太西无烟煤制备蜂窝状活性炭及其用于烟气脱硝的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤烟气污染已成为制约我国社会经济可持续发展的重要因素,烟气脱硝是解决其中氮氧化物污染问题的重要技术手段。活性炭烟气脱硝技术可在锅炉排烟温度下操作,烟气无需再热,是适合我国国情的烟气脱硝新技术。目前在烟气脱硝技术中应用较多的活性炭材料是颗粒状活性炭,这种炭材料在实际操作中最突出的问题是床层压力大、抗粉尘堵塞能力弱。因此开发新型活性炭对解决现行炭法烟气脱硝技术中存在的问题具有重大的意义。蜂窝状活性炭是一种新型的活性炭,其最大的优点是流体力学性能好,在烟气脱硝领域中具有广阔的应用前景。
     本文创造性地开发了以煤为主要原料,添加煤焦油兼作为低温和高温黏结剂,不加其他任何添加剂,通过物料混合、真空练泥、整体挤出成型、干燥、炭化、水蒸汽活化等工序制备蜂窝状活性炭的新工艺,采用变形度测试、N_2吸附、抗压强度测试等表征手段,研究了煤泥制备、挤出成型工艺参数、炭化和活化条件对最终蜂窝状活性炭外形结构的变化、孔隙结构以及机械强度的影响规律,并探讨了煤基蜂窝状活性炭作为催化剂载体在催化还原烟气中氮氧化物(NO_x)的可行性,为实现蜂窝状活性炭在烟气脱硝中的工业化提供了理论基础。
     有关实验及主要结果如下:
     1.煤焦油与煤粉通过整体挤出成型法能够得到蜂窝坯体。文献认为,水溶性有机粘合剂能够提高煤粉泥料的可塑性,可避免煤基蜂窝坯体在干燥过程中开裂现象的发生;润滑剂的加入能够减少煤粉泥料与模具之间的摩擦阻力,两者被认为是煤基蜂窝挤出成型必不可少的成分。事实上,流动性良好的低温煤焦油具有上述两者的功能,采取合适的工艺可以与煤制备出性能优异的蜂窝状活性炭。
     2.微波干燥是保持蜂窝坯体结构完整性的重要手段。
     3.在相同炭化温度不同炭化升温速率下得到的蜂窝半焦收缩率无明显差异,蜂窝半焦的收缩率取决于炭化温度;而蜂窝半焦的径向弯曲率与炭化温度和炭化升温速率均无明显关联。
     4.活化温度和活化时间显著影响蜂窝状活性炭的孔隙结构和机械强度。随着活化时间的增加,蜂窝状活性炭总孔容增大,机械强度降低。
     5.负载V_2O_5后硫化处理是提高煤基蜂窝状活性炭低温脱硝活性的有效手段。当烟气中存在SO_2时,反应生成的H_2SO_4及硫酸氨盐沉积在活性炭孔隙中,覆盖了活性点,造成有效比表面积降低,使得脱硝活性快速下降。切断SO_2后,脱硝活性缓慢上升但不能完全恢复,并且之后相当长一段时间内有SO_2逸出,说明脱硝活性的下降起源于SO_2在载体上的吸附,由SO_2吸附引起的这部分活性的降低能够恢复。
The pollution of NO_x from flue gas has become a critical factor that restricts the development of economy and society in China.It is very important to find flue gas DeNO_x technology to solve the problem of NO_x pollution.DeNO_x technology by activated carbon can be operated under the temperature of flue gas,the flue gas need no reheating,which make it fit the situation of our country.Granule activated is the main materials used in the flue gas DeNO_x in recent years.Its shortcoming is that it has high pressure drop and bad anti-dust blocking ability when used in packed bed.So exploiture a new activated carbon material have great significance in solving questions which exists in current technology of flue gas DeNO_x.Activated carbon honeycomb is a new activated carbon,which has good hydrodynamic performance.So this material has bright prospect in flue gas DeNO_x.
     In this dissertation,a series of ACH was prepared through bulk extrusion of a kind of anthracite and coal tar,followed by carbonization and activated in steam.In this technology,coal tar is used as the adhesive and no other organic additive is added.The properties of ACH were characterized by nitrogen adsorption,deformation、shrinkage test and mechanical strength test.Activity of ACH supported V_2O_5 catalyst in selective catalytic reduction of nitric oxide with ammonia was also studied.All the results can offer some theoretics bases for realizing industrial application of activated carbon honeycomb in the field of flue gas DeNO_x. Relative experiments and the main results are listed below.
     1.ACH monoliths were prepared by extruding of a mixture of anthracite and coal tar.In previous work,the water-soluble organic adhesive and lubricating oil were thought to be necessary additives in extrusion of coal-based honeycomb.In this work,we use coal tar which has good liquidity as the only adhesive to prepare ACH monoliths.
     2.Microwave drying is an important way to maintain the structural integrity of the honeycomb monoliths.
     3.The semi-coke under the same carbonization temperature but different carbonization heating rate have no significant difference in contraction,the shrinkage rate of char depends on the carbonization temperature.The carbonization temperature and carbonization heating rate have no significant associated with radial bending of semi-coke.
     4.Activation temperature and activation time have a great impact on the pore structure and mechanical strength of coal-based ACH.With the increase in activation time,the total pore volume of activated carbon honeycomb increases,lower mechanical strength.
     5.The SCR activity of ACH catalyst can be improved by supporting V_2O_5 and further sulfating treatment.The NO conversion would be suddenly drop in the present of SO_2,which results from pore plugging from deposition of ammonium-sulfate salts such as NH_4HSO_4 and(NH_4)_2S_2O_7 on the catalyst surface formed by SO_2 oxidation.The SCR activity can be partly resumed after SO_2 is cut off,we also found SO_2 in the out gas.From the phenomena, we can conclude that the reduction of NO conversion is caused by the adsorption of SO_2 on the surface of the catalyst,which can be removed out.
引文
[1]AA Lizzio,JA Debarr.Mechanism of SO_2 removal by carbon[J].Energy Fuels,11(1997):284-291.
    [2]郝吉明,王书肖,陆永琪.燃煤二氧化硫污染控制技术手册.化学工业出版社,2002,北京.p358.
    [3]Lisovskii A,Shter GE,Semiat R,Aharoni C.Adsorption of SO_2 by active carbon treated by HNO_3:1.Effect of the treatment on adsorption of SO_2 and extractability of the acid formed[J].Carbon,35(10-11)(1997):1639-1643.
    [4]Richter E.Carbon catalysts for pollution control[J].Catal Today,7(2)(1990):93-112.
    [5]Kazuhiko Tsuji,Ikuo Shiraishi.Combined desulfurization denitrification and reduction of air toxics using activated coke[J].Fuels,1997,76(6):549-553.
    [6]A Alvarez-Merino,Francisco carrasco-Marin,Carlos Moreno-Castilla.Adsorption of SO_2 from flowing air by alkaline-oxide-containing activated carbons[J].Applied Catalysis B,13(1997):229-240.
    [7]Paolo Davini.The effect of certain metallic derivatives on the adsorption of sulphur dioxide on active carbon[J].Carbon,39(2001):419-424.
    [8]刘守军,刘振宇,朱珍平,牛宏贤,胡天斗,谢亚宁,刘涛.新型低温CuO/AC脱硫剂制备-煅烧温度对脱硫活性的影响[J].环境科学,1(2000):12-17.
    [9]刘守军,刘振宇,牛宏贤,朱珍平.新型低温CuO/AC脱硫剂制备及表征[J].燃料化学学报,27(增刊)(1997):186-191.
    [10]马建蓉.活性焦担载V_2O_5同时脱硫脱硝的研究.中国科学院山西煤炭化学研究所博士学位论文,2005,p37-39.
    [11]I.Mochida,M.Kishino,S.Kawano,H.Iwaizono,A.Yasutake,M.Yoshikawa.Initial period of NO-NH_3 reaction over a heat-treated pitch-based active carbon fiber[J].Energy & Fuels,11(1997):307-310.
    [12]Zhenping Zhu,Zhenyu Liu,Shoujun Liu and Hongxian Liu.Adsorption and reduction of NO over activated coke at low temperature[J].Fuel,79(2000):651-658.
    [13]T.Grzybek,H.Papp.Selective catalytic reduction of NO by ammonia on Fe~(+3)-promoted active carbon[J].Applied Catalysis B,1(1992):271-283.
    [14]Zhenping Zhu,Zhenyu Liu,Shoujun Liu et al.A novel carbon-supported vanadium oxide catalyst for NO reduction with NH_3 at low temperatures[J].Applied Catalysis B,23(1999):L223-229.
    [15]Zhenping Zhu,Zhenyu Liu,Shoujun Liu et al.Catalytic NO reduction with ammonia at low temperatures on V_2O_5/AC catalysts:effect of metal oxides and SO_2[J].Applied Catalysis B, 30(2001):267-276.
    [16]K.Knoblauch,E,Richter,H.J(u|¨)ntgen.Application of active coke in processes of SO_2 and NO_x removal from flue gases[J].Fuel,60(1981):832-838.
    [17]K.Tsuji,I.Shiraishi.Combined desulfurization,denitrification and reduction of air toxics using activated coke:2:Process applications and performance of activated coke[J].Fuel,76(7)(1997):555-560.
    [18]罗永刚,李大冀,杨亚平.活性炭联合脱硫脱硝工艺[J].热能动力工程,16(2001):444-447.
    [19]高尚愚,活性炭的应用技术[M].东南大学出版社,南京,2002年7月,254-266.
    [20]David Golson,K.Tsuji,I.Shiraishi.The reduction of Gas Phase Air Toxics from Combustion and Incineration Source Using the MET-Mitsui-BF Activated Coke Process[J].Fuel Process Technology,65-66(2000):393-405.
    [21]Jimmie L,Williams.Monolith structure,material,properties and uses[J].Catalysis Today,2001,69:3-9.
    [22]J.P Day,L.S.Socha.SAE Paper No.910371,1991.
    [23]T.F.Cash,J.L.Williams,U.H.Zink,SAE Brazil.Paper No.982927,1998.
    [24]Theo Vergunst,Marco J G Linders,Freek Kapteijin.etc.Carbon-based Monolithic Structures[J].Catalysis reviews,2001,(43)(3):291-314.
    [25]Bansal CR,Donnet J-B,Stoeckli F.Active carbon New York:Marcel Dekker,1998.
    [26]Tien C.Adsorption calculations and modeling.Butter-worth-Heinemann,London 1994,p.123.
    [27]K.P.Gadkaree.Carbon honeycomb structures for adsorption application[J].Carbon,1998,36:981-989.
    [28]A.B.Fuertes,G.Martian,D.M.Nevskaia.Adsorption of volatile organic compounds by means of activated carbon fiber-based monoliths[J].Carbon,2003,41:86-87.
    [29]D.Lozano-Castello,D.Cazorla-Amoros,A.Linares-Solano,D.F.Quinn.Activated carbon monoliths for methane storage:influence of binder[J].Carbon 40(2002) 2817-2825.
    [30]Laishuan Liu,Zhenyu Liu,Zhanggen Huang,Zenghou Liu,Pingguang Liu.Preparation of activated carbon honeycomb monolith directly from coal[J].Carbon 2006;44:1598-1601.
    [31]K.P.Gadkaree.Carbon,1998,36,981.
    [32]K.P.Gadkaree,M.Jaroniec.Pore structure development in activated carbon honeycomb[J].Carbon 38(2000)983-993.
    [33]Nakanisai K,Songn N.Phase-separation in silica sol-gel system containing polyaerylic acid 1.Gel gormation behavior and effect of solvent composition[J].Jnon-cryst solids,1992,139:1-13.
    [34]钱慧娟.日本活性炭品种及其发展动向[J].世界林业研究,1994,7(5):61-66.
    [35]乔惠贤,尹维东,栾志强,等.大风量VOCs废气治理[J].环境工程,2004,22(1):36-38.
    [36]Teresa Valdes-Solfs,Gregorio Marban etc.Low-temperature SCR of NOx with NH_3 over carbon-ceramic cellular monolith-supported manganese oxides[J].Catalysis Today,2001,69:259-264.
    [37]Teresa Valdess-Solis,Gregorio Marbfin etc.Low-temperature SCR of NOx with NH_3 over carbon-ceramic supported catalysts[J].Applied Catalysis B:Environmental,2003,46:261-271.
    [38]J Pasel,P.Kabner B.Montanari,M.Gazzano,etc.Appl.Catal.B:Environ,1998,18:199.
    [39]Z.Zhu,Z.Liu,S.Liu,etc.Appl.Catal.B:2000 26:25.
    [40]E Garcia-Bordeja,A Monzon,M J Lazaro,R Moline.Promotion by a second metal or SO_2 over vanadium supported on mesoporous carbon-coated monoliths for the SCR of NO at low temperature[J].Catalysis Today 2005.
    [41]Yanli Wang,Zhenyu Liu,Liang Zhan,etc.Performance of an activated carbon honeycomb supported V_2O_5 catalyst in simultaneous SO_2 and NO removal[J].Chemical Engineering Science,2004,59:5283-5290.
    [42]Garcia-Bordeje.etc.Structure of vanadium oxide supported on mesoporous carbon-coated monoliths and relationship with its catalytic performance in the SCR of NO at low temperatures[J].Journal of Catalysis,2004,223:395-403.
    [43]Tennison SR.Phenolic resin-derived activated carbons[J].Appl.Catal.A:General 1998;173:289-311.
    [44]M.Yates,J.Blanco,P Avila,M.P Martion.Honeycomb Monlith of Activated Carbons for Effluent Gas Purification.Microporous and Mesoporous Materials[J].2000,37:201-208.
    [45]Takeuchi Y,Hino M,Yoshimura Y,Otowa T,Izuhara H,Nojima T.Removal of single component chlorinated hydrocarbon vapor by activated carbon of very high surface area.Sep.Purification Technology 1999;15:79-90.
    [46]Vergunst Th,Linders M J G,kapteijn F,et al.Carbon-based monolithic structures[J].Catal Rev Sci Eng,2001,43(3):291-314.
    [47]Wigmans T.Industrial aspects of production and use of activated carbons[J].Carbon 1989;27(1):13-22.
    [48]Jankowska H,Swiatkowski A,Choma J.Active carbon.New York:Ellis Horwood,1991,p58-122.
    [49]Radovic LR,Lizzio AA,Jiang H.Reactive surface area:an old but new concept in carbon gasification.In:Lahaye J,Ehrburger P,editors,Fundamental issues in control of carbon gasification reactivity,Netherlands:Kluwer Academic,1991,p533-571
    [50]左宋林,高尚愚,阮锡根,徐柏森.炭化过程中的竹材收缩率[J].南京林业大学学报.2003;27(3):15-20.
    [51]立本英机,安部郁夫.活性炭的应用技术-其维持管理及存在问题[M].高尚愚译.南京:东南大学出版社,2002,30-124.
    [52]孙康,蒋剑春,张天健.水蒸气法制备橡胶籽壳活性炭的研究[J].林产化学与工业,2006.26(20):41-43.
    [53]王宁,苏伟,周理.水蒸气活化法制备椰壳活性炭的研究[J].炭素,2006(2):44-49.
    [54]Smisek M,Cerny S.Activated carbon.New York:Elservier,1997,p114-213.
    [55]黄律先,木材热解工艺学[M].北京:中国林业出版社,1981,p47-80.
    [56]Rist LP,Harison DP.Surface area and pore development during lignite activation[J].Fuel 1985;64(3):291-307.
    [57]张学军,沈增民.沥青基活性炭纤维的制备、结构及性能[J].新型炭材料,1999,14(2):59-66.
    [58]柳来栓,刘振宇,黄张根,刘增厚.煤种对蜂窝状活性炭性能的影响[J].新型炭材料,2007,22(1):28-34.
    [59]Olson DG,Tsuji K,Shiraishi I.The reduction of gas phase air toxics from combustion and incineration sources using the MET-Mitsui-BF activated coke process[J].Fuel proc.Tech.,2000,65-66:393-405.
    [60]杜亚平,毛清龙,张德祥,高晋生.石油焦基活性炭制备工艺对其吸附性能及孔结构的影响[J].新型炭材料,2003;18:225-230.
    [61]刑伟,阎子峰.石油焦预氧化对超级活性炭孔结构和表面化学性质的影响[J],新型炭材料,2002;17:25-30.
    [62]Huang ZG,Zhu ZP,Liu ZY.Combined effect of H_2O and SO_2 on V_2O_5/AC catalysts for NO reduction with ammonia at low temperatures[J].Appl.Catal.B:Environmental.2002;39:361-368.
    [63]王艳莉.低温同时脱硫脱硝的蜂窝状V_2O_5/ACH催化剂研究.中国科学院山西煤炭化学研究所博士学位论文,2004,p49-74.
    [64]Huang ZG,Zhu ZP,Liu ZY,Liu QY.Formation and reaction of ammonium sulfate salts on V_2O_5/AC catalyst during selective catalytic reduction of nitric oxide by ammonia at low temperatures[J].J.Catal.2003;214:213-219.
    [65]徐灿阳,庞明杰,原晨光,陈志刚,潘颐.还原五氧化二钒制备二氧化矾粉末[J].材料科学与工程学报[J].2006;24(2):252-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700