Junya Li. Fas ligand expression and mediated activation of an apoptosis program in bovine follicular granulosa cells[J]. Gene,2012,493:148-154.
    [28]E.J.C. Verbraak, E.M. van 't Veld, M. Groot Koerkamp, B.A.J. Roelen, T. van Haeften, W. Stoorvogel, C. Zijlstra. Identification of genes targeted by FSH and oocytes in porcine granulosa cells[J]. Theriogenology,2011,75:362-376.
    [29]De Kretser DM, Hedger MP, Loveland KL, et al. Inhibins, activins and follistatin in reproduction[J]. Hum. Reprod Update,2002,8:529-541.
    [30]Findlay JK, Drummond AE, Dyson ML et al. Recruitment and development of the follicle:the roles of the transforming growth factor-beta superfamily[J]. Mol. Cell Endocrinol.2002,191:35-43.
    [31]Juengel JL and McNatty, K,P. The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development[J]. Hum. Reprod,2005, Update 11:143-160.
    [32]Knight PG, Glister C. TGF-beta superfamily members and ovarian follicle development[J]. Reproduction,2006,132:191-206.
    [33]Chen F, Jiang X, Chen X, Liu G, Ding J. Effects of downregulation of inhibin alpha gene expression on apoptosis and proliferation of goose granulosa cells[J]. J Genet Genomics,2007,34: 1106-1113
    [34]Andreu-Vieyra C, Chen R, Matzuk MM. Effects of granulosa cell specific deletion of Rb inha-alpha null female mice[J]. Endocrinology,2007,148:3837-3849
    [35]Jin ZY, El-Deiry WS. Overview of cell death signaling pathways[J]. Cancer Biol Ther,2005,4: 139-163
    [36]姜励平。抑制素和bcl-2基因免疫对小鼠生长和繁殖的影响。[博士学位论文].南京:南京农业大学图书馆,2001
    [1]Yasunori Fujita, Keitaro Kojima, Nanako Hamada, Riyako Ohhashi, Yukihiro Akao, Yoshinori Nozawa, Takashi Deguchi, Masafumi Ito. Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells [J]. Biochemical and Biophysical Research Communications, 2008,377:114-119.
    [2]Rui E, Castro, Duarte M.S,Ferreira, Marta B, Afonso, Pedro M, Borralho, Mariana V, Machado, Helena Cortez-Pinto, Cecilia M.P, Rodrigues. miR-34a/SIRTl/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease [J]. Journal of Hepatology,2013,58:119-125.
    [3]Takashi Ito, Shusuke Yagi, Munekazu Yamakuchi, MicroRNA-34a regulation of endothelial senescence, Biochemical and Biophysical Research Communications [J],2010,398:735-740.
    [4]Tsung-Cheng Chang, Erik A. Wentzel, Oliver A. Kent, Kalyani Ramachandran, Michael Mullendore, Kwang Hyuck Lee, Georg Feldmann, Munekazu Yamakuchi, Marcella Ferlito, Charles J. Lowenstein, Dan E. Arking, Michael A. Beer, Anirban Maitra, Joshua T. Mendell. Transactivation of miR-34a by p53 Broadly Influences Gene Expression and Promotes Apoptosis [J]. Molecular Cell,2007,26:745-752.
    [5]Sarah K. Fineberg, Laboni L. Ghosh, B.J. He, Scott Q. Harper, Beverly L. Davidson. miR-34a modulates neural progenitor cell differentiation [J]. Developmental Biology,2008,319:535.
    [6]高佳莉,罗玉萍,李思光.miR-34基因家族的分子进化[J].动物学研究,2007,28(3):271-278.
    [7]He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ. A microRNA component of the p53 tumour suppressor network [J]. Nature.2007,447(7148):1130-1134.
    [8]Kumamoto K, Spillare EA, Fujita K, Horikawa I, Yamashita T, Appella E, Nagashima M, Takenoshita S, Yokota J, Harris CC. Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence [J]. Cancer Res,2008,68(9):3193-3203.
    [9]Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells [J]. Proc Natl Acad Sci USA,2007,104(39):15472-15477.
    [10]Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells [J]. Oncogene,2007,26(34):5017-5022.
    [11]Yan D, Zhou X, Chen X, Hu D, Dong XE, Wang J, Lu F, Tu L, Qu J. MicroRNA-34a inhibits uveal melanoma cell proliferation and migration through downregulation of c-Met [J]. Invest Ophthalmol Vis Sci,2009,50(4):1559-1565.
    [12]Rokhlin OW, Scheinker VS, Taghiyev AF, Bumcrot D, Glover RA, Cohen MB. MicroRNA-34 mediates AR-dependent p53-induced apoptosis in prostate cancer [J]. Cancer Biol Ther,2008,7(8): 1288-1296.
    [13]Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis [J]. Mol Cell,2007, 26(5):731-743.
    [14]Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis [J]. ProcNatl Acad Sci USA,2008,105(36):13421-13426.
    [15]Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing:miR-34a is a p53 target that induces apoptosis and G1-arrest [J]. Cell Cycle,2007,6(13):1586-1593.
    [16]Rui E. Castro, Duarte M.S. Ferreira, Marta B. Afonso, Pedro M. Borralho, Mariana V. Machado, Helena Cortez-Pinto, Cecilia M.P. Rodrigues. miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease [J]. Journal of Hepatology,2013,58:119-125.
    [17]Hwa-Ryeon Kim, Jae-Seok Roe, Ji-Eun Lee, In-Young Hwang, Eun-Jung Cho, Hong-Duk Youn. A p53-inducible microRNA-34a downregulates Ras signaling by targeting IMPDH [J]. Biochemical and Biophysical Research Communications,2012,418:682-688.
    [18]Nina Raver-Shapira, Efi Marciano, Eti Meiri, Yael Spector, Nitzan Rosenfeld, Neta Moskovits, Zvi Bentwich, Moshe Oren. Transcriptional Activation of miR-34a Contributes to p53-Mediated Apoptosis [J]. Molecular Cell,2007,26:731-743.
    [19]Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis [J]. Mol Cell,2007, 26(5):731-743.
    [20]Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing:miR-34a is a p53 target that induces apoptosis and Gl-arrest [J]. Cell Cycle,2007,6(13):1586-1593.
    [21]Yamakuchi, M. Ferlito, M. Lowenstein, C.J. miR-34a repression of SIRT1 regulates apoptosis [J]. ProcNatl Acad Sci U S A,105(2008) 13421-13426.
    [22]Wienholds E, Kloosterman WP, Miska E, et al. MicroRNA expression in zebrafish embryonic development [J]. Science,2005,309(5732):310-311.
    [23]Kim VN, Nam IW. Genomics of microRNA [J]. Trends Gen et 2006;22:165-173.
    [24]高佳莉,罗玉萍,李思光.miR-34基因家族的分子进化[J].动物学研究,2007,28(3):271-278.
    [25]He X, He L, Hannon GJ. The guardian's little helper:microRNAs in the p53 tumor suppressor network [J]. Cancer Res,2007,67(23):11099-11101.
    [26]Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth [J]. Cancer Res,2007,67(18):8433-8438.
    [27]Bommer GT, Gerin I, Feng Y, et al. P53 mediated activation of miRNA34
    candidate tumor-suppressor genes [J]. Curr Biol,2007,17:1298-1307.
    [28]Duan W, Gao L, Wu X, et al.MicroRNA-34a is an important component of
    PRIMA-1-induced apoptotic network in human lung cancer cells [J]. Int J Cancer,2009,11:1-8.
    [29]Rokhlin OW, Scheinker VS, Taghiyev AF, Bumcrot D, Glover RA, Cohen MB. MicroRNA-34 mediates AR-dependent p53-induced apoptosis in prostate cancer [J]. Cancer Biol Ther,2008,7(8): 1288-1296.
    [30]Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M.Transcriptional activation of miR-34a contributes to p53-mediated apoptosis [J]. Mol Cell,2007, 26(5):731-743.
    [31]Yamakuchi M, Ferlito M,Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis [J]. Proc Natl Acad Sci USA,2008,105(36):13421-13426.
    [32]Welch C, Chen Y,Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells [J]. Oncogene,2007,26(34):5017-5022.
    [33]Glister C, Groome NP, Knight PG. Bovine follicle development is associated with divergent Changes in active-A, inhibin A and follistatin and the relative abundance of different follistatin isoforms in follicular fluid [J]. J Endocrinol,2006,188(2):215-225.
    [34]Chen F, Jiang X, Chen X, Liu G, Ding J. Effects of downregulation of inhibin alpha gene expression on apoptosis and proliferation of goose granulosa cells [J]. J Genet Genomics,2007,34:1106-1113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700