模拟缺血预处理对原代培养乳鼠窦房结细胞Cx及I_(Cl,swell)表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     病态窦房结综合征是一种严重危害人类健康的常见心血管病。明确其发病机理并找出有效的预防和治疗措施一直是心血管领域最重要的课题之一。在我们先前的研究中发现,模拟缺血/再灌注(I/R)能引起在体或离体窦房结细胞出现结构和功能的紊乱,导致心律或频率的异常。在几乎所有动物细胞上都发现缺血预处理(IP)是最强的内源性保护机制,它可以减轻I/R引起的各种心肌损伤。但IP信号转导非常复杂,目前这方面知之不多,而窦房结细胞中的IP研究更少。最近研究显示缝隙连接蛋白(Cx)可能是预处理保护作用的终末效应子之一。大量的研究显示肿胀激活氯电流(ICl,swell)在心肌细胞生理或病理过程中参与细胞电活动和细胞容积调节,在I/R时细胞肿胀激活该电流,该电流在心肌细胞电-机械反馈中起调节作用。本研究利用原代培养乳鼠窦房结细胞研究模拟IP对细胞的保护作用;研究Cx在预处理时的改变及可能机理;研究在培养窦房结细胞中是否存在ICl,swell及其特点,以及模拟IP对其的影响,希望能为将来窦房结细胞缺血性损伤的保护提供新的思路。
     方法
     1.通过MTT比色和PI染色检测细胞存活率比较不同模拟预处理模型。
     2.利用激光共聚焦显微镜和免疫细胞化学检测窦房结细胞Cx的表达。3.用全细胞膜片钳记录给予不同干预的乳鼠窦房结细胞的ICl,swell。
     结果
     1.成功建立了原代培养乳鼠窦房结细胞模拟IP模型。通过研究不同时间组合的模拟IP方案,在IP诱导启动过程中起决定作用的应该是预缺血的总时程,在培养乳鼠窦房结细胞中IP作用的预缺血时程为5min-30min,而15min的累计预缺血时间获得了最显著的保护效果,故筛选出5min模拟缺血+5min模拟再灌注,反复三次,后再行3h模拟缺血+4h模拟再灌注的模拟IP方案对培养乳鼠窦房结细胞的保护作用最强。
     2.通过药物干预研究,证实了PKC及线粒体KATP通道的激活介导了模拟IP对乳鼠窦房结细胞的保护作用。氯通道阻断剂对原代培养培养窦房结细胞的IRI具有一定的保护作用,提示IP可能通过氯通道发挥保护作用。
     3.用免疫荧光检测方法发现乳鼠窦房结细胞中有Cx45、Cx43和Cx40免疫荧光
Background and objective
     Sick sinus syndrome (SSS) is a common cardiovascular disease which is greatly harmful to human health. To elucidate the pathogenesis of SSS and find out the possible measures of prevention and radical cure is always an important part of the angiocardiopathy study. In the previous study, we have found that simulated ischemia/reperfusion(I/R) could cause structural and functional damages to sinoatrial node cells in vivo and in vitro, leading to electrophysiological disturbance by affecting the regular rhythm and frequency.
     Myocardium ischemic preconditioning(IP), which is considered as the most powerful protective inherence found in almost all kinds of animals and human, can relief various kinds of cardiac damages caused by I/R. But the signal transduction of IP is very complicated and redundant, only a little has been known about its protective mechanism and the study of effect of IP on the sinoatrial node cells is rarely seen. Connexin has also been given more and more concern about it’s contribution to the IP recently due to an end effector in IP. Substantial evidence indicates that swell-induced chloride current (ICl,swell) contributes to cardiac electrical activity and cellular volume regulation in both physiologic and pathophysiologic situations. Swelling occurs during ischemia and reperfusion, and it is postulated that this activates ICl,swell. Studies have revealed ICl,swell is essential for the IP due to a regulating role in mechanoelectrical feedback of myocardium. Based on the primarily cultured sinoatrial node pacemaker cells in neonatal rat, the purpose of our investigation is to observe the effects of simulated IP on the changes of cell viability after severe simulated I/R, detect the role of connexins in IP and discuss the mechanism, observe whether ICl,swell is present in primarily cultured sinoatrial node cells in neonatal rat, and discuss the signaling cascades participated in its activation, providing experimental evidence for further prevention of sinoatrial node injuries caused by I/R.
引文
1. Reimer KA,Ideker RE, Jennings RB. Effect of coronary occlusion site on ischaemic bed size and collateral blood flow in dogs[J ]. Cardiovasc Res, 1981,15(11):668-674.
    2. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium[J ]. Circulation, 1986,74(5):1124-1136.
    3. Armstrong SC, Kao R, Gao W, et al. Comparison of in vitro preconditioning responses of isolated pig and rabbit cardiomyocytes:effects of a protein phosphatase inhibitor,fostriecin[J ]. J Mol Cell Cardiol, 1997,29(11):3009-3024.
    4. SchulzR,CohenMV,BehrendsM,etal.Signal transduction of ischemic preconditioning[J ]. Cardiovasc Res,2001,52(2):181-198.
    5. Cohen MV, Baines CP, Downey JM.Ischemic preconditioning:From adenosine receptor to KATP channel[J ]. Ann Rev Physiol, 2000, 62:79-109.
    6. Krieg T,Qin Q, McIntosh E, et al. Ach and adenosine activate PI3-kinase in rabbit hearts through transactivation of receptor tyrosine kinases[J ].Am J Physiol Circ Physiol,2002,283(6): H2322-H2330.
    7. Ohnuma Y, Miura T, Miki T, et al. Opening of mitochondrial KATP channel occurs downstream of PKC-ε activation in the mechanism of preconditioning[J ]. Am J Physiol, 2002,283(5):H440-H447.
    8. Pain TS, Yang Y, Critz SD, et al. Opening of mitochondrial KATP channels triggers the preconditioning state by generating free radicals[J ]. Circ Res,2000,87(3):460-466.
    9. Liang B. Protein kinase C mediated preconditioning of cardiac myocytes: role of adenosine receptor and KATP channel[J ]. Am J Physiol, 1997,273 (2 Pt 2)::H847-H853.
    10. Liu Y, Sato T, RourkeOB, et al. Mitochondrial ATP-dependent potassium channels. novel effectors of cardioprotection? [J ] .Circulation,1998,97(24):2463-2469.
    11. Miura T,LiuY,Kita H, et al. Roles of mitochondrial ATP-sensitive K+ channels and PKC in anti-infarct tolerance afforded by adenosine A1receptor activation[J ].J Am Coll Cardiol,2000,35(1):238-245.
    12. SatoT,RourkeOB,Marban E. Modulation of mitochondrial ATP-dependent K+ channels by protein kinase C[J ]. Circ Res,1998,83(3):110-114.
    13. WangS,ConeJ, Liu Y. Dual roles of mitochondrial KATP channels in diazoxide-mediatedprotection in isolated rabbit hearts[J ]. Am J Physiol,2001,280(3):H246-H256.
    14. David GD,MarisolRM,FerranP,etal. Gap junction-mediated intercellular communication in ischemic preconditioning[J ]. Cardiovas Res, 2002,53(3) :456-465.
    15. Tetsuji M,YoshitoO,Atsushi K, et al. Protective role of gap junctions in preconditioning against myocardial infarction[J ].AmJPhysiolHeart Circ Physiol,2004,286(1):H214-221.
    16. Verheule S, van Kempen MJ,Postma S, et al. Gap junctions in the rabbit sinoatrial node[J ] . Am J Physiol Heart Circ Physiol, 2001, 280 (5) :H2103-2115.
    17. Verheijck EE ,van Kempen MJ ,Veereschild M , et al. Electrophysiological features of the mouse sinoatrial node in relation to connexin distribution[J ]. Cardiovasc Res,2001, 52(1):40-50.
    18. Jennings RB, Ganote CE. Structural changes in myocardium during acute ischemia[J]. Circ Res, 1974, 35 (Suppl3):156-172.
    19. Kamkin A,Kiseleva I ,WagnerK D, et al.A possible role for atrial fibroblasts in postinfarction bradycardia[J ].Am J Physiol Heart Circ Physiol,2002,282 (3):842-849.
    20. Ding WG,ToyodaF, Matsuura H. Blocking action of chromanol 293B on the slow component of delayed rectifier K+ current in guinea pig sino-atrial node cells[J ]. Br J Pharmacol,2002,137(2):253-262.
    21. Jennings RB, Reimer KA, Steenbergen C.Myocardial ischemia revisited. The osmolar load, membrane damage, and reperfusion[J]. J Mol Cell Cardiol, 1986,18(6):769-780.
    22. Vandenberg J I, Rees S,Wright AR, et al. Cell swelling and ion transport pathways in cardiac myocytes[J ]. Cardiovasc Res, 1996,32(1):85-97.
    23. AraiA,KodamaI,ToyamaJ.Roles of Cl- channels and Ca2+ mobilization in stretch- induced increase of SA node pacemaker activity[J ].AmJPhysiol,1996,270(5Pt 2):H1726-H1735.
    24. 王庆志,戴景兴,韩培立.L-精氨酸对兔右冠状动脉缺血再灌注时窦房结功能及房室结转导有效不应期的干预作用[J ].第一军医大学学报,2004, 24(8):897-899.
    25. 李永华,宋治远.缺血再灌注对在体兔窦房结细胞形态结构影响的研究[J ].第三军医大学学报, 2003, 25(8):676-679.
    26. Zhang Z, Sun GQ, Li YL, et al. Endothelin and ATP-sensitive potassium channel mediate electrophysiological changes induced by hypoxia in rabbit sinoatrial node[J ]. Sheng Li Xue Bao,1996,48(3):235-242.
    27. Kamkin A,Kiseleva I,Wagner K D, et al. Mechanically induced potentials in atrial fibroblasts from rat hearts are sensitive to hypoxia/reoxygenation[J ].PflugersArch, 2003, 446(2):169-174.
    28. Jochen S, Johannes B, Dieter, et al. Combined effects of glucose and hypoxia on cardiac automaticity and conduction[J ].Journal of Molecular and Cellular Cardiology, 1980, 12(3):311-323.
    29. Anthony FG , Harriso DC, John S S. Studies on circulatory response to hypoxia in the denervated transplanted human heart[J ].The American Journal of Medicine, 1974, 56(4):477-481.
    30. Cicogna R, Bonomi FG, Bosi G, et al. Effects of acute hypoxia on the normal and diseased sinus node[J ]. Cardioscience, 1990,1(1):43-47.
    31. 宋治远,李永华,姚 青,等.兔右冠状动脉急性闭塞与再灌注时心律失常的发生与演变[J ]. 中国心脏起搏与心电生理杂志,2003,17(1):48-51.
    32. Song ZY ,Tong S ,He GX. Primary cuture and identification of sinoatrial node cells from newborn rat [J ] .Chin med J ( Engl),2003,116(3):465-468.
    33. 钟 理,宋治远.乳鼠窦房结取材与纯化培养方法的探讨[J ].中国心脏起搏与心电生理杂志,2000,14(3):188-190.
    34. 钟 理,宋治远.原代培养乳鼠窦房结细胞的形态学研究[J ].第三军医大学学报,2002,24(4):431-433.
    35. 仝识非,宋治远,钟 理.KATP通道开放剂对模拟缺血-再灌注时培养乳鼠窦房结细胞的保护作用及机制探讨[J ].中国心脏起搏与心电生理杂志,2002,16(5):372-374.
    36. 仝识非,宋治远.KATP通道开放剂对培养乳鼠窦房结细胞模拟缺血时L-型钙电流的影响[J ].第三军医大学学报,2001,23(12):1383-1385.
    37. 仝识非,宋治远.ATP敏感性钾通道开放剂对培养乳鼠窦房结细胞模拟缺血时细胞活性的影响[J ].第三军医大学学报,2001,23(11):1303-1305.
    38. 张建军,胡大一.缺血预处理对缺氧-复氧后细胞离子稳态的影响及机制[J ].中国心脏起搏与心电生理杂志,2000,14(3):191-194.
    39. Ghosh S,Standen NB,Galinanes M. Eidence for mitochondrial KATP channels as effectors of human myocardial preconditioning[J ].Cardiovasc Res,2000,45(4):934-940.
    38 Yamada T, Yang J J, Ricchiuti NV, et al.Oxygen consumption of mammalian myocardial cells in culture:measurements in beating cells attached to the substrate of the culturedish[J ].Anal Biochem,1985,145(2):302-307.
    39 Vemuri R,Holler M ,Pinson A. Studies of oxygen and volume restriction in cultured cardiac cells[J ]. Baslc Research in Cardiology,1985,50 (suppl2):165-173.
    40 Thandroyen F T,Bellotto D,Katayama A, et al. Subcellular electrolyte alterations during progressive hypoxia and following reoxygenation in isolated neonatal rat ventricular myocytes[J ].Circ Res,1992,71(1):106-112.
    41 Gray MO, Karliner JS,Mochly Rosen D.A selective protein kinase C antagonist inhibits protection of cardiac myocytes from hypoxia-induced cell death[J ]. J Biol Chem,1997, 272(49):30945-30951.
    42 Zhao J, Renner O, Wightman L, et al. The expression of constitutively active isotypes of protein kinase C to investigate preconditioning[J ]. J Biol Chem ,1998, 273(36): 23072-23079.
    43 刘秀华,庞永政,苏静怡,等.预处理对小肠缺血再灌注损伤的保护作用[J ].北京医科大学学报,1996,28(1):20-22.
    44 Winkle DM, Thornton JD, Downey DM, et al. The natural history of preconditioning: cardioprotection depends on duration of transient ischemia and time to subsequent ischemia[J ]. Coron Art Dis, 1991,14(2):613-619.
    45 Schulz R, Post H, Vahlhaus C, et al. Ischemic preconditioning in pigs: a graded phenomenon. Its relation to adenosine and bradykinin[J ]. Circulation, 1998, 98(10): 1022-1029.
    46 Matsubara T, Minatoguchi S, Matsuo H, et al. Three minute, but not one minute, ischemia and nicorandil have a preconditioning effect in patients with coronary artery disease[J ]. J Am Coll Cardiol, 2000, 35(2):345-351.
    47 Ghosh S, Standen NB, Galinanes M. Preconditioning the human myocardium by simulated ischemia:studies on the early and delayed protection[J ].Cardiovasc Res,2000, 45(2):339-350.
    48 Miki T, Cohen M V, Downey J M. Opioid receptor contributes to ischemic preconditioning through protein kinase C activation in rabbits[J ]. Mol Cell Biochem, 1998, 186(1-2):3-12.
    49 Sandhu R, Diaz RJ, Mao GD, et al. Ischemic preconditioning. Difference in protection and susceptibility to blockade with single-cycle versus multicycle transient ischemia[J ]. Circulation, 1997, 96(3):984-995.
    50 LiGC,Vasquez J A,Gallagher K P, et al. Myocardial protection with preconditioning[J ]. Circulation, 1990, 82(2):609-619.
    51 Alkhulaifi A M, Pugsley W B, Yellon D M. The influence of the time period between preconditioning ischemia and prolonged ischemia on myocardial protection[J ]. Cardio science, 1993, 4(3): 163-169.
    52 Koning MMG, Simonis LAJ, deZeeuw S, et al. Ischaemic preconditioning by partial occlusion without intermittent reperfusion[J ]. Cardiovasc Res, 1994, 28(2):1146-1151.
    53 Schulz R,Post H, Sakka S, et al. Intraischemic preconditioning. Increased tolerance to sustained low-flow ischemia by a brief episode of no-flow ischemia without intermittent reperfusion [J ]. Circ Res, 1995,76(3):942-950.
    54 Jain S K, Schuessler RB, Saffitz JE.Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning[J]. Circ Res, 2003, 92(10):1138-1144.
    55 向小峰,唐其柱,胡佑伦,等.氯离子通道阻滞剂对心肌低氧复氧损伤的影响[J ]. 中华心血管病杂志, 2003,31(6):448-451.
    56 Speechiy DM,Mocanu MM,Yellon DM. Protein kinase C: its role in ischemic preconditioning in the rat[J ] .Circ Res,1994,75(2):586-590.
    57 Miyawaki H,Ashraf M.Ca2+ as a mediator of ischcmic preconditioning[J ].Circ Res, 1997,80(3):790-799.
    58 Yabe K,Nasa Y,Takeo S.Hypoxia preconditioning in isolated rat hearts:non involvement of activation of adenosineA1 receptor,Gi protein,and ATP sensitive K+channel[J ]. Heart Vessels,1995,10(6):294-303.
    59 Garlid KD, Paucek P, Yarov-Yarovoy V, et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection[J].Circ Res,1997, 81(6):1072-1082.
    60 Garlid KD, Paucek P, YarovYV, et al. The mitochondrial KATP channel as a receptor for potassium channel openers[J].J Biol Chem, 1996, 271(14):8796-8809.
    61 Liu Y, Sato T, O’Rourke B, et al. Mitochondrial ATP dependent potassium channels. Novel effectors of cardioprotection?[J ] . Circulation, 1998, 97(24):2463-2469.
    62 Gross GJ, Fryer RM. Sarcolemmal versus mitochondrial ATP-sensitive K+ channels and myocardial preconditioning[J].Circ Res, 1999, 84(3):973-979.
    63 Gross GJ. The role of mitochondrial K+ channels in cardioprotection[J]. Basic ResCardiol, 2000, 95(1):280-284.
    64 Sato T, Marban E. The role of mitochondrial K+ channels in cardioprotection[J]. Basic Res Cardiol, 2000, 95(1):285-289.
    65 Liu Y, Rourke BO. Opening of mitochondrial K+ channels triggers cardioprotection are reactive oxygen species involved?[J].Circ Res, 2001, 88(2):750-752.
    66 Haruna T, Horie M, Kouchi I, et al. Coordinate interaction between ATP-sensitive K+ channel and Na+K+-ATPase modulates ischemic preconditioning[J].Circulation,1998, 98(25):2905-2910.
    67 Sanada S, Kitakaze M, Asanuma H, et al. Role of mitochondrial and sarcolemmal K+ channels in ischemic preconditioning of the canine heart[J]. Am J Physiol Heart Circ Physiol, 2001, 280(1): H256-H263.
    68 DhahanN,MoreauC, Prost AL et al. Pharmacological plasticity of cardiac ATP-sensitive potassium channels toward diazoxid by ADP[J].Proc Natl Acad Sci USA, 1999,96(10): 12162-12167.
    69 Birincioglu M, Yang X-M, Critz SD, et al. S-T segment voltage during sequential coronary occlusions is an unreliable marker of preconditioning[J]. Am J Physiol Heart Circ Physiol, 1999, 277(6 Pt2): H2435-H2441.
    70 Bernardo NL, Okubo S, Maaieh M, et al. Delayed preconditioning with adenosine is mediated by opening of ATP-sensitive K+ channels in rabbit heart[J]. Am J Physiol Heart Circ Physiol, 1999,277(1):H128-H135.
    71 Nichols CG, Ripoll C, Lederer WJ. ATP-sensitive potassium channel modulation of guinea pig ventricular action potential and contraction[J].Circ Res,1991,68(1):280-287.
    72 Schulz R, Rose J, Heusch G. Involvement of activation of ATP-dependent potassium channels in swine[J].Am J Physiol Heart Circ Physiol,1994,267 (4Pt2):H1341-H1352.
    73 Carmeliet E. Potassium channels in cardiac cell[sJ ].Cardiovasc Drugs Ther,1992, 6(1): 305-312.
    74 Fleckenstein A, Janke J, Doring H J, et al. Die intracellulare uberladung mit kalzium als entscheidender kausalfaktor bei der entstehung nicht-coronarogener myokard-nekrosen[J ].Verh Dtsch Ges Kreislaufforsch, 1971, 37(1): 345-353.
    75 O’Rourke B. Myocardial K+ channels in preconditioning[J].Circ Res,2000,87(2): 845-855.
    76 Kowaltowski AJ, Seetharman S, Paucek P, et al. Bioenergetic consequences of opening the ATP-sensitive K+ channel of heart mitochondria[J].Am J Physiol Heart Circ Physiol, 2001, 280(2): H649-H657.
    77 Garlid KD. Opening mitochondrial K+ in the heart what happens, and what does not happen[J]. Basic Res Cardiol, 2000, 95(1): 275-279.
    78 Vahlhaus C,Schulz R,Post H. Prevention of ischemic preconditioning only by combined in hibition of protein kinase C and protein tyrosine kinase in pigs[J ].J Mol Cell Cardiol, 1998,30(1): 197-209.
    79 Ping P, zhang J, Qiu Y, et al. Ischemic preconditioning induces selective translocation of protein kinase C isoforms ε and η in the heart of conscious rabbit without subcellular redistribution of total protein kinase C activity[J ]. Circ Res,1997,81(2):404-414.
    80 Liu GS,Cohen MV,Mochly RD,et al. Protein kinase C ε is responsible for the protection of preconditioning in rabbit cardiomyocytes[J ]. J Mol Cell Cardiol,1999, 31(10): 1937-1948.
    81 NishizukaY. Protein kinase C and lipid signaling for sustained cellular responses[J ]. FASEBJ, 1995, 9(7):484-496.
    82 Song D , O′Regan MH , Phillis JW. Mechanisms of amino acidrelease from the isolated anoxic/reperfused rat heart[J].Eur J Pharmacol,1998,35(1):313-322.
    83 Wright AR , Rees SA. Cardiac cell volume: crystal clear or murky waters? A comparison with other cell types[J ]. Pharmacol Ther,1998,80(1):89-121.
    84 赖仲方.心肌细胞内氯离子浓度与缺血再灌注期间心律失常的关联[J ].中国医学科学院学报, 2002,24(2):190-196.
    85 Batthish M, Diaz R.J, Zeng H.P, et al. Pharmacological preconditioning in rabbit myocardium is blocked by chloride channel inhibition[J ]. Cardiovasc Res 2002,55(3): 660-671.
    86 Diaz RJ, Losito VA., Mao GD, et al. Chloride channel inhibition blocks the protection of ischemic preconditioning and hypo-osmotic stress in rabbit ventricular myocardium[J ]. Circ Res,1999,84(7):763-775.
    87 Diaz RJ, Batthish M, Backx P.H, et al. Chloride channel inhibition does block the protection of ischemic preconditioning in myocardium[J ]. J Mol Cell Cardiol, 2001,33(10): 1887-1889.
    88 Okada Y, Maeno E, Shimizu T, et al. Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD) [J ]. J Physiol,2001,53(2):3-16.
    91 Alexandra A T, Rachid S, Patrick H, et al.Volume-sensitive chloride channels (ICl,vol) mediate doxorubicin-induced apoptosis through apoptotic volume decrease in cardiomyocytes[J ]. Fundam Clin Pharmacol,2004,18(5):531-538.
    92 Szabo I, Lepple-Wienhues A, Kaba K.N., et al. Tyrosine kinase-dependent activation of a chloride channel in CD95-induced apoptosis in T lymphocytes[J ]. Proc Natl Acad. Sci USA, 1998, 95(5): 6169-6174.
    93 Nietsch HH, Roe MW, Fiekers JF, et al. Activation of potassium and chloride channels by tumor necrosis factor alpha. Role in liver cell death[J ]. J Biol Chem,2000, 275(27):20556-20561.
    94 Mizoguchi K, Maeta H, Yamamoto A, et al . Amelioration of myocardial global ischemia/ reperfusion injury with volume-regulatory chloride channel inhibitors in vivo[J ]. Transplantation, 2002,73(8):1185-1193.
    95 张晓明,臧益民,龚卫琴,等. 钾、氯离子通道阻断剂对staurosporine诱导心肌细胞凋亡的调节作用[J ].第四军医大学学报, 2004, 9:783-787.
    96 Souktani R,GhalehB,TissierR.etal.Volume sensitive chloride channel inhibitors increase infarct size and apoptosis in rabbit myocardium[J].Fund Clin Pharm,2002,17(1): 1-7.
    1. Schulz R, Cohen M V, Behrends M, et al. Signal transduction of ischemic preconditioning[J ]. Cardiovasc Res, 2001,52(2):181-198.
    2. Boyett M.R.,HonjoH.,Kodama I,et al.The sinoatrial node,a heterogeneous pacemaker structure[J ]. Cardiovasc Res,2000,47(4):658-687.
    3. Verheijck E.E.,M.J.A.vanKempen, M.Veereschild,et al. Electrophysiological features of the mouse sinoatrial node in relation to connexin distribution[J ].Cardiovasc Res, 2001,52(1):40-50.
    4. Honjo H, Boyett MR, Coppen SR, et al. Heterogeneous expression of connexins in rabbit sinoatrial node cells: correlation between connexin isotype and cell size[J ]. Cardiovasc Res,2002,53(1):89-96.
    5. Kwong KF, Schuessler RB, Green KG, et al. Differential expression of gap junction proteins in the canine sinus node[J ]. Circ Res, 1998,82(2):604-612.
    6. Verheule S, Van Kempen MJA, Postma S, et al. Gap junctions in the rabbit sinoatrial node[J ]. Am J Physiol Heart Circ Physiol, 2001,280(5):H2103-2115.
    7. Coppen SR, Kodama I, Boyett MR, et al. Connexin45, a major connexin of the rabbit sinoatrial node,is co-expressed with connexin43 in a restricted zone at the nodal-crista terminalis border[J ]. J Histochem Cytochem,1999,47(5):907-918.
    8. 司马镇强、吴军正. 细胞培养〔M 〕.北京:世界图书出版社,2004.156-157.
    9. Gourdie RG, Green CR, Severs NJ. Gap junction distribution in adult mammalian myocardium revealed by an antipeptide antibody and laser scanning confocal microscopy[J ]. J Cell Sci, 1991,99(1):41-55.
    10. Kostin S, Schaper J. Tissue-specific patterns of gap junctions in adult rat atrial and ventricular cardiomyocytes in vivo and in vitro[J ]. Circ Res, 2001,88(3):933-939.
    11. Saffitz J E, Green KG, Kraft WJ, et al.Effects of diminished expression of connexin43 on gap junction number and size in ventricular myocardium[J ]. Am J Physiol, 2000, 278(9):H1662-1670.
    12. Coppen R ,Severs N J,Gourdie RO. Connexin45 expression delineates an extended conduction system in the embryonic and mature rodent heart[J ]. Dev Genet,1999,24(1): 82-90.
    13. Coppen R, Dupont E, Rothery S. et al. Connexin45 expression is preferentially associated with the ventricular conduction system in mouse and rat heart[J ]. Circ Res, 1998,82(2):232–243.
    14. 徐振平,张光谋,郭志坤,等.大鼠心脏 Cx43、Cx45 表达的差异[J ]. 解剖学杂志,2003,26(5):500.
    15. van Kempen MJ, Fromaget C, Gros D, et al. Spatial distribution of connexin43, the major gap junction protein, in the developing and adult rat heart[J ].Circ Res, 1991,68(6):1638-1651.
    16. Osthoek, Virágh S, Mayen AEM, et al., Immunohistochemical delineation of the conduction system. I:The sinoatrial node[J ]. Circ Res,1993,73(2):473-481.
    17. Davis M, Kanter HL,Beyer EC, et al. Distinct gap junction protein phenotypes in cardiac tissues with disparate conduction properties[J ]. J Am Coll Cardiol,1994,24(4): 1124-1132.
    18. Velde I ten, Jonge B de, Verheijck EE, et al. Spatial distribution of connexin43, the major cardiac gap junction protein, visualizes the cellular network for impulse propagation from sinoatrial node to atrium[J ]. Circ Res,1995,76(5):802-811.
    19. Davis LM,Rodefeld ME,Green K, et al. Gap junction protein phenotypes of the human heart and conduction system[J ]. J Cardiovasc Electrophysiol,1995,6(3):813-822.
    20. E Trabka-Janik, Coombs W, Lemanski LF, et al. Immunohistochemical localization of gap junction protein channels in hamster sinoatrial node in correlation with electrophysiologic mapping of the pacemaker region[J ]. J Cardiovasc Electrophysiol, 1994,5(1):125-137.
    21. Anumonwo JMB, Wang HZ., Trabka-Janik E, et al. Gap junctional channels in adult mammalian sinus nodal cells. Immunolocalization and electrophysiology[J ]. Circ Res, 1992,71(1):229-239.
    22. 徐振平,郭志坤,文小军,等. 成人与新生儿心脏连接蛋白 43 表达差异[J ]. 解剖学报, 2004,35(5):509-512.
    23. 徐振平,郭萍,郭志坤.大鼠心脏连接蛋白 Cx43 表达的增龄变化[J ].解剖学杂志, 2002,33(5):550-552.
    24. 钟国强,黄从新,刘唐威,等.异型缝隙连接通道和磷酸化对心脏缝隙连接的调变[J ].中华心律失常学杂志,2003,7(2):229-233.
    25. 钟国强,黄从新,刘唐威,等. 异型缝隙连接通道和磷酸化对心脏细胞通讯的调节作用[J ].中国心脏起搏与心电生理杂志,2003,17(2):195-199.
    26. Bleeker W K, MckaayA J C, Masson-Pevet M, et al. Functional and morphological organization of the rabbit sinus node[J ].Circ Res,1980,46(1):11-19.
    27. 郭志坤,孔祥云,凌凤东.兔心窦房结的亚微结构观察[J ].解剖学杂志,1992,15(1): 33-35.
    28. 张 炎,赵根然,刘 勇,等. SD 乳鼠窦房结的光、电镜观察[J ].解剖学杂志,1996,19(1): 69-72.
    29. Maziere De A, Analbers L, Jongsma HJ. Immuno-electronmicroscopic visualization of gapjunctionprotein connexin40in the mammalian heart[J ].Eur J Morphol,1993,31(1-2) : 51-59.
    30. T. Opthofie.Gap junctions in the sinoatrial node: immunohistochemical localization and correlation with activation patterns[J ]. J Cardiovasc Electrophysiol,1994,5(2):138-143.
    31. Masson-Pévet M.,Bleeker W.K, Gros D. The plasma membrane of leading pacemaker cells in the rabbit sinus node: A qualitative and quantitative ultrastructural analysis[J ]. Circ Res,1979,45(5):621-629.
    32. Green CR, Peters NS., Gourdie RG., et al. Validation of immunohistochemical quantification in confocal laser scanning microscopy:a comparative assessment of gap junction size with confocal and ultrastructural techniques[J ]. J Histochem Cytochem, 1993,41(11):1339-1349.
    33. Severs NJ, Slade AM, Powell T, et al. Integrity of the dissociated adult cardiac myocyte: gap junction tearing and the mechanism of plasma membrane resealing[J ]. J Muscle Res Cell Motil,1990,11(2):154-166.
    34. Huang X D, Horackova M, Perssler M L. Changes in the expression and distribution of connexin43 in isolated cultured adult guinea pig cardiomyocytes[J ]. Exp Cell Res,1996,228(2):254-261.
    35. Severs N J, Gourdie RG., Harfst E, et al. Immunoelectronmicroscopic visualization of the gap junc-tion protein connexin40〔J 〕.J Microsc,1993,16(9):299-328.
    36. Kanter HL, Laing JG, Beyer EC, et al. Multiple connexins colocalize in canine ventricular myocyte gap junctions[J ].Circ Res,1993,73(2):344-350.
    37. Beardslee MA, Lerner DL, Tadros PN, et al. Dephosphorylation and intracellularredistributoin of ventricular connexin43 during electrical uncoupling induced by ischemia[J ]. Circ Res,2000,87(8):656-662.
    38. Cinca J, Warren M, Carren OA, et al. Changes in myocardial electrical impedance induced by coronary artery occlusion in pigs with and without preconditioning[J]. Circulation,1997,96(9):3079-3086.
    39. 钟 理,宋治远.乳鼠窦房结取材与纯化培养方法的探讨[J ] .中国心脏起搏与心电生理杂志,2000,14(3):188-190.
    40. Jain SK, SchuesslerRB, Saffitz JE. Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning[J ]. Circ Res,2003,92(10):1138-1144.
    41. 向小峰,唐其柱,胡佑伦,等.氯离子通道阻滞剂对心肌低氧复氧损伤的影响[J ]. 中华心血管病杂志,2003,31(6):448-451.
    42. Krüger,PlumA,Kim J.S, et al. Defective vascular development in connexin 45-deficient mice[J ]. Development, 2000,127(19):4179-4193.
    43. KathrynAY,Joseph GR, Rune S, et al. Up-regulation of connexin45 in heart failure[J ]. J Cardiovasc Electro physiol,2003, 14(11):1205-1212.
    44. Peters N S. New insights into myocardial arrhythmogenesis: distribution of gap junctional coupling in normal , is chaemic and hypertrophied hearts[J ]. Clin Sci Colch, 1996,90(6):447-452.
    45. Severs N J.Gap junction alterations in the failing heart [J ] . Eur Heart J,1994,15 (Suppl D):53-57.
    46. Peters NS,Coromilas J,Severs NJ, et al. Disturbed connexin43 gap junctiondistribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia [J ].Circulation,1997,95(4):988-996.
    47. 林吉进,李玉光,霍 霞,等.连接蛋白 43 在急性心肌缺血时不均一降解的实验研究[J ]. 汕头大学医学院学报,2001,14(4) :245-247.
    48. 张 弢,杨 庆,邓珏琳,等.心室肥厚时的缝隙连接蛋白 Cx43 及快速刺激对其的影响[J ]. 中国心脏起搏与心电生理杂志,2002,16(2):136-138.
    49. Daleau P, Boudriau S, Michaud M, et al. Preconditioning in the absence or presence of sustained ischemia modulates myocardial Cx43 protein levels and gap junction distribution[J ]. Can J Physiol Pharmacol ,2001,79(2):371-378.
    50. Cotrina ML, Kang J, Lin J, et al. Astrocytic gap junctions remain open during ischemicconditions[J ]. J Neurosci, 1998,18(11):2520-2537.
    51. Garcia-Dorado D, Inserte J, Ruiz-Meana M, et al. Gap junction uncoupler heptanol prevents cell-to-cell progression of hypercontracture and limits necrosis during myocardial reperfusion[J ].Circulation,1997,96(15):3579-3586.
    52. LinJ,WeigelH,CotrinaML, et al. Gap-junction-mediated propagation and amplification of cell injury[J ]. Neuroscience,1998,9(1):494-500.
    53. McMasters RA,Saylors RL, Jones KE, et al. Lack of bystander killing in herpes simplex virus thymidine kinase-transduced colon cell lines due to deficient connexin43 gap junction formation[J ]. Hum Gene Ther,1998,9(15):2253-2261.
    54. Ruiz-Meana M, Garcia-Dorado D, Hofstaetter B, et al. Propagation of cardiomyocyte hypercontracture by passage of Na+ through gap junctions[J ].Circ Res,1999,85(2): 280-287.
    55. Cascio WE, Yan G, Kleber AG. Passive electrical properties, mechanical activity, and extracellular potassium in arterially perfused and ischemic rabbit ventricular muscle[J ]. Circ Res,1990, 66(6):1461-1473.
    56. Dekker LR, Fiolet JWT, VanBavel E, et al. Intracellular Ca2+, intercellular electrical coupling, and mechanical activity in ischemic rabbit papillary muscle. Effects of preconditioning and metabolic blockade[J ].Circ Res,1996,79(2):237-246.
    57. Rodriguez-Sinovas A, Garcya-Dorado D, Padilla F, et al. Pre-treatment with the Na-/H- exchange inhibitor cariporide delays cell-to-cell electrical uncoupling during myocardial ischemia[J ]. Cardiovasc Res,2003,58(1):109-117.
    58. Van Veen AA, van Rijen HV, Opthof T. Cardiac gap junction channels: modulation of expression and channel properties[J ]. Cardiovasc Res,2001,51(2):217-229.
    59. Jain SK, Schuessler RB, Saffitz JE. Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning[J ]. Circ Res,2003,92(10):1138-1144.
    60. Schulz R, Skyschally A, Duschin A, et al. Ischemic preconditioning preserves connexin 43 phosphorylation during ischemia in pig hearts in vivo[J ]. FASEB J,2003, 17(10):1355-1357.
    61. Cinca J, Warren M, Carren OA, et al. Changes in myocardial electrical impedance induced by coronary artery occlusion in pigs with and without preconditioning[J ]. Circulation,1997,96(9):3079-3086.
    62. Dekker LRC. Rademaker H, Vermeulen JT, et al. Cellular uncoupling during ischemia in hypertrophied and failing rabbit ventricular myocardium: effects of preconditioning[J ].Circulation,1998,97(17):1724-1730.
    63. Tan HL, Mazon P, Verberne HJ et al. Ischaemic preconditioning delays ischaemia induced cellular electrical uncoupling in rabbit myocardium by activation of ATP sensitive potassium channels[J ]. Cardiovasc Res,1993,274(4):644-651.
    64. Tetsuji M,Yoshito O,Atsushi K, et al. Protective role of gap junctions in preconditioning against myocardial infarction[J ]. Am J Physiol Heart Circ Physiol, 2004,286(1):h214-221.
    65. Beardslee MA, Lerner DL, Tadros PN, et al. Dephosphorylation and intracellular redistributoin of ventricular connexin43 during electrical uncoupling induced by ischemia[J ]. Circ Res,2000,87(4):656-62.
    66. Botsford MW,Lukas A. Ischemic preconditioning and arrhythmogenesis in the rabbit heart: effects on epicardium versus endocardium[J ]. J Mol Cell Cardio,1998,30(9): 1723-1733.
    67. 陈宝平, 夏 强, 沈岳良. 缝隙连接失耦联剂 Heptanol 对缺血心肌的影响[J ]. 中国心脏起搏与心电生理杂志,2002,16(2):139-142.
    68. Joris RG, Ruben C. Acute ischemia-induced gap junctional uncoupling and arrhythmogenesis[J ]. Cardiovas Res,2004,62(2):323-334.
    69. Garcia-Dorado D, Inserte J, Ruiz-Meana M, et al. Gap junction uncoupler heptanol prevents cell-to-cell progression of hypercontracture and limits necrosis during myocardial reperfusion arrhythmogenesis[J ]. Circulation,1997,96(11):3579-3586.
    70. Garcia-Dorado D, Theroux P, Duran JM, et al. Selective inhibition of the contractile apparatus. A new approach to modification of infarct size, infarct composition, and infarct geometry during coronary artery occlusion and reperfusion[J ]. Circulation, 1992,85(5):1160-1174.
    71. Schwanke U, Konietzka I, Duschin A , et al. No ischemic preconditioning in heterozygous connexin43-deficient mice[J ]. Am J Physiol Heart Circ Physiol,2002, 283(4):H1740-1742.
    72. Schwanke U, Li X, Schulz R, et al. No ischemic preconditioning in heterozygous connexin 43-deficient mice:a further in vivo study[J ]. Basic Res Cardiol,2003, 98(3) : 181-182.
    73. Severs NJ, Shovel KS, Slade AM, et al. Fate of gap-junctions in isolated adult mammalian cardiomyocytes[J ]. Circ Res,1989,65(1):22-42.
    74. Laing JG, Beyer EC. The gap junction protein connexin43 is degraded via the ubiquitin proteasome pathway[J ]. J Biol Chem,1995,270(44):26399-26403.
    75. LaingJG,TadrosPN,WestphaleEM, et al.Degradation of connexin43 gap junctions involves both the proteasome and the lysosome[J ].Exp Cell Res,1997,236(3):482-492.
    76. Beardslee MA, Laing JG, Beyer EC,et al. Rapid turnover of connexin43 in the adult rat heart[J ].Circ Res,1998,83(4):629- 635.
    77. WarnC.BJ,CottrellGT,Burt JM, et al. Regulation of connexin43 gap junctional intercellular communication by mitogen-activated protein kinase[J ]. J Biol Chem, 1998,273(22):9188-9196.
    78. Weinbrenner C, Liu G.S,Cohen M V, et al. Phosphorylation of tyrosine 182 of p38 mitogen-activated protein kinase correlates with the protection of preconditioning in the rabbit heart[J ]. J Mol Cell Cardiol,1997,29(9):2383-2391.
    79. Korge P, Honda HM, Weiss JN. Protection of cardiac mitochondria by diazoxide and protein kinase C:implications for ischemic preconditioning[J ].Proc Natl Acad Sci U S A,2002,99(5):3312-3317.
    80. Naama Z L,Yaron DB, Yotam R, et al. Gap junctional remodeling by hypoxia in cultured neonatal rat ventricular myocytes[J ]. Cardiovasc Res,2005,66(1):64-73.
    81. Jeyaraman M, Tanguy S, Fandrich RR, et al. Ischemia-induced dephosphorylation of cardiomyocyte connexin-43 is reduced by okadaic acid and calyculin A but not fostriecin[J ]. Mol Cell Biochem, 2003,242(1):129-134.
    82. Toyofuku T,Yabuki M,Otsu K,et al. Direct association of the gap junction protein connexin43 with ZO-1 in cardiacmyocytes[J ].JBiol Chem,1999,273(22):12725-12731.
    83. 张 倩,宋治远,仝识非,等.细胞骨架在原代培养乳鼠窦房结细胞模拟缺血预适应中的作用研究[J ].中国心脏起搏与心电生理杂志,2005,19(1):53-56.
    84. Herrnans MMP, Kortekaas P, Jongsma HJ, et al. PH sensitivity of the cardiac gap junction proteins, connexin45 and 43[J ]. Pflfgers Arch,1995,43(1):138-140.
    85. van Veen TA, van Rijen HV,JongsmaHJ. Electrical conductance of mouse connexin45 gap junction channels is modulated by phosphorylation[J ]. Cardiovasc Res,2000, 46(3): 496-510.
    86. Kwak BR, Hermans MMP, De Jonge HR, et al. Differential regulation of distinct types
    of gap junction channels by similar phosphorylating conditions[J ]. Mol Biol Cell, 1995, 6(8): 1707-1719.
    87. Ohnuma Y, Miura T, Miki T, et al. Opening of mitochondrial KATP channel occurs downstream of PKC-activation in the mechanism of preconditioning[J ]. Am J Physiol Heart Circ Physiol, 2002,283(3):H440–H447.
    88. Korge P, Honda HM, Weiss JN. Protection of cardiac mitochondria by diazoxide and protein kinase C: implications for ischemic preconditioning[J ].Proc Natl Acad Sci U S A, 2002,99(24):3312–3317.
    89. WangY,TakashiE,XuM,etal.Down regulation of protein kinase C inhibits activation of mitochondrial KATP channels by diazoxide[J ].Circulation,2001:104(1):85–90.
    90. Padilla F, Garcia DD, Rodry′GS, et al. The protection afforded by ischemic preconditioning is not mediated by effects on cell-to-cell electrical coupling during myocardial ischemia– reperfusion[J ]. Am J Physiol, 2003, 285(10):H1909–1916.
    91. Lampe PD, TenBroek EM, Burt JM,et al. Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junction communication[J ]. J Cell Biol, 2000,149(9): 1503-1512.
    92. Ping P, Zhang J, Pierce WM, et al. Functional proteomic analysis of protein kinase C q signaling complexes in the normal heart and during cardioprotection[J ]. Circ Res, 2001,88(1):59–62.
    93. Li H, Brodsky S, Kumari S, et al. Paradoxical overexpression and translocation of connexin 43 in homocysteine-treated endothelial cells[J ]. Am J Physiol, Heart Circ Physiol, 2001,282(15):H2124-2133.
    94. Kerstin B, Giuliano D,Antonio RS, et al. Connexin43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning[J ]. Cardiovas Res,2005,67(2):234-244.
    1. Jentsch TJ, Stein V, Weinreich, F, et al. Molecular structure and physiological function of chloride channels[J ]. Physiol Rev,2002,82(3):503-568.
    2. Hiraoka M, Kawano S, Hirano Y, et al. Role of cardiac chloride currents in changes in action potential characteristics and arrhythmias[J ]. Cardiovasc Res,1998,40(1):23-33.
    3. Vandenberg JI, Bett GC, Powell T. Contribution of a swelling-activated chloride current to changes in the cardiac action potential[J ]. Am J Physiol Cell Physiol,1997, 273(3):C541-C547.
    4. NiliusB,Droogmans G.Amazing chloride channels:an overview[J ].Acta Physiol Scand , 2003,177(1):119-147.
    5. HuaW,YanAM,Jia TS. Regulation of volume-activated chloride channels in embryonic chick heart cells[J ].Cell Res,2003,13(1):212-228.
    6. BaumgartenCM,ClemoH F. Swelling-activated chloride channels in cardiac physiology and pathophysiology [J ].Prog Biophys Mol Bio,2003,82(1-3):25-42.
    7. Du X Y,Sorota S. Cardiac swelling-induced chloride current is enhanced by endothelin[J ]. J Cardiovasc Pharmacol,2000,35(3):769-776.
    8. Sorota S, Du XY. Delayed activation of cardiac swelling induced chloride current after step changes in cell size[J ]. J Cardiovasc Electrophysiol, 1998,9(5):825-831.
    9. Li G R, Feng J,Wang Z, et al. Transmembrane chloride currents in human atrial myocytes[J ]. Am J Physiol,1996,270(3):C500-C507.
    10. Ghazi A , Berrier C , Ajouz B , et al. Mechanosensitive ion channels and their mode of activation[J ].Biochimie,1998,80(2):357-362.
    11. Ridley PD,Curtis MJ.Anion manipulation: a new antiarrhythmic approach. Action of subtitution of chloride with nitrate on ischemic and reperfusion-induced ventricular fibrillation and contractile function[J ].Circ Res,1992,70(4):617-632.
    12. Yu S P,Canzoniero L M, Choi D W. Ion homeostasis and apoptosis [J ] .Curr Opin Cell Biol,2001,13(4):405-411.
    13. Yu S P. Regulation and critical role of potassium homeostasis in apoptosis[J ]. Prog Neurobiol,2003,70(4):363-386.
    14. Clemo H F, Stambler B S, Baumgarten CM. Swelling-activated chloride current is
    1. Jentsch TJ, Stein V, Weinreich, F, et al. Molecular structure and physiological function of chloride channels[J ]. Physiol Rev,2002,82(3):503-568.
    2. Hiraoka M, Kawano S, Hirano Y, et al. Role of cardiac chloride currents in changes in action potential characteristics and arrhythmias[J ]. Cardiovasc Res,1998,40(1):23-33.
    3. Vandenberg JI, Bett GC, Powell T. Contribution of a swelling-activated chloride current to changes in the cardiac action potential[J ]. Am J Physiol Cell Physiol,1997, 273(3):C541-C547.
    4. NiliusB,Droogmans G.Amazing chloride channels:an overview[J ].Acta Physiol Scand , 2003,177(1):119-147.
    5. HuaW,YanAM,Jia TS. Regulation of volume-activated chloride channels in embryonic chick heart cells[J ].Cell Res,2003,13(1):212-228.
    6. BaumgartenCM,ClemoH F. Swelling-activated chloride channels in cardiac physiology and pathophysiology [J ].Prog Biophys Mol Bio,2003,82(1-3):25-42.
    7. Du X Y,Sorota S. Cardiac swelling-induced chloride current is enhanced by endothelin[J ]. J Cardiovasc Pharmacol,2000,35(3):769-776.
    8. Sorota S, Du XY. Delayed activation of cardiac swelling induced chloride current after step changes in cell size[J ]. J Cardiovasc Electrophysiol, 1998,9(5):825-831.
    9. Li G R, Feng J,Wang Z, et al. Transmembrane chloride currents in human atrial myocytes[J ]. Am J Physiol,1996,270(3):C500-C507.
    10. Ghazi A , Berrier C , Ajouz B , et al. Mechanosensitive ion channels and their mode of activation[J ].Biochimie,1998,80(2):357-362.
    11. Ridley PD,Curtis MJ.Anion manipulation: a new antiarrhythmic approach. Action of subtitution of chloride with nitrate on ischemic and reperfusion-induced ventricular fibrillation and contractile function[J ].Circ Res,1992,70(4):617-632.
    12. Yu S P,Canzoniero L M, Choi D W. Ion homeostasis and apoptosis [J ] .Curr Opin Cell Biol,2001,13(4):405-411.
    13. Yu S P. Regulation and critical role of potassium homeostasis in apoptosis[J ]. Prog Neurobiol,2003,70(4):363-386.
    14. Clemo H F, Stambler B S, Baumgarten CM. Swelling-activated chloride current is
    27. Hoffmann E K, Simonsen L O, Membrane mechanisms in volume and pH regulation in vertebrate cells[J ], Physiol Rev,1989,69(2):315-382.
    28. Lang F, Busch G L , RitterM , et al. Functional significance of cell volume regulatory mechanisms [J ]. Physiol Rev,1998,78 (1):247-263.
    29. Lauf PK,AdragnaNC.K+-Cl-cotransport properties and molecular mechanism[J ].Cell Physiol Biochem,2000,10(2):341-354.
    30. Du XL,Zhan Gao, Lau CP,et al.Differential effects of tyrosine kinase inhibitors on volume-sensitive chloride current in human atrial myocytes: evidence for dual regulation by Src and EGFR kinases[J ]. J Gen Physiol. 2004,123(2);427-439
    31. Hume JR, Duan D, Collier ML, et al. Anion transport in heart.[J ].Physiol Rev. 2000,80(1):31-81.
    32. Du X Y, Sorota S. Protein kinase C stimulates swelling induced chloride current in canine atrial cells[J ]. Pflugers Arch, 1999,437(2):227-234.
    33. 龚卫琴,臧益民,王晓明,等.ClC-3基因敲除不影响心肌细胞肿胀激活性氯通道的PKC敏感性[J ].第四军医大学学报,2004,25(11):982-986.
    34. Vanoye C G, Castro A F, Pourcher T , et al . Phosphorylation of P2 glycoprotein by PKA and PKC modulates swelling-activated Cl- currents[J ] .Am J Physiol, 1999, 276(2): C370-C378.
    35. Duan D,Cowley S,Horowitz B,et al.A serine residue in ClC-3 links phosphorylation -dephosphorylation to chloride channel regulation by cell volume[J ]. J Gen Physiol, 1999,113(1):57-70.
    36. Duan D, Winter C, Cowley S, et al. Molecular identification of a volume-regulated chloride channel[J ].Nature, 1997,390(2):417-421.
    37. Tilly BC, Van Den BN, Tertoolen LG, et al. Protein tyrosine phosphorylation is involved in osmoregulation of ionic conductances[J ]. J Biol Chem, 1993, 268(34): 19919-19922.
    38. Prevarskaya NB, Skryma RN, Vacher P, et al . Role of tyrosine phosphorylation in potassium channel activation[J ]. J Biol Chem ,1995,270(41):24292-24299.
    39. Wijetunge S , Lymn J S , Hughus AD. Effects of protein tyrosine kinase inhibitors on voltage-operated calcium channel currents in vascular smooth muscle cells and pp60-2-src kinase activity[J ]. Br J Pharmacol ,2000,129(7):1347-1354.
    40. Sorota S.Tyrosine protein kinase inhibitors prevent activation of cardiac swelling-induced chloride current[J ] .Pf l gers Arch ,1995,431(2):178-185.
    41. Sadoshima J, Qiu Z, Morgan J P, et al. Tyrosine kinase activation is an immediate and essential step in hypotonic cell swelling-induced ERK activation and c-fos gene expression in cardiac myocytes[J ]. EMBO J,1996,15(38):5535-5546.
    42. Lepple Wienhues A , Szabo I , Laun T, et al . The tyrosine kinase p56lck mediates activation of swelling-induced chlorides in lymphocytes[J ]. J Cell Biol , 1998 ,141(1): 281-286.
    43. Voets T,ManolopolosV,Eggermont J, et al. Regulation of a swelling-activated chloride current in bovine endothelium by protein chloride current in bovine endothelium by protein tyrosine phosphorylation and Gprotein[J ]. J Physiol,1998,506(2):341-352.
    44. Kim RD, Darling CE, Cerwenka H , et al. Hypoosmotic stress activates p38 , ERK1 and 2 , and SAPK/ JNK in rat hepatocytes[J ]. J Surg Res,2000,90(1):58-66.
    45. Browe DM, Baumgarten CM. Stretch of 1 integrin activates an outwardly rectifying chloride current via FAK and Src in rabbit ventricular myocytes[J ]. J Gen Physiol, 2003,122(3):689-702.
    46. 周家国,丘钦英,贺 华,等.蛋白酪氨酸磷酸化参与调控主动脉平滑肌细胞容积调节性氯通道电流[J ]. 中国药理学通报, 2004, 20(5):503-507.
    47. Thoroed SM, Bryan-SisnerosA, Doroshenko P. Protein phosphotyrosine phosphatase inhibitors suppress regulatory volume decrease and the volume-sensitive Cl- conductance in mouse fibroblasts[J ]. Pflugers Arch,1999,438(1):133-140.
    48. Doroshenko P.Pervanadate inhibits volume-sensitive chloride current in bovine chromaffin cells[J ]. Pflugers Arch, 1998,435(2):303-309.
    49. Zhang ZY,Zhou B,Xie L. Modulation of protein kinase signaling by protein phosphatases and inhibitors[J ].Pharmacol Ther,2002,3(2):307-317.
    50. Okada Y. Volume expansion-sensing outward-rectifier Cl – channel: Fresh start to the moleular identity and volume sensor[J ]. A m J Physiol,1997,273(3pt1):C755-789.
    51. Davis MJ,Xiu W, Nurkiewicz TR, et al. Regulation of ion channels by protein tyrosine phosphorylation[J ]. Am J Physiol,20,2817():H1835-H1862.
    52. Boese SH, Kinne RK, Wehner F. Single-channel properties of swelling-activated anion conductance in rat inner medullary collecting duct cells[J ]. Am J Physiol, 1996, 271(7): F1224-F1233.
    53. Voets T, Droogmans G, Nilius B. Modulation of voltage dependent properties of a swelling-activated Cl-current[J] . J Gen Physiol, 1997,110(2):313-325.
    54. Schaper J,Froede R,Hein S, et al.Impairment of myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy[J ].Circulation,1991,83(3):504-514.
    55. Sugden PH, Clerk A. Cellular mechanisms of cardiac hypertrophy[J ]. J Mol Med, 1998,11(4):725-746.
    56. Chiang CE, Luk H N, WangT M. Swelling-activated chloride current is activated in guinea pig cardiomyocytes from endotoxic shock[J ]. Cardiovas Res,2004,62(1):96- 104.
    57. Clemo HF, Baumgarten CM. Protein kinase C (PKC) activation blocks ICl,swell and causes myocyte swelling in a rabbit congestive failure (CHF) model[J ]. Circulation, 1998, 98(4):I695-708.
    58. Clemo HF, Danetz JS, Baumgarten C.M. Does ClC-3 modulate cardiac cell volume? [J ]. Biophys J,1999,76(1):A203-219.
    59. Clemo HF, Rana J, Vaida AM, et al. Chronic activation of ICl,swell in canine infarction model supressess inducibility of early afterdepolarizations[J ]. Circulation,2001,104 (SupplII):II-624.
    60. Jennings RB, Reimer KA, Steenbergen C. Myocardial ischemia revisited. The osmolar load, membrane damage,and reperfusion[J ]. J Mol Cell Cardiol,1986,18(3):769-780.
    61. Vandenberg J I, Rees S,Wright A R, et al. Cell swelling and ion transport pathways in cardiac myocytes[J ]. Cardiovasc Res,1996,32(1): 85-97.
    62. Patel AJ, Lazdunski M, Honore E. Lipid and mechano-gated 2P domain K+ channels[J ]. Curr Opinion Cell Biol,2001,13(2):422-428.
    63. Browe DM,BaumgartenCM.Specific stretch of β1 integrin with mab-coated paramagnetic beads activates ICl,swell in rabbit ventricular myocytes[J ]. Biophys J,2003, 84(2):22-32.
    64. Lai ZF, Nishi K. Intracellular chloride activity increases in guinea pig ventricular muscle during simulated ischemia[J ].Am J Physiol Heart Circ Physiol,1998,275(7): H1613-H1619.
    65. 赖仲方.心肌细胞内氯离子浓度与缺血再灌注期间心律失常的关联[J ].中国医学科学院学报,2002,24(2):190-196.
    66. Batthish M, Diaz RJ, Zeng HP, et al. Pharmacological preconditioning in rabbit myocardium is blocked by chloride channel inhibition[J ]. Cardiovasc Res,2002,55(3): 660-671.
    67. Diaz RJ, LositoVA,Mao GD, et al. Chloride channel inhibition blocks the protection of ischemic preconditioning and hypo-osmotic stress in rabbit ventricular myocardium[J ]. Circ Res,1999,84(4):763-775.
    68. Diaz RJ, Batthish M, Backx P.H, et al. Chloride channel inhibition does block the protection of ischemic preconditioning in myocardium[J ]. J Mol Cell Cardiol,2001,33(8): 1887-1889.
    69. 向小峰,唐其柱,胡佑伦,等.氯离子通道阻滞剂对心肌低氧复氧损伤的影响[J ].中华心血管病杂志,2003,31(6):448-451.
    70. Souktani R, Ghaleh B, Tissier R,et al. Volume sensitive chloride channel inhibitors increase infarct size and apoptosis in rabbit myocardium[J ]. Fund Clin Pharm,2002,17(1): 1-7.
    71. Christian WS, Ludwig B, Zong XG, et al. An arginine residue in the pore region is a key determinant of chloride dependence in cardiac pacemaker channels[J ]. The Journal of biological chemistry, 2005,280(14):13694-13700.
    72. Shen MR, Yang TP, Tang MJ. A novel function of BCL-2 overexpression in regulatory volume decrease.Enhancing swelling-activated Ca2+ entry and Cl- channel activity[J ].J Biol Chem,2002,277(55):15592-15599.
    73. Suleymanian MA, Clemo HF, Cohen NM, et al, Stretch-activated channel blockers modulate cell volume in cardiac ventricular myocytes[J ]. J Mol Cell Cardiol,1995, 27(4): 721-728.
    74. Pine MB, Brooks WW, Nosta JJ, et al. Hydrostatic forces limit swelling of rat ventricular myocardium[J ].Am J Physiol,1981,241(4):H740-H747.
    1. Reimer KA , Ideker RE, Jennings RB. Effect of coronary occlusion site on ischaem ic bed size and co llateral blood flow in dogs[J ]. Cardiovasc Res, 1981,15(11):668-674.
    2. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium[J ]. Circulation, 1986, 74 (5):1124-1136.
    3. Armstrong SC,Kao R,Gao W, et al. Comparison of in vitro preconditioning responses of isolated pig and rabbit cardiomyocytes: effects of a protein phosphatase inhibitor, fostriecin[J ]. J Mol Cell Cardiol, 1997, 29(14):3009-3024.
    4. Schulz R, Cohen MV, Behrends M, et al. Signal transduction of ischemic preconditioning[J ]. Cardiovasc Res, 2001, 52(1):181-198.
    5. Cohen MV, Baines CP, Downey JM. Ischemic preconditioning: From adenosine receptor to KATP channel[J ]. Ann Rev Physiol, 2000, 62(1):79-109.
    6. Krieg T, Qin Q, McIntosh E, et al. ACh and adenosine activate PI3-kinase in rabbit hearts through transactivation of receptor tyrosine kinases[J ]. Am J Physiol, 2002, 283(15): H2322-H2330.
    7. Ohnuma Y, Miura T, Miki T, et al. Opening of mitochondrial KATP channel occurs downstream of PKC-εactivation in the mechanism of preconditioning[J ]. Am J Physiol, 2002, 283(3):H440-H447.
    8. Pain TS, Yang Y, Critz SD, et al. Opening of mitochondrial KATP channels triggers the preconditioning state by generating free radicals[J ]. Circ Res, 2000, 87(3):460-466.
    9. Liang B. Protein kinase C-mediated preconditioning of cardiac myocytes:role of adenosine receptor and KATP channel[J ]. Am J Physiol, 1997, 273(4):H847-H853.
    10. Liu Y, Sato T, Rourke B,et al. Mitochondrial ATP-dependent potassium channels. Novel effectors of cardioprotection? [J ].Circulation,1998,97(14):2467-2469.
    11. Miura T, Liu Y, Kita H, et al. Roles of mitochondrial ATP-sensitive K+ channels and PKC in anti-infarct tolerance afforded by adenosine A1 receptor activation[J ]. J Am Coll Cardiol, 2000, 35(1):238-245.
    12. Sato T, Rourke OB, Marban E. Modulation of mitochondrial ATP-dependent K+ channels by protein kinase C[J ]. Circ Res, 1998, 83(1):110-114.
    13. WangS,ConeJ,LiuY. Dual roles of mitochondrial KATP channels in diazoxide-mediatedprotection in isolated rabbit hearts[J ]. Am J Physiol,.2001, 280(1):H246-256.
    14. David GD, Marisol RM, Ferran P, et al. Gap junction-mediated intercellular communication in ischemic preconditioning[J ]. Cardiovas Res, 2002,53(3):456-465.
    15. Tetsuji M,Yoshito O,Atsushi K,et al. Protective role of gap junctions in preconditioning against myocardial infarction[J ].Am J Physiol Heart Circ Physiol, 2003, 18(7):1152-1162.
    16. 郭继鸿. 缝隙连接与心脏的转导[J ]. 临床心电学杂志,2003,12(3) :194-199.
    17. David GD, Antonio RS, Marisol RM. Gap junction-mediated spread of cell injury and death during myocardial ischemia-reperfusion[J ]. Cardiovas Res, 2004, 61(2): 386-401.
    18. Birgit EJT, Marti FAB. Transcriptional control of myocardial connexins[J ]. Cardiovas Res, 2004, 62(2):246-255.
    19. Goran S, Klaus W. Gap junctions and the connexin protein family[J ]. Cardiovas Res. 2004, 62(2) :228-232.
    20. Nicholas JS, Coppena S R., Emmanuel D, et al. Gap junction alterations in human cardiac disease[J ]. Cardiovas Res ,2004, 62(2) :;368-377.
    21. Rainer S, Gerd H. Connexin 43 and ischemic preconditioning[J ]. Cardiovas Res. 2004, 62(2) :335-344.
    22. Stephan R. Role of gap junctions in the propagation of the cardiac action potential[J ]. Cardiovas Res, 2004, 62(2) :309-322.
    23. Joris RG, Ruben C. Acute ischemia-induced gap junctional uncoupling and arrhythmogenesis[J ]. Cardiovas Res, 2004,62(2):323-334.
    24. Alonso PM. Biophysical properties of homomeric and heteromultimeric channels formed by cardiac connexins[J ]. Cardiovas Res, 2004, 62(2):276-286.
    25. Nicholas J.S, Emmanuel D, Coppen S R, et al. Remodelling of gap junctions and connexin expression in heart disease[J ]. BBA-Biomembranes,2004,1662(1):138-148.
    26. Toyofuku T. Functional analysis of selective interactions among rodent connexins[J ]. J Biol Chem, 1998, 273(3):1519-1534.
    27. Toyofuku T, Yabuki M, Otsu K, et al.Direct association of the gap junction protein connexin43 with ZO-1 in cardiac myocytes[J ]. J Biol Chem,1998,273(45): 12725-12731.
    28. Barker RJ, Price RL, Gourdie RG. Increased association of ZO-1 with connexin43 during remodeling of cardiac gap junctions[J ]. Circ Res,2002,90(2):317-324.
    29. Kardami E,Stoski RM,Doble BW, et al. Biochemical and ultrastructural evidence forthe association of basic fibroblast growth factor with cardiac gap junctions[J ].J Biol Chem,1991, 266(25):19551-19557.
    30. Giepmans BN, Verlaan I, Hengeveld T, et al. Gap junction protein connexin-43 interacts directly with microtubules[J ]. Curr Biol, 2001, 115():1364-1368.
    31. 钟国强, 黄从新, 刘唐威. 异型缝隙连接通道和磷酸化对心脏缝隙连接通透性的影响[J ]. 中国心脏起搏与心电生理杂志, 2004,18(4) :307-310.
    32. KanagaratnamP, Rothery S, Patel P. Relative expression of immunolocalized connexins
    40 and 43 correlates with human atrial conduction properties[J ].J Am Coll Cardiol, 2002, 39(1) :116-123.
    33. Saffitz JE, Schuessler RB. Connexin40, bundle-branch block, and propagation at the Purkinje-myocyte junction[J ].Circ Res,2000, 87(10) :929-936.
    34. 钟国强,黄从新,刘唐威,等. 异型缝隙连接通道和磷酸化对心脏细胞通讯的调节作用[J ]. 中国心脏起搏与心电生理杂志. 2003, 17(3) :195-199.
    35. 钟国强,黄从新,刘唐威,等.异型缝隙连接通道和磷酸化对心脏缝隙连接的调变[J ]. 中华心律失常学杂志,2003,7(2):229-231.
    36. Dhein S. Gap junction channels in the cardiovascular system: pharmacological and physiological modulation[J ]. Trends Pharmacol Sci, 1998, 19(1):229-241.
    37. Kwak B R, Jongsma H J. Regulation of cardiac gap junction channel permeability and conductance by several phosphorylation conditions[J ].Mol Cell Biochem,1996, 157(1): 93-99.
    38. Kwak BR, van Veen TA, Analbers LJ, et al. TPA increases conductance but decreases permeability in neonatal rat cardiomyocyte gap junction channels[J ]. Exp Cell Res, 1995, 220(2):456-465.
    39. Van Been TAB, van Rijen HVM, Opthof T. Cardiac gap junction channels; modulation of expression and channel properties[J ]. Cardiovasc Res, 2001,51(1):217-229.
    40. Gaietta G, Deerinck TJ, Adams SR, et al. Multicolor and electron microscopic imaging of connexin trafficking[J ]. Science, 2002, 296(3):503-507.
    41. Veenstra RD, Wang H-Z, Beblo DA, et al. Selectivity of connexin specific gap junctions does not correlate with channel conductance[J ].Circ Res,1995,77(5):1156-11 65.
    42. Spray DC, Burt JM. Structure-activity relations of the cardiac gap junction channel[J ]. Am J Physiol Cell Physiol, 1990,258(1):C195-205.
    43. Saez JC, Berthoud VM, Branes MC,et al. Plasma membrane channels formed byconnexins; their regulation and functions[J ]. Physiol Rev, 2003, 83(5):1359-1400.
    44. Polontchouk L, Valiunas V, Haefliger JA. et al. Expression and regulation of connexins in cultured ventricular myocytes isolated from adult rat hearts[J ]. Pflu¨gers Arch-Eur J Physiol, 2002, 443(3):676-689.
    45. Takens-Kwak BR, Jongsma HJ. Cardiac gap junctions; three distinct single channel conductances and their modulation by phosphorylating treatments[J ]. Pflu¨gers Arch Eur J Physiol, 1992, 422(1):198-200.
    46. Nebigil CG, Etienne N, Messaddeo N .et al. Serotonin is a novel survival factor of cardiomyocytes: mitochondria as a target of 5-HT2B receptor signaling[J ]. FASEB J , 2003, 17(6):1373-1375.
    47. Contreras JE, Saez JC, Bukauskas FF, et al. Gating and regulation of connexin 43 (Cx43) hemichannels[J ]. Proc Natl Acad Sci U S A ,2003, 100(24):11388-11393.
    48. Moreno AP, Laing JG, Beyer EC, et al. Properties of gap junction channels formed of connexin 45 endogenously expressed in human hepatoma (SKHep1) cells[J ]. Am J Physiol, 1995;268(2):C356-365.
    49. Valiunas V. Biophysical properties of connexin-45 gap junction hemichannels studied in vertebrate cells[J ]. J Gen Physiol, 2002;119(1):147-164.
    50. Valiunas V, Weingart R, Brink PR. Formation of heterotypic gap junction channels by connexins 40 and 43[J ]. Circ Res, 2000;86(1):E42-49.
    51. Gros DB, Jongsma HJ. Connexins in mammalian heart function[J ]. Bio Essays, 1996;18(3):719-730.
    52. Van K M, Vermeulen JLM, Moorman AFM, et al. Developmental changes of connexin40 and connexin43 mRNA distribution patterns in the rat heart[J ]. Cardiovasc Res, 1996;32(4):886-900.
    53. Kwak BR, Van Kempen MJA, Veniau-Ruissy M, et al . Connexin expression in cultured neonatal rat myocytes reflects the pattern of the intact ventricle[J ]. Cardiovasc Res, 1999;44(2):370-380.
    54. Delorme B, Dahl E, Jarry-Guichard T, et al. Expression pattern of connexin gene products at the early developmental stages of the mouse cardiovascular system[J ]. Circ Res, 1997;81(2):423-437.
    55. Coppen SR, Kaba RA, Halliday D, et al. Comparison of connexin expression patternsin the developing mouse heart and human foetal heart[J ]. Mol Cell Biochem, 2003;242(1):121-127.
    56. Gourdie RG, Severs NJ, Green CR, et al. The spatial distribution and relative abundance of gap-junctional connexin40 and connexin43 correlate to functional properties of components of the cardiac atrioventricular conduction system[J ]. J Cell Sci, 1993;105(4): 985-991.
    57. Kanter HL, Laing JG, Beau SL, et al. Distinct patterns of connexin expression in canine Purkinje fibers and ventricular muscle.[J ]. Circ Res, 1993;72(5):1124-1131.
    58. Kwong KF, Schuessler RB, Green KG, et al. Differential expression of gap junction proteins in the canine sinus node[J ]. Circ Res, 1998;82(4):604-612.
    59. Verheule S, Van Kempen MJA, Postma S, et al. Gap junctions in the rabbit sinoatrial node[J ]. Am J Physiol Heart Circ Physiol, 2001;280(5):H2103-2115.
    60. BastideB, Neyses L, Ganten D, et al. Gap junction protein connexin40 is preferentially expressed in vascular endothelium and conductive bundles of rat myocardium and is increased under hypertensive conditions[J ]. Circ Res, 1993;73(6):1138-1149.
    61. Gros D, Jarry-Guichard T, Ten Velde I, et al. Restricted distribution of connexin40, a gap junctional protein, in mammalian heart[J ]. Circ Res, 1994;74(5): 839-851.
    62. Alcole′aS, The′veniau-Ruissy M, Jarry-Guichard T, et al. Downregulation of connexin
    45 gene products during mouse heart development[J ]. Circ Res, 1999;84(7):1365-1379.
    63. Coppen SR, Dupont E, Rothery S, et al. Connexin45 expression is preferentially associated with the ventricular conduction system in mouse and rat heart[J ]. Circ Res, 1998;82(1):232-243.
    64. Coppen SR, Kodama I, Boyett MR, et al. Connexin45, a major connexin of the rabbit sinoatrial node, is co-expressed with connexin43 in a restricted zone at the nodal-crista terminalis border[J ]. J Histochem Cytochem, 1999, 47(4):907-918.
    65. Coppen SR, Severs NJ, Gourdie RG. Connexin45 (a6) expression delineates an extended conduction system in the embryonic and mature rodent heart[J ]. Dev Genet, 1999;24(1): 82-90.
    66. VeenstraRD, Wang H.Z.,Beblo DA,et al. Selectivity of connexin specific gap junctions does not correlate with channel conductance[J ]. Circ Res, 1995;77(6):1156-1165.
    67. Veenstra RD, Wang HZ, Beyer EC, et al. Selective dye and ionic permeability of gap junction channels formed by connexin45[J ]. Circ Res ,1994, 75(2):483-490.
    68. Jongsma HJ, Wilders R. Gap junctions in cardiovascular disease[J ]. Circ Res, 2000, 86(5):1193-1197.
    69. So¨hl G, Nielsen PA, Eiberger J, et al. Expression profiles of the novel human connexin genes hCx30.2, hCx40.1, and hCx62 differ from their putative mouse orthologues [J ]. Cell Adhes Commun,2003,10(1):27-36.
    70. VanSlyke JK, Musil LS. Analysis of connexin intracellular transport and assembly[J ]. Methods , 2000, 20(1):156-164.
    71. Musil LS, Cunningham BA, Edelman GM, et al. Differential phosphorylation of the gap junction protein connexin43 in junctional communication-competent and -deficient cell-lines[J ]. J Cell Biol, 1990, 111(12):2077-2088.
    72. Saez JC, Nairn AC, Czernik AJ, et al. Phosphorylation of connexin43 and the regulation of neonatal rat cardiac myocyte gap junctions[J ].J Mol Cell Cardiol, 1997,29(15):2131-2145.
    73. Hertzberg EL, Sa′ez JC, Corpina RA, et al. Use of antibodies in the analysis of connexin 43 turnover and phosphorylation[J ]. Methods,2000,20(1):129-139.
    74. Fishman GI, Eddy RL, Shows TB, et al. The human connexin gene family of gap junction proteins:distinct chromosomal locations but similar structures[J ]. Genomics, 1991,10(2):250-256.
    75. Geimonen E, Jiang W, Ali M, et al. Activation of protein kinase C in human uterine smooth muscle induces connexin-43 gene transcription through an AP-1 site in the promoter sequence[J ]. J Biol Chem,1996;271(25):23667-23674.
    76. Dupays L, Mazurais D, Ru¨cker-Martin C, et al. Genomic organization and alternative transcripts of the human connexin40 gene[J ]. Gene, 2003,305(1):79-90.
    77. Jacob A, Beyer EC. Mouse connexin 45; genomic cloning and exon usage[J ]. DNA Cell Biol,2001,20(1):11-19.
    78. Baldridge D, Lecanda F, Shin CS, et al. Sequence and structure of the mouse connexin45 gene[J ]. Biosci Rep ,2001, 21(3):683-689.
    79. Suske G. The Sp-family of transcription factors[J ]. Gene , 1999, 238(1):291-300.
    80. Papaioannou VE, Silver LM. The T-box gene family[J]. Bio Essays, 1998,20(1):9-19.
    81. Hagen G, Dennig J, Prei? A, et al. Functional analyses of the transcription factor Sp4 reveal properties distinct from Sp1 and Sp3[J ]. J Biol Chem, 1995, 270(34):24989-24994.
    82. Nguye(?)n(?)-Tra(?)n VTB, Kubalak SW, Minamisawa S, et al. A novel genetic pathway for sudden cardiac death via defects in the transition between ventricular and conduction system cell lineages[J ]. Cell, 2000, 102(3):671-682.
    83. Chen ZQ, Lefebvre D, Bai X-H, et al. Identification of two regulatory elements within the promoter region of mouse connexin 43 gene[J ]. J Biol Chem,1995,270(45):3863-3868.
    84. Echetebu CO, Ali M, Izban MG, et al. Localization of regulatory protein binding sites in the proximal region of human myometrial connexin 43 gene[J ]. Mol Hum Reprod, 1999;5(4):757-766.
    85. De Leon JR, Buttrick PM, Fishman GI. Functional analysis of the connexin43 gene promoter in vivo and in vitro[J ]. J Mol Cell Cardiol ,1994,26(2):379-389.
    86. Fernandez Cobo M, Stewart D, Drujan D, et al. Promoter activity of the rat connexin
    43 gene in NRK cells[J ]. J Cell Biochem ,2001,81(2):514-522.
    87. Teunissen BEJ, Jansen AT, Van Amersfoorth SCM, et al. Analysis of the rat connexin
    43 proximal promoter in neonatal cardiomyocytes[J ]. Gene, 2003,322(1):123-136.
    88. Kasahara H, Wakimoto H, Liu M, et al. Progressive atrioventricular conduction defects and heart failure in mice expressing a mutant Csx/Nkx2.5 homeoprotein[J ]. J Clin Invest, 2001,108(1):189-201.
    89. Lin JH-C, Weigel H, Cotrina ML, et al. Gap-junction-mediated propagation and amplification of cell injury[J ]. Nat Neurosci, 1998, 1(2):494-500.
    90. Krutovskikh VA, Piccoli C, Yamasaki H. Gap junction intercellular communication propagates cell death in cancerous cells[J ]. Oncogene, 2002,21(7):1989-1999.
    91. 孙冰,孙宝贵. 心脏缝隙连接和心律失常[J ]. 中国心脏起搏与心电生理杂志. 2004,18(1) :63-65.
    92. Kenneth W. H, Lisa W. N, David S, et al. Knockout of the neural and heart expressed gene HF-1b results in apical deficits of ventricular structure and activation[J ]. Cardiovasc Res.,2005, 67(3) :548-560.
    93. Li F, Sugishita K, Su Z, et al. Activation of connexin- 43 hemichannels can elevate [Ca2 +]i and [Na+]i in rabbit ventricular myocytes during metabolic inhibition[J ]. J Mol Cell Cardiol, 2001, 33(8):2145-2155.
    94. John SA, Kondo R, Wang SY, et al. Connexin43 hemichannels opened by metabolic inhibition[J ]. J Biol Chem, 1999,274(1):236-240.
    95. Lau AF,Hatch PV,Crow DS.Evidence that heart connexin43 is a phosphoprotein[J ]. J Mol Cell Cardiol, 1991, 23(3):659-663.
    96. Burt JM, Spray DC. Inotropic agents modulate gap junctional conductance between cardiac myocytes[J ].Am J Physiol, Heart Circ Physiol, 1988, 254(4):H1206-1210.
    97. De Mello WC. Impaired regulation of cell communication by hadrenergic receptor activation in the failing heart[J ]. Hypertension, 1996,27(1):265-268.
    98. Paulson AF,Lampe PD,Meyer RA, et al. Cyclic AMP and LDL trigger a rapid enhancement in gap junction assembly through a stimulation of connexin trafficking[J ].Cell, 2000,3(1):137-157.
    99. Lampe PD, Qiu Q, Meyer RA, et al. Gap junction assembly: PTXsensitive G proteins regulate the distribution of connexin43 within cells. Am J Physiol[J ], Cell Physiol, 2001,281(4):C1211-1222.
    100. Kojda G,Kottenberg K. Regulation of basal myocardial function by NO[J ]. Cardiovasc Res, 1999, 41(2):514-523.
    101. Gewaltig MT, Kojda G. Vasoprotection by nitric oxide: mechanisms and therapeutic potential[J ]. Cardiovasc Res,2002,55(1):250-260.
    102. Friebe A, Koesling D. Regulation of nitric oxide-sensitive guanylyl cyclase[J ]. Circ Res, 2003, 93(1):96-105.
    103. Ping P, Zhang J, Pierce WM, et al. Functional proteomic analysis of protein kinase Cq signaling complexes in the normal heart and during cardioprotection[J ]. Circ Res, 2001,88(1):59-62.
    104. Schulz R, Gres P, Skyschally A, et al. Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo[J ]. FASEB J, 2003,17(4): 1355-1357.
    105. Doble BW, Ping P, Kardami E. The q subtype of protein kinase C is required for cardiomyocyte connexin43 phosphorylation[J ]. Circ Res, 2000, 86(1):293-301.
    106. Bowling N, Huang X, Sandusky GE, et al. Protein kinase C a and q modulate connexin43 phosphorylation in human heart[J ]. J Mol Cell Cardiol, 2001,33(2):789-798.
    107. Doble B W,Ping P,Fandrich R R,e tal. Protein kinase C-epsilon mediates phorbol ester- induced phosphorylation of connexin-43[J ]. Cell Adhes Commun, 2001, 8(1):253- 256.
    108. Weng S, Lauven M, Schaefer T, et al. Pharmacological modification of gap junction coupling by an antiarrhythmic peptide via protein kinase C activation[J ]. FASEB J,2002, 16(4):1114-1116.
    109. Toyofuku T, Yabuki M, Kuzuya T, et al. Functional role of c-Src in gap junctions of the cardiomyopathic heart[J ]. Circ Res, 1999,85(2):672-681.
    110. Lin R, Warn-Cramer BJ, Kurata WE, et al. v-Src phosphorylation of connexin 43 on Tyr247 and Tyr265 disrupts gap junctional communication[J ]. J Cell Biol, 2001,4(3): 815- 827.
    111. Lin R, Warn-Cramer BJ, Kurata WE, et al. v-Src-mediated phosphorylation of connexin43 on tyrosine disrupts gap junctional communication in mammalian cells[J ]. Cell Adhes Commun, 2001, 8(1):265-269.
    112. CottrellGT, Lin R, Warn-Cramer BJ, et al. Mechanism of v-src- and mitogen-activated protein kinase-induced reduction of gap junction communication[J ]. Am J Physiol, Cell Physiol,2003,284(2):C511-520.
    113. Doble BW, Chen Y, Bosc DG, et al. Fibroblast growth factor-2 decreases metabolic coupling and stimulates phos- phorylation as well as masking of connexin43 epitopes in cardiac myocytes[J ]. Circ Res, 1996,79(3):647-658.
    114. Toyofuku T, Akamatsu Y, Zhang H, et al. c-Src regulates the interaction between connexin-43 and ZO-1 in cardiac myocytes[J ]. J Biol Chem, 2001, 276(6):1780-1788.
    115. Lidington D, Tyml K, Ouellette Y. Lipopolysaccharide-induced reductions in cellular coupling correlate with tyrosine phosphorylation of connexin 43[J ]. J Cell Physiol, 2002,193(2):373-379.
    116. Polontchouk L, Ebelt B, Jackels M, et al. Chronic effects of endothelin 1 and angiotensin II on gap junctions and intercellular communication in cardiac cells[J ]. FASEB J ,2002,16(1):87-98.
    117. Brandes RP, Popp R, Ott G, et al. The extracellular regulated kinases (ERK) 1/2 mediate cannabinoid-induced inhibition of gap junctional communication in endothelial cells[J ]. Br J Pharmacol ,2002,136(3):709-716.
    118. Warn-Cramer BJ, Cottrell GT, Burt JM, et al. Regulation of connexin43 gap junctional intercellular communication by mitogen- activated protein kinase[J ]. J Biol Chem, 1998, 273(24):9188-9196.
    119. Cameron SJ, Malik S, Akaibe M, et al. Regulation of epidermal growth factor-induced connexin 43 gap junction communication by big mitogen-activated protein kinase 1/ERK 5 but not ERK1/2 kinase activation[J ]. J Biol Chem, 2003, 278(47):18682-18688.
    120. Petrich BG, Gong X, Lerner DL, et al. c-Jun N-terminal kinase activation mediates downregulation of connexin43 in cardiomyocytes[J ]. Circ Res, 2002, 91(2):640-647.
    121. Barker RJ, Gourdie RG. JNK bond regulation. Why do mammalian hearts invest in connexin43? [J ] Circ Res, 2002, 91(2):556-568.
    122. Warn-Cramer BJ, Lampe PD, Kurata WE, et al. Characterization of the mitogen- activated protein kinase phosphorylation sites on the connexin43 gap junction protein[J ]. J Biol Chem ,1996,271(24):3779-3786.
    123. Lau AF, Kurata WE, Kanemitsu MY, et al. Regulation of connexin43 function by activated tyrosine protein kinases[J ]. J Bioenerg Biomembranes,1996,28(2):359-368.
    124. Cooper CD, Lampe PD. Casein kinase 1 regulates connexin43 gap junction assembly[J ]. J Biol Chem, 2003,277(24):44962-44968.
    125. Jeyaraman M, Tanguy S, Fandrich RA, et al. Ischemia induced dephosphorylation of cardiomyocyte connexin43 is reduced by okadaic acid and calyculin A but not fostriecin[J ]. Mol Cell Biochem, 2003,242(1):129-134.
    126. Moreno AP, Sa′ez JC, Fishman GI, et al. Human connexin43 gap junction channels[J ]. Circ Res, 1994,74(5):1050-1057.
    127. Liu Q, Hofmann PA. Modulation of protein phosphatase 2a by adenosine A1 receptors in cardiomyocytes; role for p38 MAPK[J ]. Am J Physiol, Heart Circ Physiol, 2003, 285(1):H97-103.
    128. Michel MC, Li Y, Heusch G. Mitogen-activated protein kinases in the heart[J ]. Naunyn-Schmiedeberg’s Arch Pharmacol, 2001,363(1):245-266.
    129. Sayed M, Kim SO, Salh BS I, et al. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase[J ]. J Biol Chem, 2000; 275(17):16569-16573.
    130. Cieslik K, Lee CM, Tang J, et al. Transcriptional regulation of endothelial nitric-oxide synthase by an interaction between casein kinase 2 and protein phosphatase 2A[J ]. J Biol Chem , 1999, 274(48):34669-34675.
    131. Keyse SM. Protein phosphatases and the regulation of mitogenactivated protein kinase signalling. [J ]. Curr Opin Cell Biol,2000,12(1):186-192.
    132. Jain SK, Schuessler RB, Saffitz JE. Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning[J ]. Circ Res,2003, 92(4):1138-1144.
    133. McCallister LP, Trapukdi S, Neely JR. Morphometric observation on the effects of ischemia in the isolated perfused rat heart[J ]. J Mol Cell Cardiol, 1979, 11(2):619-630.
    134. De Mello WC. Cell-to-cell coupling assayed by means of electrical measurements[J ]. Experientia, 1987, 43(3):1075-1079.
    135. Knapp J, Gross W, Gebhard M.M. Surface contact measurement of electrical cell uncoupling in the mouse heart during ischemia[J ]. Bioelectrochemistry, 2005, 67(1) : 67-73.
    136. Dekker LRC, Fiolet JWT, VanBavel E, et al. Intracellular Ca2+, intercellular electrical coupling, and mechanical activity in ischemic rabbit papillary muscle. Effects of preconditioning and metabolic blockade[J ]. Circ Res, 1996,79(1):237-246.
    137. Cascio WE, Yan G-X, Kleber AG. Passive electrical properties, mechanical activity, and extracellular potassium in arterially perfused and ischemic rabbit ventricular muscle. Effects of calcium entry blockade and hypocalcemia[J ]. Circ Res, 1990, 66(5): 1461-1473.
    138. Owens LM, Fralix TA, Murphy E, et al. Correlation of ischemia-induced extracellular and intracellular ion changes to cell-to-cell electrical uncoupling in isolated blood-perfused rabbit heats[J ]. Circulation ,1996, 94(1):10-13.
    139. Sugiura H, Toyama J, Tsuboi N, et al. ATP directly affects junctional conductance between paired ventricular myocytes isolated from guinea pig heart[J ]. Circ Res, 1990, 66(4):1095-1102.
    140. Casas O, Brago′s R, Riu PJ, et al. In vivo and in situ ischemic tissue characterization using electrical impedance spectroscopy[J ]. Ann NY Acad Sci,1999,873(1):51-58.
    141. Padilla F, Garcia DD, Rodry′GS, et al. The protection afforded by ischemic preconditioning is not mediated by effects on cell-to-cell electrical coupling during myocardial ischemia- reperfusion[J ]. Am J Physiol,2003,285(6):H1909-1916.
    142. Rohr S,KuceraJP, Kleber AG. Slow conduction in cardiac tissue; Effects of a reduction of excitability versus a reduction of electrical coupling on microconduction[J ]. Circ Res, 1998, 83(3):781-794.
    143. Riegger CB,Alperovich G,KleberAG.Effects of oxygen withdrawal on active and passive electrical properties of arterially perfused rabbit ventricular muscle[J ] Circ Res, 1989, 64(2):532-541.
    144. Joseph J. G, Kiyomi Y, Karen G. G, et al. Remodeling of gap junctions and slow conduction in a mouse model of desmin-related cardiomyopathy[J ]. Cardiovas Res, 2005, 67(3):539-547.
    145. Peters NS. New insights into myocardial arrhythmogenesis; distribution of gap junctional coupling in normal , ischaemic and hypertrophied hearts[J ]. Clin Sci Colch , 1996,90 (6):447- 452.
    146. Severs NJ.Gap junction alterations in the failing heart [J ]. Eur Heart J, 1994, 15 (Suppl D):53-57.
    147. PetersNS,CoromilasJ,Severs NJ , et al. Disturbed connexin43 gap junctiondistribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia[J ]. Circulation,1997, 95 (4) : 988-996.
    148. Kusuoka H,WeisfeldtML,ZweierJL,et al. Mechanism of early contractile failure during hypoxia in intact ferret heart: Evidence for modulation of maximal Ca2+-activated force by inorganic phosphate[J ].Circ Res,1986,59(1):270-282.
    149. Guth BD, Martin JF, Heusch G, et al. Regional myocardial blood flow, function and metabolism using phosphorus-31 nuclear magnetic resonance spectroscopy during ischemia and reperfusion[J ]. J Am Coll Cardiol,1987,10(2):673-681.
    150. Weinbrenner C,Baines CP,Liu GC,et al. Fostriecin, an inhibitor of protein phosphatase 2A, limits myocardial infarct size even when administered after onset of ischemia[J ]. Circulation, 1998, 98(3):899-905.
    151. Kim SO, Baines CP, Critz SD, et al. Ischemia induced activation of heat shock protein 27 kinases and casein kinase 2 in the preconditioned rabbit heart[J ].Biochem Cell Biol, 1999,77(2):559-567.
    152. Lochner A, Genade S, Tromp E, et al. Ischemic preconditioning and the h-adrenergic signal transduction pathway[J ]. Circulation,1999,100(4):958-966.
    153. Simonis G, WeinbrennerC, Strasser RH. Ischemic preconditioning promotes a transient, but not sustained translocation of protein kinase C and sensitization of adenyl cyclase[J,]. Basic Res Cardiol,2003,98(1):104-118.
    154. Takeishi Y, Huang Q, Wang T, et al. Src family kinase and adenosine differentially regulate multiple MAP kinases in ischemic myocardium; modulation of MAP kinases activation by ischemic preconditioning[J ]. J Mol Cell Cardiol,2001,33(6):1989-2005.
    155. YlitaloKV,Ala-RamiA,Liimatta EV, et al. Intracellular free calcium and mitochondrial membrane potential in ischemia/reperfusion and preconditioning[J ].J Mol Cell Cardiol,2000,32(5):1223-1238.
    156. Wang L, Cherednichenko G, Hernandez L, et al. Preconditioning limits mitochondrial Ca2+ during ischemia in rat hearts; role of KATP channels[J ]. Am J Physiol, Heart Circ Physiol,2001,280(9):H2321-2328.
    157. Beardslee M A, Lerner D L, Tadros P N,et al. Dephosphorylation and intracellular redistributoin of ventricular connexin43 during electrical uncoupling induced by ischemia[J ].Circ Res,2000,87(3):656-662.
    158. Kondo RP, Wang SY, John SA, et al. Metabolic inhibition activates a non-selective current through connexin hemichannels in isolated ventricular myocytes[J ]. J Mol Cell Cardiol,2000,32(9):1859-1872.
    159. Balschi JA.NMR demonstrates prolonged increase of intracellular sodium following transient regional ischemia in the in situ pig heart[J ].BasicRes Cardiol,1999,94(1):60-69.
    160. Ruiz-Meana M, Garcia-Dorado D,Hofstaetter B, et al. Propagation of cardiomyocyte hypercontracture by passage of Na+ through gap junctions[J ].Circ Res,1999,85(1): 280-287.
    161. Garcia-Dorado D, Inserte J, Ruiz-Meana M, et al. Gap junction uncoupler heptanol prevents cell-to-cell progression of hypercontracture and limits necrosis during myocardial reperfusion[J ]. Circulation,1997,96(51):3579-3586.
    162. Garcia-Dorado D, Theroux P,Duran JM, et al. Selective inhibition of the contractile apparatus. A new approach to modification of infarct size, infarct composition, and infarct geometry during coronary artery occlusion and reperfusion[J ]. Circulation, 1992,85(5):1160-1174.
    163. Humphrey SM, Vanderwee MA. Factors affecting the development of contraction band necrosis during reperfusion of the isolated isovolumic rat heart[J ]. J Mol Cell Cardiol,1986,18(2):319-329.
    164. Schlack W, Uebing A, Schafer M, et al. Regional contractile blockade at the onset of reperfusion reduces infarct size in the dog heart[J ].Pflugers Arch, 1994, 428(1):134-141.
    165. Garcia D D, Ruiz M M. Propagation of cell death during myocardial reperfusion[J ]. News Physiol Sci,2000,15(1):326-330.
    166. Garcia-Dorado D, Theroux P, Desco M, et al. Cell-to-cell interaction: a mechanism to explain wave-front progression of myocardial necrosis[J ]. Am J Physiol, 1989,256(6): H1266-1273.
    167. Schlack W, Preckel B, Barthel H, et al. Halothane reduces reperfusion injury after regional ischaemia in the rabbit heart in vivo[J ]. Br J Anaesth,1997,79(1):88-96.
    168. Schlack W, Hollmann M, Stunneck J, et al. Effect of halothane on myocardial reoxygenation injury in the isolated rat heart[J]. Br J Anaesth,1996,76(3):860-867.
    169. Rodryguez S A, Garcia D D, Ruiz M M, et al. Enhanced susceptibility of reperfused myocardium to gap junction blockers[J ]. Eur Heart J,2003,24(2):324-337.
    170. Kanno S,Kovacs A,Yamada K A,et al. Connexin43 as a determinant of myocardial infarct size following coronary occlusion in mice[J ].J Am Col Cardiol,2003,19(3): 681-686.
    171. Gutstein DE, Morley GE, Fishman GI. Conditional gene targeting of connexin43: exploring the consequences of gap junction remodeling in the heart[J ]. Cell Adhes Commun,2001,8(2):345-349.
    172. Rodriguez M, Lucchesi BR, Schaper J. Apoptosis in myocardial infarction[J ]. Ann Med,2002,34(2):470-479.
    173. Gabel SA, Cross HR, Londom RE, et al. Decreased intracellular pH is not due to increased H+ extrusion in preconditioned rat heart[J ].Am J Physiol, Heart Circ Physiol,1997,273(8):H2257-2262.
    174. Marc C, Jean P D, Isabelle R, et al. Gap junctional communication in tissue inflammation and repair[J ]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2005,1711(2):197-207.
    175. Cinca J, Warren M, Carren OA, et al. Changes in myocardial electrical impedance induced by coronary artery occlusion in pigs with and without preconditioning[J ]. Circulation,1997,96(12):3079-3086.
    176. Dekker LRC.Rademaker H,VermeulenJT, et al. Cellular uncoupling during ischemia in hypertrophied and failing rabbit ventricular myocardium:effects of preconditioning[J ]. Circulation, 1998,97(7):1724-1730.
    177. Tan HL, Mazon P, Verberne HJ, et al. Ischaemic preconditioning delays ischaemia induced cellular electrical uncoupling in rabbit myocardium by activation of ATP sensitive potassium channels[J ]. Cardiovasc Res,1993,27(2):644-651.
    178. Botsford MW,Lukas A. Ischemic preconditioning and arrhythmogenesis in the rabbit heart: effects on epicardium versus endocardium[J ]. J Mol Cell Cardio, 1998, 30(6): 1723-1733.
    179. Rohr S, Kucera JP, Kleber AG., Slow conduction in cardiac tissue:effects of a reduction of excitability versus a reduction of electrical coupling on microconduction[J ]. CircRes,1998,83(3):781-794.
    180. Masters RA, Saylors RL Jones KE, et al. Lack of bystander killing in herpes simplex virus thymidine kinase-transduced colon cell lines due to deficient connexin43 gap junction formation[J ]. Hum Gene Ther,1998, 9(8):2253-2261.
    181. Rawanduzy A, Hansen A, Hansen TW, et al. Effective reduction of infarct volume by gap junction blockade in a rodent model of stroke[J ]. J Neurosurg,1997, 87(4):916-920.
    182. RuizMM,GarciaDD,HofstaetterB,et al. Propagation of cardiomyocyte hypercontracture by passage of Na+ through gap junctions[J ]. Circ Res,1999,85(1):280-287.
    183. Eng S, Maddaford T G, Kardami E,et al. Protection against myocardial ischemia/ reperfusion injury by inhibitors of two separate pathways of Na+ entry[J ]. J Mol Cell Cardiol,1998,30(2):829-835.
    184. Miura T, Ogawa T, Suzuki K, et al. Infarct size limitation by a new Na+-H+ exchange inhibitor, Hoe642: difference from preconditioning in the role of protein kinase C[J ]. J Am Coll Cardiol,1997,29(2):693-701.
    185. Cotrina M.L, Kang J,Lin J.et al., Astrocytic gap junctions remain open during ischemic conditions[J ]. J Neurosci,1998,18(8):2520-2537.
    186. RuizM M, GarciaD D, Lane S, et al. Persistence of gap junction communication during myocardial ischemia[J ]. Am J Physisol,2001,280(9):H2563-2571.
    187. Lampe PD, TenBroek EM, Burt JM,et al. Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junction communication[J ]. J Cell Biol, 2000,149(6): 1503-1512.
    188. Lampe PD, Lau AF. Regulation of gap junctions by phosphorylation of connexins[J ]. Arch Biochem Biophys,2000,384(1):205-215.
    189. Cruciani V, Kaalhus O, Mikalsen SO. Phosphatases involved in modulation of gap junctional intercellular communication and dephosphorylation of connexin43 in hamster fibroblasts:2B or not 2B? [J ]. Exp Cell Res ,1999,252(2):449-463.
    190. 陈宝平,夏强,沈岳良.缝隙连接失耦联剂 Heptanol 对缺血心肌的影响[J ]. 中国心脏起搏与心电生理杂志,2002, 16(2):139-142.
    191. Schwanke U,Konietzka I, Duschin A, et al. No ischemic preconditioning in heterozygous connexin43-deficient mice[J ]. Am J Physiol Heart Circ Physiol, 2002, 283(4):H1740-1742.
    192. Schwanke U, Li X, Schulz R et al. No ischemic preconditioning in heterozygous connexin 43-deficient mice-a further in vivo study[J ]. Basic Res Cardiol,2003, 98(3) : 181-182.
    193. Lin J, Yang J, Liu S, et al. Connexin mediates gap-junction independent resistance tocellular injury[J ]. J Neurosci, 2003,23(2):430-441.
    194. Li H, Brodsky S, Kumari S, et al. Paradoxical overexpression and translocation of connexin 43 in homocysteine-treated endothelial cells[J ]. Am J Physiol Heart Circ Physiol,2001,282(7):H2124-2133.
    195. Kerstin B Giuliano D, Antonio R S, et al. Connexin43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning[J ]. Cardiovas Res,2005,67(2):234-244
    196. Spear JF, Balke CW, Lesh MD, et al. Effect of cellular uncoupling by heptanol on conduction in infracted myocardium[J ]. Circ Res,1990,66(1):202-217.
    197. Verkerk AO, Veldkamp MW, Coronel R, et al. Effects of cell-to-cell uncoupling and catecholamines on Purkinje and ventricular action potentials: implications for phase-1b arrhythmias[J ]. Cardiovasc Res, 2001,51(1):30-40.
    198. Callans DJ, Kieval RS, Hook BG, et al. Effect of coronary perfusion of heptanol or potassium on conduction and ventricular arrhythmias[J ]. Am J Physiol, 1992, 263(6): H1382-1389.
    1. Jentsch TJ,Steinmeyer K, Schwarz G.Primary structure of torpedo marmorata chloride channel isolated by expression cloning in xenopus oocytes[J ]. Nature,1990, 348(2): 510-514.
    2. Jentsch T J, Stein V, Weinreich F, et al. Molecular structure and physiological function of chloride channels[J ]. Physiol Rev, 2002, 82(2): 503-568.
    3. Riordan J , Rommens J M , Kerem B S, et al . Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA[J ].Science,1989,245(9): 1066-1073.
    4. Koch M C, Steinmeyer K, Lorenz C, et al . The skeletal muscle chloride channel in dominant and recessive human myotonia[J ]. Science,1992,257 (2):797-800.
    5. Lloyd SE , Pearce SHS , Fisher SE, et al . A common molecular basis for three inherited kidney stone diseases[J ]. Nature,1996,379 (65):445-449.
    6. Chen L ,Wang L,Zhu L, et al.Cell cycle-dependent expression of volume-activated chloride currents in nasopharyngeal carcinoma cells [J ].Am J Physiol Cell Physiol, 2002 ,283(4):C1313-1323.
    7. Ransom C B ,O’Neal JT , Sontheimer H.Volume-activated chloride currents contribute to the resting conductance and invasive migration of human glioma cells[J ]. J Neurosci, 2001, 21(19):7674-7683.
    8. OReilly N , Xia Z , Fiander H , et al . Disparity between ionic mediators of volume regulation and apoptosis in N1E 115 mouse neuroblastoma cells [J ] . Brain Res , 2002 , 943(2):245-256.
    9. 陈艳明, 杨俊, 胡玉珍,等.容量调控氯通道在人胃癌细胞系 SGC790 增殖中的作用. 第四军医大学学报[J ],2004 ,25(6):489-491.
    10. Ackerman M J, Krapivinsky G B, Gordon E, et al. Characterization of a native swelling-induced chloride current, ICl,swell, and its regulatory protein, pICln, in Xenopus oocytes[J ]. Jpn J Physiol,1994,44(1):17-24.
    11. Ackerman M J, Wickman K D,Clapham D E.Hypotonicity activates a native chloride current in xenopus oocytes[J ]. J. Gen. Physiol, 1994, 103(1): 153-179.
    12. Strange K,Jackson P S. Swelling-activated organic osmolyte efflux: a new role for anion channels[J ]. Kidney Int, 1995, 48(4): 994-1003.
    13. Nilius B, Oike M, Zahradnik I, et al. Activation of a Cl-current by hypotonic volume increase in human endothelial cells[J ]. J Gen Physiol,1994,103(4):787-805.
    14. Levitan I, Garber S S. Anion competition for a volume regulated current[J ]. Biophys J,1998, 75(2): 226-235.
    15. Sorota S. Pharmacologic properties of the swelling-induced chloride current of dog atrial myocytes[J ]. J Cardiovasc Electrophysio,1994,55):1006-1016.
    16. Tseng G.N. Cell swelling increases membrane conductance of canine cardiac cells: evidence for a volume-sensitive Cl channel[J ]. Am.J.Physiol,1992,262(4): C1056-C1068.
    17. Hagiwara N, Masuda H, Shoda M, et al. Stretch activated anion currents of rabbit cardiac myocytes[J ]. J Physiol, 1992,456(1):285-302.
    18. Souktani R, Berdeaux A, Ghaleh B, et al. Induction of apoptosis using sphingolipids activates a chloride current in Xenopus laevis oocytes[J ]. Am J Physiol Cell Physiol, 2000,279(1):C158-C165.
    19. Shuba L M, Ogura T, McDonald T F. Kinetic evidence distinguishing volume-sensitive chloride current from other types in guinea-pig ventricular myocytes[J ]. J Physiol, 1996,491(1):69-80.
    20. Worrell R T, Butt A G, Cliff W H, et al. A volume sensitive chloride conductance in human colonic cell line T84[J ]. Am J Physiol, 1989, 256(5):C1111-C1119.
    21. Mintenig GM, Valverde MA., Sepulveda FV ,et al. Specific inhibitors distinguish the chloride channel and drug transporter functions associated with the human multidrug resistance P-glycoprotein[J ]. Receptors Channels, 1993, 1(2): 305-313.
    22. Duan D, Fermini B, Nattel S. Alpha-adrenergic control of volume-regulated Cl-currents in rabbit atrial myocytes. Characterization of a novel ionic regulatory mechanism[J ]. Circ Res,1995,77(2):379-393.
    23. Sorota S. Swelling-induced chloride-sensitive current in canine atrial cells revealed by whole-cell patch-clamp method[J ]. Circ Res,1992,70(3):679-687.
    24. Oz MC, Sorota S. Forskolin stimulates swelling-induced chloride current, not cardiac cystic fibrosis transmembraneconductance regulator current, in human cardiac myocytes[J ].Circ Res, 1995,76(5): 1063-1070.
    25. Vandenberg JI,YoshidaA,Kirk K,et al. Swelling activated and isoprenaline-activated chloride currents in guinea pig cardiac myocytes have distinct electrophysiology and pharmacology[J ]. J Gen Physiol, 1994, 104(5):997-1017.
    26. Du XY, Sorota S. Cardiac swelling-induced chloride current depolarizes canine atrial myocytes[J ]. Am J Physiol,1997,272(8):H1904-H1916.
    27. Banderali U, Roy G. Anion channels for amino acids in MDCK cells[J ]. Am J Physiol,1992, 263(5): C1200-C1207.
    28. Stutzin A, Torres R, Oporto M ,et al. Separate taurine and chloride efflux pathways activated during regulatory volume decrease[J ].Am J Physiol,1999,277(2): C392-C402.
    29. Jackson PS, Strange K Single-channel properties of a volume-sensitive anion conductance. Current activation occurs by abrupt switching of closed channels to an open state[J ]. J Gen Physiol, 1995, 105(3): 643-660.
    30. Jackson PS, Morrison R, Strange K. The volume-sensitive organic osmolyte-anion channel VSOAC is regulated by nonhydrolytic ATP binding[J ]. Am J Physiol, 1994, 267(5): C1203-C1209.
    31. Ho MW, Duszyk M, French AS Evidence that channels below 1 pS cause the volume-sensitive chloride conductance in T84 cells[J ]. Biochim Biophys Acta, 1994, 1191(1):151-156.
    32. Nilius B, Sehrer J, Viana F. et al. Volume-activated Cl- currents in different mammalian non-excitable cell types[J ]. Pflugers Arch, 1994,428(2):364-371.
    33. Voets T, Droogmans G, Nilius B. Modulation of voltage dependent properties of a swelling-activated Cl- current[J ]. J Gen Physiol,1997,110(2):313-325.
    34. Boese S H, Kinne R K, Wehner F. Single-channel properties of swelling-activated anion conductance in rat inner medullary collecting duct cells[J ]. Am J Physiol, 1996, 271(5):F1224- F1233.
    35. Coulombe A, Coraboeuf E. Large-conductance chloride channels of new-born rat cardiac myocytes are activated by hypotonic media[J ]. Pflugers Arch, 1992, 422(1): 143-150.
    36. Gill DR, Hyde SC, Higgins CF, et al. Separation of drug transport and chloride channel functions of the human multidrug resistance P-glycoprotein[J ].Cell,1992,71(1):23-32.
    37. Valverde MA, Diaz M, Sepulveda FV, et al. Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein[J ].Nature,1992,355(4): 830-833.
    38. Krapivinsky GB, Ackerman MJ, Gordon EA, et al. Molecular characterization of a swelling-induced chloride conductance regulatory protein, pICln[J ].Cell,1994,76(2): 439-448.
    39. Moorman JR., Ackerman SJ., Kowdley GC., et al. Unitary anion currents through phospholemman channel molecules[J ]. Nature, 1995, 377(2):737-740.
    40. Thiemann A, Grunder S, Pusch M, et al. A chloride channel widely expressed in epithelial and non-epithelial cells[J ]. Nature, 1992, 356(1):57-60.
    41. Grunder S, Thiemann A, Pusch M, et al. Regions involved in the opening of CIC-2chloride channel by voltage and cell volume[J ]. Nature, 1992, 360(2):759-762.
    42. Duan D, Cowley S, Horowitz B, et al .A serine residue in ClC-3 links phosphorylation- dephosphorylation to chloride channel regulation by cell volume[J ]. J Gen Physiol, 1999,113(1):57-70.
    43. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter[J ]. Annu Rev Biochem,1993,62(2):385-427.
    44. Han ES, Vanoye CG, Altenberg GA,et al. P-glycoprotein-associated chloride currents revealed by specific block by an anti-P-glycoprotein antibody[J ]. Am J Physiol, 1996, 270(4):C1370-C1378.
    45. Vanoye CG, Altenberg GA, Reuss L. P-glycoprotein is not a swelling-activated Cl) channel; possible role as a Cl-channel regulator[J ]. J Physiol,1997,502(1):249-258.
    46. Horton J K, Vanoye C G, Reuss L. Swelling-activated chloride currents in a drug-sensitive cell line and a P glycoproteinexpressing derivative are underlied by channels with the same pharmacological properties[J ]. Cell Physiol Biochem,1998,8(1): 246-260.
    47. Hardy SP, Goodfellow HR, Valverde MA, et al. Protein kinase C-mediated phosphorylation of the human multidrug resistance P-glycoprotein regulates cell volume-activated chloride channels[J ]. Embo J, 1995,14(1):68-75.
    48. Valverde MA, Bond TD, Hardy SP, et al. The multidrug resistance P-glycoprotein modulates cell regulatory volume decrease[J ]. Embo J,1996,15(5):4460-4468.
    49. Gschwentner M, Nagl UO, Woll E, et al. Antisense oligonucleotides suppress cell-volume- induced activation of chloride channels[J ].Pflugers Arch,1995,430(2); 464-470.
    50. Anguita J, Chalfant ML, Civan MM, et al. Molecular cloning of the human volume-sensitive chloride conductance regulatory protein, pICln, from ocular ciliary epithelium[J ]. Biochem Biophys Res Commun,1995,208(1):89-95.
    51. Musch MW, Luer CA, Davis-Amaral E.M., et al. Hypotonic stress induces translocation of the osmolyte channel protein pICln in embryonic skate (Raja eglanteria) heart[J ]. J Exp Zool,1997,277(2):460-463.
    52. Emma F, Breton S, Morrison R, et al. Effect of cell swelling on membrane and cytoplasmic distribution of pICln[J ]. Am J Physiol,1998,274(6):C1545-C1551.
    53. Li C, Breton S, Morrison R, et al. Recombinant pICln forms highly cation-selective channels when reconstituted into artificial and biological membranes[J ]. J. Gen Physiol,1998,112(3):727-736.
    54. Furst J, Bazzini C, Jakab M, et al. Functional reconstitution of ICln in lipid bilayers[J ]. Pflugers Arch, 2000, 440(1):100-115.
    55. Palmer CJ, Scott BT, Jones LR. Purification and complete sequence determination of the major plasma membrane substrate for cAMP-dependent protein kinase and protein kinase C in myocardium[J ]. J Biol Chem, 1991, 266(21):11126-11130.
    56. Moorman JR, Palmer CJ, John JE, et al. Phospholemman expression induces a hyperpolarizationactivated chloride current in Xenopus oocytes[J ]. J Biol Chem, 1992, 267(20): 14551-14554.
    57. Kowdley GC, Ackerman SJ, John J E , et al. Hyperpolarization-activated chloride currents in xenopus oocytes[J ]. J Gen Physiol,1994,103(1):217-230.
    58. Dutzler R, Campbell EB, Cadene M, et al. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity[J ]. Nature,2002,415(2):287-294.
    59. Schmidt-Rose T, Jentsch TJ. Transmembrane topology of a CLC chloride channel[J ]. Proc. Natl. Acad Sci USA, 1997, 94(27): 7633-7638.
    60. Furukawa T., Ogura T., Katayama Y., et al. Characteristics of rabbit ClC-2 current expressed in Xenopus oocytes and its contribution to volume regulation[J ]. Am J Physiol,1998,274(2):500-512.
    61. Clark S,Jordt SE,Jentsch TJ, et al. Characterization of the hyperpolarization-activated chloride current in dissociated rat sympathetic neurons[J ].J Physiol, 1998, 506(3):665-678.
    62. Cid LP, Niemeyer M., Ramirez A, et al. Splice variants of a ClC-2 chloride channel with differing functional characteristics[J ].Am J Physiol Cell Physiol,2000,279(5); C1198-C1210.
    63. Jordt SE, Jentsch TJ. Molecular dissection of gating in the ClC-2 chloride channel[J ]. Embo J,1997,16(6):1582-1592.
    64. Kajita H, Omori K, Matsuda H. The chloride channel ClC-2 contributes to the inwardly rectifying Cl-conductance in cultured porcine choroid plexus epithelial cells[J ]. J Physiol,2000,523(1):313-324.
    65. Schwiebert EM, Cid-Soto LP, Stafford D, et al. Analysis of ClC-2 channels as an alternative pathway for chloride conduction in cystic fibrosis airway cells[J ]. Proc Natl Acad Sci USA,1998,95(4):879-884.
    66. Bond TD, Valverde MA, Higgins CF. Protein kinase C phosphorylation disengages human and mouse-1a P-glycoproteins from influencing the rate of activation of swelling-activated chloride currents[J ].J Physiol,1998,508(2):333-340.
    67. Bosl MR, Stein V, Hubner C, et al. Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl- channel disruption[J ]. Embo J, 2001,20(5):1289-1299.
    68. Duan D, Winter C, Cowley S, et al. Molecular identification of a volume-regulated chloride channel[J ]. Nature, 1997, 390(2): 417-421.
    69. Hermoso M, Satterwhite CM, Andrade YN, et al. ClC-3 is a fundamental molecular component of volume-sensitive outwardly rectifying Cl-channels and volume regulation in HeLa cells and xenopus laevis oocytes[J ].J Biol Chem, 2002,277(26):40066-40074.
    70. Schmid A, Blum R, Krause E. Characterization of cell volume-sensitive chloride currents in freshly prepared and cultured pancreatic acinar cells from early postnatal rats[J ]. J Physiol, 1998, 513(2): 453-465.
    71. Shimada K, Li X, Xu G, et al. Expression and canalicular localization of two isoforms of the ClC-3 chloride channel from rat hepatocytes[J ].Am J Physiol Gastrointest Liver Physiol,2000,279(1):G268- G276.
    72. von Weikersthal SF, Barrand MA, Hladky SB. Functional and molecular characterization of a volume-sensitive chloride current in rat brain endothelial cells[J ]. J Physiol, 1999,516(1):75-84.
    73. Duan D, Zhong J, Hermoso M, et al. Functional inhibition of native volume-sensitive outwardly rectifying anion channels in muscle cells and Xenopus oocytes by anti-ClC-3 antibody[J ]. J Physiol, 2001, 531(2): 437-444.
    74. Wang L,Chen L,Jacob TJ. The role of ClC-3 in volume activated chloride currents and volume regulation in bovine epithelial cells demonstrated by antisense inhibition[J ]. J. Physiol, 2000,524(1): 63-75.
    75. Majid A, Brown P.D, Best L, et al. Expression of volume sensitive Cl- channels and ClC-3 in acinar cells isolated from the rat lacrimal gland and submandibular salivary gland[J ]. J Physiol,2001,534(2):409-421.
    76. Li X, Shimada K, Showalter L.A, et al. Biophysical properties of ClC-3 differentiate it from swelling-activated chloride channels in Chinese hamster ovary-K1 cells[J ]. J. Biol. Chem, 2000, 275(12): 35994-35998.
    77. Weylandt KH,Valverde MA, Nobles., et al. Human ClC-3 is not the swelling-activated chloride channel involved in cell volume regulation[J ]. J Biol Chem,2001,276(34): 17461-17467.
    78. Stobrawa SM, Breiderhoff T, Takamori S, et al. Disruption of ClC-3, a chloridechannel expressed on synaptic vesicles, leads to a loss of the hippocampus[J ]. Neuron, 2001,29(1):185-196.
    79. Sorota S, Du XY. Delayed activation of cardiac swelling induced chloride current after step changes in cell size[J ]. J Cardiovasc Electrophysiol, 1998, 9(3): 825-831.
    80. Tilly B.C, Edixhoven M.J, Tertoolen LG, et al. Activation of the osmo-sensitive chloride conductance involves P21rho and is accompanied by a transient reorganization of the F-actin cytoskeleton[J ]. Mol Biol Cell, 1996, 7(5): 1419-1427.
    81. Lascola CD, Kraig RP.Whole-cell chloride currents in rat astrocytes accompany changes in cell morphology[J ]. J Neurosci,1996,16(8):2532-2545.
    82. Voets T, Droogmans G, Raskin G, et al. Reduced intracellular ionic strength as the initial trigger for activation of endothelial volume-regulated anion channels[J ]. Proc Natl Acad Sci, USA, 1999, 96(32): 5298-5303.
    83. Du XY, Sorota S. Cardiac swelling-induced chloride current is enhanced by endothelin[J ]. J Cardiovasc Pharmacol, 2000,35(2):769-776.
    84. Reinsprecht M, Rohn MH, Spadinger RJ, et al. Blockade of capacitive Ca2+ influx by Cl- channel blockers inhibits secretion from rat mucosal-type mast cells[J ]. Mol Pharmacol,1995,47(4):1014-1020.
    85. Lesya M.S, Sergey M, Pavel Z,et al. Selective block of swelling-activated Cl- channels over cAMP-dependent Cl- channels in ventricular myocytes[J ].Euro J Phar,2004,491(1):111-120.
    86. Doroshenko P, Neher E. Volume-sensitive chloride conductance in bovine chromaffin cell membrane[J ]. J Physiol,1992,449(1):197-218.
    87. Hazama A, Okada Y. Ca2+ sensitivity of volume-regulatory K+ and Cl- channels in cultured human epithelial cells[J ]. J Physiol,1988,402(2):687-702.
    88. Szucs G, Heinke S, De Greef C, et al. The volume-activated chloride current in endothelial cells from bovine pulmonary artery is not modulated by phosphorylation[J ]. Pflugers Arch, 1996, 431(2): 540-548.
    89. Lemonnier L, Prevarskaya N, Shuba Y, et al. Ca2+ modulation of volume-regulated anion channels: evidence for colocalization with store-operated channels[J ]. Faseb J, 2002, 16(1):222-224.
    90. Emma F, McManus M, Strange K. Intracellular electrolytes regulate the volume set point of the organic osmolyte/anion channel VSOAC[J ]. Am.J.Physiol,1997,272(8): C1766-C1775.
    91. Doroshenko P. High intracellular chloride delays the activation of the volume- sensitive chloride conductance in mouse L-fibroblasts[J ].J Physiol, 1999, 514(2): 437-446.
    92. Ridley PD,Curtis MJ.Anion manipulation:a new antiarrhythmic approach. Action of subtitution of chloride with nitrate on ischemic and reperfusion-induced ventricular fibrillation and contractile function[J ]. Circ Res, 1992,70(3): 617-632.
    93. Curtis MJ,Garlick PB, Ridley PD. Anion manipulation,a novel antiarrhythmic approach: mechanism of action[J ].J Mol Cell Cardio, 1993, 25(2): 417-436.
    94. 赖仲方.心肌细胞内氯离子浓度与缺血再灌注期间心律失常的关联[J ].中国医学科学院学报,2002,24(2):190-196.
    95. Ando-Akatsuka Y,Abdullaev I.F,Lee E.L, et al.Down-regulation of volume-sensitive Cl-channels by CFTR is mediated by the second nucleotide-binding domain[J ]. Pflugers Arch, 2002, 445(1):177-186.
    96. Baumgarten CM, Clemo HF. Swelling-activated chloride channels in cardiac physiology and pathophysiology [J ] . Prog Biophys Mol Biol , 2003, 82(1-3): 25-42.
    97. Hall SK, Zhang J, Lieberman M. Cyclic AMP prevents activation of a swelling-induced chloride-sensitive conductance in chick heart cells[J ]. J Physiol, 1995, 488(2):359-369.
    98. Nagasaki M, Ye L, Duan D, et al. Intracellular cyclic AMP inhibits native and recombinant volume-regulated chloride channels from mammalian heart[J ]. J Physiol, 2000, 523(2): 705-717.
    99. 龚卫琴,臧益民,王晓明,等.ClC-3基因敲除不影响心肌细胞肿胀激活性氯通道的PKC敏感性[J ].第四军医大学学报,2004,25(11): 982-986.
    100. Hua W, Yan AM , Jia TS. Regulation of volume-activated chloride channels in embryonic chick heart cells[J ] . Cell Research , 2003 ,13 (1):212-228.
    101. Vanoye CG,Castro AF,Pourcher T, et al. Phosphorylation of P2 glycoprotein by PKA and PKC modulates swelling-activated Cl- currents[J ].Am J Physiol, 1999, 276(1): C370-C378.
    102. Du XY, Sorota S Protein kinase C stimulates swellinginduced chloride current in canine atrial cells[J ]. Pflugers Arch, 1999, 437(1): 227-234.
    103. Lev S , Moreno H , Martinez R, et al . Protein tyrosine kinase PYK involved in Ca+2 induced regulation of ion channel and MAP kinase functions[J ]. Nat ure,1995,376(2): 737-745.
    104. Prevarskaya NB,Skryma RN,Vacher P, et al . Role of tyrosine phosphorylation in potassium channel activation[J ]. J Biol Chem ,1995,270 (41):24292-24299.
    105. Wijetunge S ,Lymn J S,Hughus AD. Effects of protein tyrosine kinase inhibitors onvoltage-operated calcium channel currents in vascular smooth muscle cells and pp60c2src kinase activity[J ]. Br J Pharmacol,2000,129 (7):1347-1354.
    106. Sorota S.Tyrosine protein kinase inhibitors prevent activation of cardiac swelling- induced chloride current[J ] .Pflgers Arch ,1995,431(2):178-185.
    107. Lepple Wienhues A,Szabo I, Laun T, et al . The tyrosine kinase p56lck mediates activation of swelling-induced chlorides in lymphocytes[J ]. J Cell Biol,1998,141(1): 281-286.
    108. Voets T, Manolopolos V , Eggermont J, et al. Regulation of a swelling-activated chloride current in bovine endothelium by protein chloride current in bovine endothelium by protein tyrosine phosphorylation and Gprotein[ J].J Physiol, 1998,506 (2):341-352.
    109. Kim RD,Darling CE,Cerwenka H , et al. Hypoosmotic stress activates p38 , ERK1 and 2 , and SAPK/ JNK in rat hepatocytes[J ]. J Surg Research ,2000;90(1):58-66.
    110. Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress[J ]. Annu Rev Physiol, 1997, 59(2):551-571.
    111. 周家国,丘钦英,贺 华,等.蛋白酪氨酸磷酸化参与调控主动脉平滑肌细胞容积调节性氯通道电流[J ].中国药理学通报,2004, 20(5):503-507.
    112. Nilius B, Droogmans G. Amazing chloride channels: an overview[J ]. Acta Physiol Scand,2003,177(1):119-147.
    113. Okada Y. Volume expansion-sensing outward-rectifier Cl – channel: Fresh start to the moleular identity and volume sensor[J ]. Am J Physiol ,1997,273(3): C755-789.
    114. Prevarskaya NB , Skryma RN, Vacher P , et al . Role of tyrosine phosphorylation in potassium channel activation[J ]. J Biol Chem,1995,270 (41):24292-24299.
    115. Clemo, HF, Baumgarten CM. MAP kinases acutely regulate ICl,swell in congestive failure but not normal rabbit ventricular myocytes[J ]. Circulation, 1999, 100 (Suppl.1):I-62.
    116. Szcs G, Heinke S, De Greef C,et al.The volume-activated cloride current in endothelial cells from bovine pulmonary artery is not modulated by phosphorylation[J ]. Pflgers Arch , 1996 ,431 (4):540-548.
    117. 徐洪涛,王 军,高连茹,等.小鼠心肌细胞的容积敏感性氯通道[J ].军事医学科学院院刊, 2003, 27(6):202-208.
    118. Clemo HF, Stambler BS, Baumgarten CM. Swelling-activated chloride current is persistently activated in ventricular myocytes from dogs with tachycardia-induced congestive heart failure[J ]. Circ. Res, 1999, 84(1):157-165.
    119. Clemo HF, Baumgarten CM. Swelling-activated Gd3+-sensitive cation current and cellvolume regulation in rabbit ventricular myocytes[J ].J Gen Physiol,1997,110(1):297-312.
    120. Duan D, Hume JR, Nattel S. Evidence that outwardly rectifying Cl_ channels underlie volume-regulated Cl-currents in heart[J ]. Circ Res,1997,80(1):103-113.
    121. Hiraoka M, Kawano S, Hirano Y, et al. Role of cardiac chloride currents in changes in action potential characteristics and arrhythmias[J ]. Cardiovasc Res,1998,40(1):23-33.
    122. VandenbergJI,Bett GC,Powell T.Contribution of a swelling-activated chloride current to changes in the cardiac action potential[J ]. Am J Physiol Cell Physiol,1997,273(2): C541-C547.
    123. Sakai R, Hagiwara N, Kasanuki H, et al. Chloride conductance in human atrial cells[J ]. J Mol Cell Cardiol, 1995, 27(8):2403-2408.
    124. Li GR, Feng J,Wang Z, et al. Transmembrane chloride currents in human atrial myocytes[J ]. Am J Physiol, 1996, 270(2): C500-C507.
    125. Arai A, Kodama I, Toyama J. Roles of Cl-channels and Ca2+ mobilization in stretch-induced increase of SA node pacemaker activity[J ]. Am J Physiol, 1996, 270(6): H1726-H1735.
    126. Christian WS, Ludwig B, Zong XG, et al. An arginine residue in the pore region is a key determinant of chloride dependence in cardiac pacemaker channels[J ]. The Journal of biological chemistry,2005,280(14):13694-13700.
    127. JanuaryCT,Chau V, Makielski JC.Triggered activity in the heart: cellular mechanisms of early afterdepolarizations[J ].Eur Heart J,1991,12(Suppl.F):4-9.
    128. Tomaselli GF, Beuckelmann DJ, Calkins HG, et al. Sudden cardiac death in heart failure. The role of abnormal repolarization[J ].Circulation,1994,90(9):2534-2539.
    129. Clemo HF, Baumgarten C.M.Protein kinase C (PKC) activation blocks ICl,swell and causes myocyte swelling in a rabbit congestive failure (CHF) model[J ]. Circulation, 1998,98(2):688-695.
    130. Clemo HF, Rana J, Vaida AM, et al. Chronic activation of ICl,swell in canine infarction model supressess inducibility of early afterdepolarizations[J ]. Circulation,2001, 104 (Suppl-II):II-624.
    131. Song D ,Regan MH, Phillis JW.Mechanisms of amino acid release from the isolated anoxic/ reperfused rat heart [J ].Eur JPharmacol,1998,351(1):313-322.
    132. Wright AR, Rees SA. Cardiac cell volume: crystal clear or murky waters? A comparison with other cell types[J ]. Pharmacol Ther,1998,80(1):89-121.
    133. 向小峰,唐其柱,胡佑伦,等. 氯离子通道阻滞剂的抗离体豚鼠心律失常作用[J ],第四军医大学学报,2003,24(100):901-902.
    134. Hoffmann EK, Simonsen LO. Membrane mechanisms in volume and pH regulation in vertebrate cells[J ]. Physiol Rev,1989, 69(1):315-382.
    135. Lauf PK, Adragna NC. K+-Cl- cotransport:properties and molecular mechanism[J ], Cell Physiol Biochem,2000,10(1):341-354.
    136. Hazama A, Fan HT, Abdullaev I,et al. Swelling-activated, cystic fibrosis transmembrane conductance regulatoraugmented ATP release and Cl-conductances in murine C127 cells[J ]. J Physiol,2000,523(1):1-11.
    137. Feranchak AP, Roman RM, Schwiebert EM, et al. Phosphatidylinositol 3-kinase contributes to cell volume regulation through effects on ATP release[J ]. J Biol Chem, 1998,273(128):14906-14911.
    138. Hofer AM, Curci S, Doble MA, et al. Intercellular communication mediated by the extracellular calcium-sensing receptor[J ]. Nat Cell Biol,2000,2(2):392-398.
    139. Shimizu T, Morishima S, Okada Y. Ca2+-sensing receptormediated regulation of volume-sensitive Cl-channels in human epithelial cells[J ].J Physiol, 2000, 528(2): 457-472.
    140. Yu SP , Canzoniero LM, Choi DW. Ion homeostasis and apoptosis [J ] .Curr Opin Cell Biol,2001,13(4):405-411.
    141. Yu SP. Regulation and critical role of potassium homeostasis in apoptosis[J ] . Prog Neurobiol,2003,70 (4):363-386.
    142. Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis[J ]. Cardiovasc Res,2000,45(2):528-537.
    143. Maeno E., Ishizaki Y., Kanaseki T., et al. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis[J ]. Proc Natl Acad Sci USA,2000,97(34):9487-9492.
    144. Okada Y, Maeno E, Shimizu T, et al. Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD) [J ]. J Physiol,2001,532(1):3-16.
    145. Szabo I, Lepple-Wienhues A, Kaba KN, et al. Tyrosine kinase-dependent activation of a chloride channel in CD95-induced apoptosis in T lymphocytes[J ]. Proc Natl Acad Sci USA,1998,95(25):6169-6174.
    146. Nietsch HH, Roe MW, Fiekers JF, et al. Activation of potassium and chloride channels by tumor necrosis factor alpha. Role in liver cell death[J ]. J Biol Chem, 2000,275(31):20556-20561.
    147. Mizoguchi K, Maeta H, Yamamoto A, et al . Amelioration of myocardial global ischemia/ reperfusion injury with volume-regulatory chloride channel inhibitors in vivo[J ]. Transplantation,2002,73(4):1185-1193.
    148. Shen MR, Yang TP, Tang MJ A novel function of BCL-2 overexpression in regulatory volume decrease. Enhancing swelling-activated Ca2+ entry and Cl-channel activity[J ]. J Biol Chem,2002,277(35):15592-15599.
    149. 王晓明,臧益民,龚卫琴,等.钾、氯离子通道阻断剂对staurosporine诱导心肌细胞凋亡的调节作用[J ].第四军医大学学报,2004,9(3):783-787.
    150. Ghazi A , Berrier C , Ajouz B , et al. Mechanosensitive ion channels and their mode of activation[J ]. Biochimie,1998,80:357-362.
    151. Schaper J, Froede R, Hein S, et al. Impairment of myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy[J ].Circulation,1991,83(2): 504-514.
    152. Sugden PH, Clerk A. Cellular mechanisms of cardiac hypertrophy[J ]. J Mol Med, 1998, 11(2):725-746.
    153. Ingber DE. Tensegrity:the architectural basis of cellular mechanotransduction[J ]. Annu Rev Physiol,1997,59(2):575-599.
    154. Clemo HF, Danetz J.S, Baumgarten C.M. Does ClC-3 modulate cardiac cell volume? [J ]. Biophy J,1999,76(1):A203-211.
    155. Patel DG, Higgins RS, Baumgarten CM.Swelling-activated Cl-current, ICl,swell, is chronically activated in diseased human atrial myocytes[J ]. Biophys J,2003,84(1):233a.
    156. Chiang CE, Luk HN, Wang TM. Swelling-activated chloride current is activated in guinea pig cardiomyocytes from endotoxic shock[J ]. Cardiovas Research, 2004, 62(1): 96-104.
    157. Jennings RB,Reimer K.A,Steenbergen C. Myocardial ischemia revisited. The osmolar load, membrane damage, and reperfusion[J ]. J Mol Cell Cardiol,1986,18(2):769-780.
    158. Jennings RB, Ganote CE. Structural changes in myocardium during acute ischemia[J ]. Circ Res,1974,35(Suppl.3):156-172.
    159. Vandenberg JI,Rees S,Wright AR, et al. Cell swelling and ion transport pathways in cardiac myocytes[J ]. Cardiovasc Res,1996,32(1):85-97.
    160. Patel AJ, Lazdunski M, Honore E. Lipid and mechano-gated 2P domain K+ channels[J ]. Curr Opinion Cell Biol, 2001,13(2):422-428.
    161. Browe DM, Baumgarten CM. Specific stretch of β1 integrin with mab-coated paramagnetic beads activates ICl,swell in rabbit ventricular myocytes[J ]. Biophys J,2003, 84(1):22-31.
    162. Baumgarten CM, Duncan SWN. Regulation of Cl- activity in ventricular muscle: Cl-/HCO3- exchange and Na+-dependent Cl-cotransport. In:Dhalla, N.S., Pierce, G.N., Beamish, R.E. (Eds.), Heart Function and Metabolism[M]. Martinus Nijhoff, Boston, 1987:11(1):7-13.
    163. Lai ZF, Nishi K.Intracellular chloride activity increases in guinea pig ventricular muscle during simulated ischemia[J ]. Am J Physiol Heart Circ Physiol, 1998,275(8): H1613-H1619.
    164. Batthish M, Diaz RJ, Zeng HP, et al. Pharmacological preconditioning in rabbit myocardium is blocked by chloride channel inhibition[J ]. Cardiovasc Res, 2002, 55(3): 660-671.
    165. Diaz RJ, Losito V.A, Mao GD, et al. Chloride channel inhibition blocks the protection of ischemic preconditioning and hypo-osmotic stress in rabbit ventricular myocardium[J ]. Circ Res, 1999, 84(3):763-775.
    166. Diaz RJ, Batthish M, Backx PH, et al. Chloride channel inhibition does block the protection of ischemic preconditioning in myocardium[J ]. J Mol Cell Cardiol, 2001, 33(7):1887-1889.
    167. Souktani R, Ghaleh B, Tissier R, et al. Volume sensitive chloride channel inhibitors increase infarct size and apoptosis in rabbit myocardium[J ]. Fund Clin Pharm, 2002, 17(1):1-7.
    168. Shen MR, Yang TP, Tang MJ. A novel function of BCL-2 overexpression in regulatory volume decrease. Enhancing swelling-activated Ca2+ entry and Cl- channel activity[J ]. J. Biol. Chem, 2002, 277(45):15592-15599.
    169. 向小峰,唐其柱,胡佑伦,等.氯离子通道阻滞剂对心肌低氧复氧损伤的影响[J ]. 中华心血管病杂志, 2003,31(6):448-451.
    170. Faivre J, Bril A. The cardiac chloride channels as molecular targets for antiarrhythmic therapy[J ]. French Pharmacol Rev.Commun,1997,9(1):61-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700