拟南芥Rad23家族基因在胁迫应答中的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫外辐射敏感蛋白RAD23,是一种核苷酸切除修复因子,参与了DNA损伤核酸修复,细胞应激反应和生长发育等。真核生物体内的RAD23蛋白参与DNA损伤修复功能已有广泛研究,但RAD23蛋白在植物体内对细胞光损伤修复作用尚不清楚,因此,本文通过对Rad23家族基因生物信息学的分析以及大量突变体植株系统的研究,得到了如下研究结果:
     (1)分析了Rad23-4基因的时空表达特性及其蛋白定位,并系统研究了Rad23-4基因在紫外胁迫应答过程中的作用。结果显示:紫外胁迫处理后,rad23-4与野生型相比其花粉颗粒活性明显降低,种子败育率增加以及体内花青素含量明显降低。对一系列与NER修复相关基因进行分析表明,突变体Rad23-4T-DNA插入突变体内rad4基因mRNA表达量急剧降低,突变体内rad1、rad7、rad16基因表达和野生型表达中变化不大。其体内rad-4基因表达量和花青素含量降低,表明Rad23-4基因在植物的紫外胁迫应答中起重要作用。
     (2)实验成功构建了pCold-RAD23重组载体,pCold-RAD23重组载体经IPTG诱导后获得了表达,利用纯化后的重组蛋白制备了多克隆抗体。通过ELISA和WB方法检测制备的抗体具有较高的效价和特异性。同时,WB实验检测该抗体能识别植物体内的RAD23蛋白,免疫组化实验发现RAD23蛋白在花粉粒中表达较多。为进一步研究RAD23重组蛋白在体外是否具有紫外损伤修复功能,检测了重组蛋白处理后细胞的表型,实验发现构建的重组蛋白pCold-RAD23对紫外线损伤Hela细胞具有保护作用。
     (3)通过在ABA、NaCl、蔗糖和甘露醇等胁迫条件处理下,分析了拟南芥4种Rad23突变体植株的表型,实验发现Rad23-1、Rad23-3T-DNA插入突变体对ABA、NaCl、蔗糖和甘露醇都不敏感,而Rad23-2、Rad23-4T-DNA插入突变体对ABA和NaCl敏感,但对蔗糖和甘露醇不敏感。用ABA和NaCl处理后,与野生型相比,Rad23-2、Rad23-4T-DNA插入突变体萌发率明显降低,根伸长也受到抑制。同时,实验分析了Rad23-2、Rad23-4突变体和野生型体内胁迫诱导相关基因表达情况,结果表明:与野生型相比,Rad23-2、Rad23-4T-DNA突变体内胁迫应答基因RA29A/B,DREB1A/2A的表达降低,将35S::Rad23-2,35S::Rad23-4过表达到缺失突变体中,表型均得到回复,证明Rad23-2,Rad23-4能正调控相关胁迫应答基因。
     (4)运用GUS染色方法检测了Rad23-2基因的GUS活性,结果发现Rad23-2基因在幼苗以及成年植株的花粉粒中GUS活性较强,而花瓣、萼片和雌蕊等组织中的GUS活性较弱;rad23-2突变体与野生型相比,rad23-2突变体的花粉粒发育不良,萌发率下降,种子败育率增加,将35S::Rad23-2过表达到rad23-2缺失突变体中,表型得到回复。对一系列与花粉和绒毡层发育相关的基因检测分析发现,EMS1和TPD1在突变体rad23-2和野生型表达中变化不大,而MYB33/MYB65和AMS在rad23-2缺失突变体中的表达量明显低于野生型,而将35S::Rad23-2过表达到rad23-2缺失突变体中,能回复MYB33/MYB65和AMS基因的表达,证明Rad23-2基因通过正调控MYB33/MYB65和AMS基因来影响花粉粒发育。
Ultraviolet radiation sensitive protein RAD23, is a nucleotide excision repair factor, mainly involved in repairing the DNA damage, such as repairing the DNA damage by UV light, cellular stress response and growth. The function of RAD23protein involved in DNA damage repair has been studied extensively in Eukaryotic, but it is not clear the detailed function of RAD23proteins in plant.In this study, the bioinformatics and functions of Rad23family genes were analyzed.The detailed informaitons were listed as follows:
     (1)The expression level and protein location of Rad23-4was analyzed in different organs of Arabidopsis thaliana. The detailing functions of Rad23-4were analyzed after UV-B–treated. Compared with the wild type, the Rad23-4mutants showed increased numbers of collapstion pollen grain, lower levels of pollen grain germination, and higher seed abortion rates after UV-B–treated. Furthermore, the Rad23-4mutants decreased the anthocyanin production.Several NER genes were analyzed in Rad23-4mutants and wild-type.The expression level of rad1, rad7and rad16were not obviously different between Rad23-4mutants and wild-type, but the rad-4gene and anthocyanin production were obviously decreased. All results supported that the Rad23-4gene plays important roles in UV-B stress response.
     (2)The expression vector of pCold-RAD23recombinant protein was induced by IPTG. Then the recombinant protein was used as an antigen to prepare polyclonal antiserum in mice. The results showed that the polyclonal antiserum could specific reaction with the RAD23protein of Arabidopsis by WB and ELISA assays. Furthermore, the immunolocalization results showed that the expression level of RAD23protein was found to be high in the pollen grains. To further investigate the photo-protective mechanisms of RAD23protein from UV light irradiation, The Hela cells were irradiated by UV light and incubated with the fusion protein of pCold-RAD23, the results showed that the recombinant RAD23protein could protect the Hela cells from UV irradiation.
     (3) The phenotype of Rad23family gene was anlyzed after treating with ABA, NaCl, mannitol and sucrose. The results showed that the Rad23-1and Rad23-3mutant were not sensitive to ABA, NaCl, mannitol and sucrose,while the Rad23-2and Rad23-4mutant were sensitive to ABA, NaCl, but not sensitive to mannitol and sucrose. Compared with the wild type, the Rad23-2and Rad23-4mutants showed germination decreased and seedling root shorten after treating with ABA and salt. Several stress response genes were analyzed in Rad23-2, Rad23-4mutants and wild-type.Compared with the wild type, the expression level of RA29A/B and DREB1A/2A were obviously decreased. The35S::rad23-2and35S::rad23-4transgene were sufficient to restore the expression of RA29A/B and DREB1A/2A. These results indicated that Rad23-2and Rad23-4gene might positive regulate the expression of stress response genes
     (4) The GUS activity of Rad23-2gene was analyzed in different organs of Arabidopsis thaliana by GUS stain assay. From the results, the expression level of Rad23-2gene was found to be high in seedlings and pollen grains while low in petals, sepals, and pistil tissues. In addition, the phenotypes of rad23-2mutant, wild-type,35S::rad23-2were observed, and the rad23-2mutants showed increased numbers of abnormal pollen grain, lower levels of pollen grain germination, and higher seed abortion rates than wild-type. This defects can be rescued by35S::rad23-2, a transgene that restores the rad23-2expression of rad23-2mutant. Several genes underlying microspore and tapetum development were analyzed. These results showed that the expression levels of EMS1, TPD1and DYT1were not significantly different between the rad23-2mutants and wild-type. However,the levels of MYB33/MYB65and AMS gene expression in the Rad23-2mutant were significantly lower than those in the wild-type and the35S::rad23-2transgene was sufficient to restore the expression of MYB33/MYB65and AMS.These results indicated that Rad23-2might regulate pollen grains development via regulating the expression of MYB33/MYB65and AMS.
引文
[1] Xiong F S, Day T A. Effect of solar ultraviolet-B radiation during springtimeozone depletion on photosynthesis and biomass production of antarctic vascularplants. Plant Physiol,2001,125:738-751
    [2] Caldwell M, Ballare L, Bornman F, et al. Terrestrial ecosystems, increased solarultraviolet radiation and interactions with other climatic change factors,Photochem Photobiol Sci,2003,2:29-38
    [3] Blumthaler M, Ambach W. Indication of increasing solar ultraviolet-B radiationflux in alpine regions. Science,1990,248:206-208
    [4] Smirnoff N. Plant resistance to environmental stress. Cnrr Opin Biotechno,1998, l9:214-219
    [5]杜英君,史奕,刘振伟. UV-B辐射和Hg2+复合处理对黑小麦生理代谢和生长的影响.生态学杂志,2004,21(5):39-41
    [6]訾先能,强继业,陈宗瑜,郭世昌. UV-B辐射对云南报春花叶绿素含量变化的影响.农业环境科学学报,2006,21(3):39-41
    [7] Booij James IS, Dube SK, Jansen M, Edelman M, Mattoo AK. Ultraviolet-Bradiation impacts light mediated turnover of the photosystem II reaction centerheterodimer in Arabidopsis mutants altered in phenolic metabolism. Plant Physiol,2000,124:1275-1284
    [8] Landry LG, Chapple CC, Last RL. Arabidopsis mutants lacking phenolicsunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. PlantPhysiol,1995,109:1159-1166
    [9] Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci,2002,7:405-410
    [10] Frohnmeyer H, Staiger D. Ultraviolet-B radiation-mediated responses in plantsBalancing damage and protection. Plant Physiol,2003,133:1420-1428
    [11] Yannarelli GG, Noriega GO, Batlle A, Tomaro ML. Heme oxygenaseup-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygenspecies. Planta,,2006,224:1154-1162
    [12] Andley U P, Waish A, Kochevar IE, Reddan JR. Effect of ultraviolet-B radiationon protein synthesis in cultured lens epithelial cells. Curr Eye Res,1990,9:1099-1106
    [13] Hightower K S, MeCready J P, Borchman D. Membrane damage in UV-irradiatedlenses. Photochem Photobiol,1994,59:485-490
    [14] Caldwell C R. Ultraviolet-Induced photo degradation of cucumber microsomaland soluble proteintryp to phanyl residues in vitro. Plant Physiol,1993,101:947-953
    [15] Jordan B R, He J, Chow W S, Anderson J M. Changes in mRNA levels andpolypeptide subunits of ribulose1,5-bisphosphate carboxylase in response tosupplementar ultraviolet-B radiation. Plant Cell Environ,1992,15:91-98
    [16] Pfundel E E, Pan R S, Dilley R A. Inhibition of violaxanthin deepoxidation byultraviolet-B radiation in isolated chloroplasts and intact leaves. Plant Physiol,1992,98:1372-1380
    [17] Taira J, Mimura K, Yoneya T, Hagi, Murakami A, Makino K. Hydroxyl radicalformation by UV-irradiated epidermal cells. J Biochem,1992,111:693-695
    [18] Pare P W, TuMlinson J H. Induced synthesis of plant to lates. Nature,1997,385:30-31
    [19] Sudha G, Ravishankar G A. Involvementand interaction favorious signalingcompounds on the plant metabolic events during defense response, resistance tostress factors formation of secondary metabolites and their molecμlar aspects.Plant Cell,2002,71:181-212
    [20] Grotewold E, Chamberlin M, Snook M, Siame B, Butler L, Swenson J, Maddock S,St Clair G, Bowen B. Engineering secondary metabolism in maize cells ectopicexpression of transcription factors. Plant Cell,1998,10:721-740
    [21] Gandikota M, Kochko A, Chen L, Ithal N, Fauquet C, Reddy AR. Development oftransgenic rice plants expressing maize anthocyanin genes and increased blastresistance. Mol Breed,2001,7:73-83
    [22] Rozema J, Vande Staaij J, Bjorn LO, Caldwell M. UV-B as an environmentalfactor in plant life: Stress and regulation. Trends Ecol Evol,1997,12:22-28
    [23] Day TA, Martin G, Vogelmann TC. Penetration of UV-B radiation in foliage:evidence that the epidermis behaves as a non-uniform filter. Plant Cell Environ,1993,16:735-741
    [24] Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL. Arabidopsis flavonoidmutants are hypersensitive to UV-B irradiation. Plant Cell,1993,5:171-179
    [25] Bieza K, Lois R. An Arabidopsis mutant tolerant to lethal ultrviolet-B levelsshows constitutively elevated accumulation of flavonoids and other phenolics.Plant Physiol,2001,126:1105-1115
    [26] Fujibe T, Saji H, Arakawa K, Yabe N, Takeuchi Y, Yamamoto KT. A methylviologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive istolerant to supplemental ultraviolet-B irradiation. Plant Physiol,2004,134:275-285
    [27]李宇国,倪瑾,韩玲等.紫外光照射下富勒醇对细胞的防护作用.辐射研究与辐射工艺学报,2004,22(6):356-360
    [28] Liitzen A, Bisgaard HC, Rasmussen J, Cyclin D. expression and cell cycleresponse in DNA mismatch repair-deficient cells upon methylation andUV-Cdamage. Experimental Cell Research,2004,292:123-134
    [29] Abraham R T. Cell cycle check point signaling through the ATM and ATR kinases.Genes Develop,2001,15(17):2177-2196
    [30]王冰,藤田和子,山田武等.紫外线对体外培养小鼠胚细胞的影响.辐射防护,1997,17(3):200-207
    [31] Thomas S R, Dieter P, Katrin W. Analysis of UV-B-induced DNA damage and itsrepair in heat-shocked skin cells. Photochem Photobiol B Biol,1999,53:144-159
    [32] Paul C P, Denise R C, Lisa D M. Telomerase-immortalized human fibroblasts,retain UV-induced mutagenesis and p53-mediated DNA damage responses. DNARepair,2006,5(1):61-70
    [33]谢成英,蔡育军,丁健.损伤与肿瘤发生的研究进展.中国癌症杂志,2006,16(4):313-317
    [34] Bcrton T R, Pavone A, Fischer S M. Ultraviolet-B irradiation alters the cell cyclemachinery in murinc epidermis in vivo. Journal of Investigative DermatologyJinvest Dcrmatol,2001,117(5):1171-1178
    [35] Lo H L, Nakajima S, Ma. Differential biologic effects of CPD and6-4PPUV-induccd DNA damage on the induction of apoptosis and cell-cycle arrest.BMC Cancer,2005,19(5):135
    [36] Rcardon J T, Sancar A. Nuclcotide excision repair. Prog Nucleic Acid Res MolBioL,2005,79:183-235
    [37] Montserrat Cols Vidal, Williams G, Hoole D.. Charactcrisation of a carp cell linefor analysis of apoptosisf. Developmental and Comparative Immunology,2009,33:801-805
    [38] Lui S F Z, Batista, Bernd Kaina, Roge Rio Mcneghini, et a1. How DNA esions areturned into powerful killing structures: Insights from UV-induced apoptosis.Mutation Research,2009,681:197-208
    [39]冯莉,苏奉发,李丽等.紫外线致Hep2G2细胞调亡的分子机制初探.川北医学院学报,2004,19(1):16-19
    [40]吴曼.肿瘤遗传学.北京:科学出版社,2004,49-50
    [41]孙敬芬. DNA修复与人类疾病研究进展.癌变·畸变·突变,2002,14(4):261-265
    [42] Buschta-Hedayat N, Butefin T, Hess M T, et a1. Recognition of nonhybridizingbase pairs during nucleotide excision repair of DNA. Proc Natl Acad Sci USA,1999,96(11):6090-6095
    [43] Mitchell D L, Naim R S. The biology0f the (6-4)photoproduct. PhotcehemPhotobiol,1989,49(6):805-819.
    [44] Sancar A. Structure and function of DNA photolyase. Biochemistry,1994,33:2-9
    [45] Todo T. Functional diversity of the DNA photolyase/blue light receptor family.Mutat Res,1999,434:89-97
    [46] Chen J J, Mitchell Dand Britt A B. A light-dependent pathway for the eliminationof UV-induced pyrimidine (6-4) pyrimidinone photoproducts in Arabidopsisthaliana. Plant Cell,1994,6:1311-1317
    [47] Ahmad M, Jarilo J, Klimczak L, Landry L, Peng T, Last R and Cashmore A. Anenzyme similar to animal type II photolyases mediates photoreactivation inArabidopsis. Plant Cell,1997,9:199-207
    [48] Tanaka A, Sakamoto A, Ishigaki Y, Nikaido0, Sun G, Hase Y, Shikazono N, TanoS and Watanabe H. An ultraviolet Bresistant mutant will enhanced DNA repair inArabidopsis. Plant Physiol,2002,129:64-71
    [49] Waterworth W M, Jiang Q, West C, Nikaido M and Bray C. Characterization ofArabidopsis photolyase enzylrles and analysis of their role in protection fromultraviolet radiation. J Exp Bot,2002,53:1005-1015
    [50] Puchta H, Hohn B. From centimorgans to base pairs: Homologous recombinationin plants. Trends Plant Sci,1996,1:340-348
    [51] Vonarx E J, Mitchell H L, Karthikeyan R, Chatterjee I, and Kunz BA. DNA repairin higher plants. Mutat Res,1998,400:187-200
    [52] Britt A B. Molecular genetics of DNA repair in higher plants. Trends Plant Sci,1999,4:20-24
    [53] Smalle J, Vierstra R D. The ubiquitin26S proteasome proteolytic pathway. AnnuRev Plant Biol,2004,55:555-590
    [54] Dreher K, and Callis J. Ubiquitin hormones and biotic stress in plants. Ann BotLond,2007,99:787-822
    [55] Vierstra RD. The ubiquitin-26S proteasome system at the nexus of plant biology.Nat Rev Mol Cell Biol,2009,10:385-397
    [56] Lisa M Farmer, Vierstra R D. The RAD23Family Provides an EssentialConnection between the26S Proteasome and Ubiquitylated Proteins inArabidopsis. Plant Cell,2010,22:124-142
    [57] Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem,1998,67:425-479
    [58] Hochstrasser M. Ubiquitin-dependent protein degradation. Annu Rev Genet,1996,30:405-439
    [59] Koepp D M, Harper J W, Elledge S J. How the cyclin became a cyclin: regulatedproteolysis in the cell cycle. Cell,1999,97(4):431-434
    [60] Rock K L, Goldberg A L. Degradation of cell proteins and the generation of MHCclass-I presented peptides. Annu Rev Immunol,1999,17:739-779
    [61] Spence J, Gali RR, Dittmar G, Sherman F, Karin M, Finley D. Cellcycle-regulated modification ofthe ribosome by a variant multiubiquitin chain.Cell,2000,102(1):67-76
    [62] Hofmann R M, Pickart C M. Noncanonical MMS2-encoded ubiquitin-conjugatingenzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell,1999,96(5):645-653
    [63] Kaiser P, Flick K, Wittenberg C, Reed S I. Regulation of transcription byUbiquitination without proteolysis: Cdc34/SCF (Met30)-mediated inactivation ofthe transcription factor Met4. Cell,2000,102(3):303-314
    [64] Hicke L. Getting down with ubiquitin: turning off cell-surface receptors,transporters and channels. Trends Cell Biol,1999,9:107-112
    [65] Zacksenhaus E, Sheinin R. Molecular cloning, primary structure and expressionof the human X linked A1S9gene cDNA which complements the A1S9mouse Lcell defect in DNA replication. EMBO J,1990,9:2923-2929
    [66] McGrath J P, Jentsch S, Varshavsky A. UBA1: an essential yeast gene encodingubiquitin-activating enzyme. EMBO J,1991,10(1):227-236
    [67] Haas A L, Bright P M, Jackson VE. Functional diversity among putmive E2isozymes in the mechanism of ubiquitin-histone ligation. J Biol Chem,1988,263(26):13268-13275
    [68] Hershko A, Heller H, Elias S, Ciechanover A. Components of ubiquitin proteinligase system Resolution, affinity purification and role in protein breakdown. JBio Chem,1983,258(13):8206-8214
    [69] Jensen J P, Bates P W, Yang M, Vierstra R D, Weissrnan A M. Identification of afamily of closely related human ubiquitin conjugating enzymes. J Biol Chem,1995,270:30408-30414
    [70] Pickart C M. Ubiquitin enters the new millennium. Mol. Cell.,2001,8(30):499-504
    [71] Mastrandrea L D, You J, Niles E G, Pickart C M. E2/E3-mediated assembly oflysine29-linked polyubiquitin chains. J Biol Chem,1999,274(38):27299-27306
    [72] Chen P, Johnson P, Sommer T, Jentsch S, Hochstrasser M. Multipleubiquitinconjugating enzymes participate in the in vivo degradation of the yeastMAT alpha2reprcssor. Cell,1993,74(2):357-369
    [73] Chau V, Tobias J W, Bachmair A, Marriott D, Ecker D J, Gonda D K, VarshavskyA A. multiubiquitin chain is confined to specific lysine in a targeted short-livedprotein. Science,1989,243(4898):1576-83
    [74] Xie Y, Varshavsky A. The E2-E3interaction in the N-end rule pathway: theRING-H2finger of E3is required for the synthesis of multiubiquitin chain.EMBO J,1999,18(23):6832-6844
    [75] Hershko A, Heller H, Eytan E, Reiss Y. The protein substrate binding site of theubiquitin-protein tigase system. J Biol Chem,1986,261(26):11992-11999
    [76] Keeney S, Chang G J, Linn S. Characterization of a hunch DNA damage bindingprotein implicated in xeroderma pigenantosum E. J Biol chem,1993,268(28):21293-21300
    [77] Jone C J, Wood R D. Preferential binding of the xerodenns pigemntosum group Aconvlementing protein to damaged DNA. Biochemistyr,1993,32(45):12096-12104
    [78] Wold M S. Replication protein A: a heterotrimefic, single-stranded DNA bindingprotein required for eukaryotic DNA metabolism. Anna Rev Biochem,1997,66:61-92
    [79] Hunag J C, Sancar A. Determination of minimum substrate size for humanexcinuclease. J Biol Chem,1994,269(29):19034-19040
    [80] Lehmann A R. The xeroderma pigmentosum group D(XPD)gene: one gene, twofunctions, three diseases. Genes Dev,2001,15:15
    [81] Britt A, Fiscus E. Response of Arabidopsis DNA repair defective mutants to solarradiation. Plant Physiol,2003,118:183-192
    [82] Hoeijmakers. Genome maintenance mechanisms for preventing cancer. Nature,2001,41:366-374
    [83] Hanawalt P C. Subpathways of nucleotide excision repair and their regulation.Oncogene,2002,21:8949-8956
    [84] Zou Y, Van Houten B. Strand opening by the UvrA2complex allows dynamicrecognition of DNA damage. EMBO Journal,1999,18:4898
    [85] Fidantsef A, Mitchell D, Britt A. The Arabidopsis UVHl gene is a homolog of theyeast repair endonuclease RADl. Plant Physiol,2000,124:579-586
    [86] Liu Z, Hall J D, Mount D W. Arabidopsis UVH3gene is a homolog of theSaccharomyces cerevisiae RAD2and human XPG DNA repair genes. Plant J,2001,26:329-338
    [87] Kunz B, Anderson H, Creighton J, McCarthy L, Straffon A, Tabone E and VonarxE. Plant genes implicated in nucleotide excision repair or translesion synthesis.DNA Repair and Mutagenesis,2002:111-139
    [88] Hefner E A, Preuss S B and Britt A B. Arabidopsis mutants sensitive to gammaradiation include the homolog of the human repair gene ERCCl. J Exp Bot,2003,54:669-680
    [89] Resnick M A, Cox B S. Yeast as an honorary mammal. Murat Res,2000,451:1-11
    [90] Friedberg E C, Siede W, Cooper A J, Broach J K, Pringle J R. The Molecular andCellular Biology of the Yeast Saccharomyces, Genome Dynamics, ProteinSynthesis and Energetics. New York: Cold Spring Harbor, Cold Spring HarborLaboratory,1991:147-192
    [91] Friedberg E C, Walker G C, Siede W. DNA Repair and Mutagenesis. WashingtonDC, American Society for Microbiology,1995
    [92] Prakash S and Prakash L. Nucleotide excision repair in yeast. Mutat Res,2000,451:13-24
    [93] Batty D P and Wood R D. Damage recognition in nucleotide excision repair ofDNA2Gene,2000,241:193-204
    [94] Lambertson D, Chen L and Madura K. Pleiotropic defects caused by loss of theproteasome-imeracting factors Rad23and Rpn10of Saccharomyces cerevisiae.Genetics,1999,153:69-79
    [95] Elsasser S, Chandler Militello D, Muller B, Hanna J and Finley D. Rad23andRpn10serve as alternative ubiquitin receptors for the proteasome. Biol Chem,2004,279:26817-26822
    [96] Hiyama H, Yokoi M, Masutani C, Sugasawa K, Maekawa T,'Tanaka K,Hoeijmakers J, Hanaoka F. Interaction of hHR23with S5a1ike domain of hHR23mediates interaction with S5a subunit of26S proteasome. Biol Chem,1999,274:28019-28025
    [97] Schauber C, Chen L, Tongaonkar P, Vega I, Lambertson D, Potts W and MaduraK. Rad23links DNA repair to the ubiquitin proteasome pathway. Nature,1998,391:715-718
    [98] Funakoshi M, Sasaki T, Nishimoto T and Kobayashi H. Budding yeast Dsk2p is apolyubiquitin-binding protein that can interact with the proteasome. Proc NatlAcad Sci,2002,99:745-750
    [99] Bertolaet B L, Clarke D J, Wolff M, Watson M H, Henze M, Divim Gand Reed S I.UBA domains of DNA damage inducible proteins interact with ubiquitin. NatureStuct Biol,2001,8:417-422
    [100] Chen L, Shinde U, Ortolan T Gand Madura K. Ubiquitin-associated (UBA)domains in Rad23bind ubiquitin and promote inhibition of multiubiquitin chainassembly. EMBO Rep,2001,2:933-938
    [101] Wilkinson C R Seeger M, Hartmarm Petersen R, Stone M, Wallace M, Semple Cand Gordon C. Proteins containing the UBA domain are able to bind tomulti-ubiquitin chains. Nature Cell Bio1,2001,3:939-943
    [102] Masutani C, Sugasawa K Yanagisawa J, Sonoyama T, Ui M, Enomoto T, TakioKTanaka K van der Spek P J, Bootsrna D, et a1. Purification and cloning of anucleotide excision repair complex involving the xeroderma pigmentosum groupC protein and a human homologue of yeast RAD. EMBO,1994,13:1831-1843
    [103] Guzder S N, Baillyv, Sung P, Prakash L, Prakash S. Yeast DNA repair proteinRAD23promotes complex formation between transcription factor TFIH and DNAdamage recognition factor RAD4. J Biol Chem,1995,270:8385-8388
    [104] Guzder S N, Sung P, Prakash L and Prakash S. Affinity of yeast nucleotideexcision repair factor2, consisting of the Rad4and Rad23proteins, for ultravioletdamaged DNA. Biol Chem,1998,273:31541-31546
    [105] Jansen L E, Verhage R A and Brouwer J. Preferential binding of yeast Rad23complex to damaged DNA. Biol Chem,1998,273:33111-33114
    [106] Guzder S N, Sung P, Prakash L and Prakash S. Synergistic interaction betweenyeast nucleotide excision repair factors NEF2and NEF4in the binding ofUltraviolet-damaged DNA. Biol Chem,1999,274:24257-24262
    [107] Hey T, Lipps G, SugasawaK1wai S, Hanaoka F and Krauss G. The XPC-HR23Bcomplex displays high affinity and specificity for damaged DNA in atrue-equilibrium fluorescence assay. Biochemistry,2002,41:6583-6587
    [108] Lommel L, Ortolan T, Chen L, Madura K and Sweder K S. Proteolysis of anucleotide excision repair protein by the26Sproteasome. Curr Genet,2002,42:9-20
    [109] Ng J M, Vermeulen W, Van der Horst G T, Bergink S, SugasawaK Vrieling Hand Hocijmakers J H. A novel regulation mechanism of DNA repair by damageinduced and RAD23dependent stabilization of xeroderma pigmentosum group Cprotein. Genes Dev,2003,17:1630-1645
    [110] Okuda Y, Nishi J M, Vermeulen W, Horst G T, Mori T, Hoeijmakers J H,Hanaoka F and Sugasawa K. Relative levels of the two mammalian Rad23homologs determine composition and stability of the xeroderma pigmentosumgroup C protein complex. DNA Repair,2004,3:1285-1295
    [111] Zhu J K. Salt and drought stress singnal transduction in plant. Annual Review ofPlant Biology,2002,53:247-273
    [112]向旭,傅家瑞.脱落酸应答基因的表达调控及其与逆境胁迫的关系.植物学通报,1998,15(3):11-16
    [113] Ono A, Izawa L, Chua N H, Shimamoto K. The radl6B promoter of rice containstwo distinct abscisic acid-responsive elements. Plant Physiology,1996,112:483-491
    [114] Caries C, Bies-Etheve N, Aspart L,, Leon-Kloosterziel K M, Koornneef M,Echeveria M, Delseny M. Regulation of Arabidopsis thaliana Era genes: role ofABl5. Plant Journal,2002,30:373-383
    [115] Uno Y, Furihata T, Abe H, Yoshida Shinozaki K. Arabidopsis basic leucinezipper transcription factors involved in an abscisic acid dependent signaltransduction pathway under drought and high-salinity conditions. Proceedings ofthe National Academy of Sciences,2000,97:11632-11637
    [116] Kang J Y, Choi H I, Im M Y, Kim S Y. Arabidopsis basic leucine zipper proteinsthat mediate stress-responsive abscisic acid signaling. Plant Cell,2002,14:343-357
    [117] Shinozaki K Yamaguchi·Shinozaki K. Molecular responses to dehydration andlow temperature: differences and cross-talk between two stress signaling pathways.Current Opinion in Plant Biology,2000,3:217-223
    [118] Abe H, Urao T, Ito T, Seki M, Shinozaki K. Arabidopsis AtMYC2(bHLH) andAtMYB2(MYB)function as transcriptional activators in abseisic acid signaling.Plant Cell,2003,15:63-78
    [119] Werailnyk E, Orr W, White T C, Iu singh J. Characterization of three relatedcDNA low temperature-regulated from winter Brassi canapus. Plant Physiology,1993,101:171-177
    [120] Fujita M, Fujita Y, Maruyama K. A dehydration-induced NAC protein, RD26, isinvolved in a novel ABA-dependent stress-signaling pathway. Plant Journal,2004,39:863-876
    [121] Yamaguchi-Shinozaki K, Kasuga M, Liu Q, Nakashima K, Sakuma Y Abe H,Shinwari Z K, Seki M, Shinozaki K. Biological mechanisms of drought stressresponse. JIRCAS Working Report,2002,2:1-8
    [122] Cutler S R, Ehrhardt D W, Griffitts J S, et al. Random GFP: cDNA fusionsenable visualization of subcellμlar structures in cells of Arabidopsis at a highfrequency. Proc Natl Acad Sci,2000,97(7):3718-3723
    [123] Meadus1W J. A semi-quantitative RT-PCR method to measure the in vivo effectof dietary conjμgated linoleic acid on porcine muscle PPAR gene expression.Biological Procedures Online,2003,5(1):20-28
    [124] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacteriummediated transformation of Arabidopsis thalina. Plant J,1998,16(6):735-743
    [125] Fan L M, Wang Y F, Wang H, Wu W H. In vitro Arabidopsis pollengermination an characterization of the inward potassium currents in Arabidopsispollen grain protoplasts. J Exp Bot,2001,361:1603-1614
    [126] Sheila A, Johnson Brousseaus A, Mc CormickS. Acompendium of methodsuseful for characterizing Arabidopsis pollen mutants and gametophyticallyexpressed genes. Plant J,2004,39:761-775
    [127] Alexander MP. Differential staining of aborted and nonaborted pollen. StainTechnol,1969,41:117-122
    [128]王钦丽,卢龙斗,吴小琴,陈祖铿,林金星.花粉的保存及其生活力测定.植物学通报,2002,19:365-373
    [129] Schroeder J I, Kwak J M, and Allen J. Guard cell abscisic acid signalling andengineering drought hardiness in plants. Nature,2001,410:327-330
    [130] Bray E A. Abscisic acid regulation of gene expression during water deficit stressin the era of the Arabidopsis genome. Plant Cell Environ,2002,25:153-161
    [131] Finkelstein R R, Gibson S. ABA and sugar interactions regulating development.Cross-talk or voices in a crowd? Curr Opin Plant Biol,2002,5:26-32
    [132] Assmann S M. STOMATA1opens the door to ABA signaling in Arabidopsisguard cells. Trends Plant Sci,2003,8:151-153
    [133] Yamaguchi Shinozaki K, Shinozaki K. Transcriptional regulatory networks incellular responses and tolerance to dehydration and cold stresses. Annu Rev PlantBiol,2006,57:781-803
    [134] Kurkela S, Borg-Franck M. Structure and expression of kin2, one of two cold-and ABA-induced genes of Arabidopsis thaliana. Plant Mol Biol,1992,19:689-692
    [135] Yamaguchi-Shinozaki K, and Shinozaki K. A novel cisacting element in anArabidopsis gene is involved in responsiveness to droμght, low-temperature orhigh-salt stress. Plant Cell,1994,6:251-264
    [136]朱广廉.植物体内游离脯氨酸的测定.植物生理学通讯,1986,22(1):35-37
    [137] Xiushan Li, Lijian Zhao, Dong-ying Tang, Xiaoying Zhao, Bin Liu, XuanmingLiu.Purification of Arabidopsis Rad23Recombinant Protein in EngineeringBacteria and Preparation of Its Polyclonal Antibody. Journal of Hunan universityScience,2011,11:66-69
    [138]陈向齐,刘向农,牛高祥.中波紫外线对人永生化角质形成细胞株凋亡和死亡的影响.中国麻风皮肤病杂志,2008,24:l18-120
    [139]陈小义,张敏,买霞.Hoechst33342/PI双荧光活染法快速检测肿瘤细胞药物敏感性.武警医学院学报,2001,10:300-302
    [140] Gruill FR,Van KJ, Muiienders LH. UV-induced DNA damage, repair, mutationsand oncogenic pathways in skin cancel.J Photoehem Photobiol B,2001,63:19–27.
    [141] Cutler S R, Ehrhardt D W, Griffitts J S, et al. Random GFP: cDNA fusionsenable visualization of subcellμlar structures in cells of Arabidopsis at a highfrequency. Proc Natl Acad Sci,2000,97(7):3718-3723
    [142] Yang SL, Xie LF, Mao HZ, Puah CS, Yang WC, Jiang L, Sundaresan V, YeDTapetum determinant1is required for cell specialization in the Arabidopsisanther.Plant Cell,2003,15:2792–2804
    [143] Zhao D Z, Wang G F, Speal B, Ma H. The excess microsporocytes1geneencodes a putative leucine-rich repeat receptor protein kinase that controlssomatic and reproductive cell fates in the Arabidopsis anther.Genes Dev,2002,16:2021–2031
    [144] Zhang W, Sun YL, Timofejeva L Regulation of Arabidopsis tapetumdevelopment and functionby dysfunctional tapetum (DYT1) encoding a putativebHLH transcription factor. Development,2006,133:3085–3095
    [145] Sorensen AM, Kr ber S, Unte US, Dekker K, Saedler H The ArabidopsisABORTED MICROSPORES (AMS) gene encodes a MYC class transcriptionfactor.Plant J,2003,33:413–423
    [146] Millar A A, Gubler F.The Arabidopsis GAMYB-like genes, MYB33and MYB65,
    are microRNA-regulated genes that redundantly facilitate anther
    development.Plant Cell,2005,17:705–721

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700