竹红菌素衍生物光动力作用诱导人胰腺癌细胞Capan-1凋亡机理的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰腺癌作为一种消化系统恶性肿瘤,具有恶性程度高,早期诊断困难,手术切除率低,预后差的特点,近年来,国内外报道胰腺癌发病率均有上升趋势,在西方国家胰腺癌居恶性肿瘤死亡原因的第4位,总的5年生存率不超过1%。在国内北京协和医院近年住院的胰腺癌病例比二十世纪五十年代增加了5倍,经过几十年的努力,虽然胰腺癌的手术方式大有改进,手术切除率有所提高,手术死亡率明显降低,但由于外科收治的病例多属中晚期,其5年生存率仍在5%左右,预后很差。因此胰腺癌被国际医学界列为“二十一世纪的顽固堡垒”。提高胰腺癌的早期诊断率和加强综合治疗是攻克这一堡垒的关键。因此探索除手术、化疗和放疗之外的新的治疗手段,施行综合治疗是提高胰腺癌疗效的重要策略,特别是中晚期胰腺癌。
     恶性肿瘤的光动力治疗(Photodynamic therapy,PDT)是一种正在研究发展中的新型临床治疗技术,是指给人体施用光敏剂(Photosensitizer),然后光照激活光敏剂产生活性氧从而达到治疗肿瘤的目的。光动力治疗于二十世纪七十年代末开始用于恶性肿瘤的临床诊断和治疗研究,早在二十世纪八十年代已有学者进行了胰腺癌细胞光动力损伤的研究,近年来又有许多新的光敏剂用于胰腺癌的实验研究,2002年英国已有学者报告了胰腺癌光动力治疗的Ⅰ期临床研究,标志着胰腺癌的光动力治疗正在从实验室走向临床。
     光动力治疗的热点之一是寻找更理想的光敏剂,苝醌类光敏剂竹红菌素是一种来自真菌的天然色素,由我国学者首先发现,它的母体成分主要为竹红菌甲素和竹红菌乙素两类。与第一代光敏剂相比,由于竹红菌素具有在红光范围内有强吸收、很高的单线态氧产率和容易定点化学修饰等优点,我国科技工作者已经合成了一系列竹红菌甲素和乙素的衍生物,并对它们的生物物理特性和作用机制以及部分衍生物的生物学特性进行了研究。研究表明竹红菌素是具有很大潜力的新型光敏剂。
     为进一步研究胰腺癌光动力治疗的机理,本文以新型光敏剂竹红菌素衍生物为
Pancreatic cancer is a malignant tumor of the digestive system with high malignancy and difficulty of early diagnosis, low rate of resection and poor prognosis. In recent studies, the incidence rate had risen in China and foreign countries. With only 1% overall survival of 5 years, pancreatic cancer currently rates forth in cancer-related deaths in western countries. The number of the patients in present each year is 5-fold contrast to the 1950s in PUMCH. In the past several decades, with advances in surgical technique and postoperative care, the rate of resection is steadily increasing and the mortality rate is decreasing as well. But the prognosis in pancreatic cancer remains pessimistic. So pancreatic cancer was dubbed as an "obstinate fortress in the 21st century". In order to improve survival or at least improve quality of life, initial primary diagnosis and adjunctive treatment is very important, especially in advanced tumors.
    Photodynamic therapy has been described as a promising new modality for the treatment of cancer. In general, a photosensitizer is administrated to tumor, and stimulated upon light, the photosensitizer must be able to absorb the light and generates reactive oxygen species (ROS) through photosensitization resulting in tumor. Photodynamic therapy for cancer was first reported in 1970s and photodynamic therapy to pancreatic cancer was investigated from 1981. Many kinds of photosensitizers were used in pancreatic cancer experimental treatment for last two decades, in 2002, there is a phase I clinical trial for pancreatic cancer practiced in UK, which marked photodynamic therapy of pancreatic cancer from the lab to the clinical.
    To quest new photosensitizers is one of the development tendency and current hot topics in the field of photodynamic therapy. The naturally occurring polycyclic quinines, including hypocrellin A and B, were isolated from the fungus Hypocrella bambuase sacc by Chinese scientists. Compared with the first generation photosensitizer they have the advantage of easy preparation, purification and chemical modification, high reactive
引文
1. Dougherty TJ, Gomer CJ, Henderson BW et al. Photodynamic therapy. J Natl Cancer Inst 1998; 90: 889-905.
    
    2. Ormrod D, Jarvis B. Topical aminolevulinic acid HC1 photodynamic therapy. Am J Clin Dermatol 2000; 1: 133-139.
    
    3. Dijkstra AT, Majoie IM, van Dongen JW, van Weelden H, van Vloten WA. Photodynamic therapy with violet light and topical 6-aminolaevulinic acid in the treatment of actinic keratosis, Bowen's disease and basal cell carcinoma. J Eur Acad Dermatol Venereol 2001; 15: 550-554.
    
    4. Lightdale CJ, Heier SK, Marcon NE et al. Photodynamic therapy with porfimer sodium versus thermal ablation therapy with Nd:YAG laser for palliation of esophageal cancer: a multicenter randomized trial. Gastrointest Endosc 1995; 42: 507-512.
    
    5. Biel MA. Photodynamic therapy of head and neck cancers. Semin Surg Oncol 1995; 11: 355-359.
    
    6. Biel MA. Photodynamic therapy and the treatment of neoplastic diseases of the larynx. Laryngoscope 1994; 104: 399-403.
    
    7. Dugan M, Crawford E, Nseyo O. Photodynamic therapy (PDT) after transurthal resection (tur) for superficial papillary bladder cancer (SBC): a randomized trail. Proc ASCO. 10, 173. 1991. Ref Type: Generic
    
    8. Kostron H, Obwegeser A, Jakober R. Photodynamic therapy in neurosurgery: a review. J Photochem Photobiol B 1996; 36: 157-168.
    
    9. Sindelar W. Intraperitoneal photodynamic therapy showa efficacy in phase I trial. Proc.Am.Soc.Clin.Oncol. 14, 447. 1995.
    
    10. Gomer CJ. Preclinical examination of first and second generation photosensitizers used in photodynamic therapy. Photochem Photobiol 1991; 54: 1093-1107.
    
    11. Xia WL, Zhang MH, Jiang LJ, Wang ZJ. Study on the nanosecond transient absorption spectra of hypocrellin A. Sci China B 1992; 35: 1409-1415.
    
    12. Yue JC, Wang TD, Pang SZ, An JY, Jiang LJ. Sulphonated hypocrellin B sensitized photodamage to ascitic hepatoma cells. Radiat.Res. 12, 100-104. 1994.
    
    13. Zhang MH, Chen S, An JY, Jiang LJ. Separation and identification of hypocrellin B and fatty acids as incredients in hypocrellabambusae (B or Br) Sacc. Chinese Sci.Bull. 34, 1008-1014. 1989.
    
    14. Zhiyi Z, Nenghui W, Qian W, Meifan L. EPR studies of singlet oxygen (102) and free radicals (O2.-, .OH, HB.-) generated during photosensitization of hypocrellin B. Free Radic Biol Med 1993; 14: 1-9.
    
    15. Mang TS, Wieman TJ. Photodynamic therapy in the treatment of pancreatic carcinoma: dihematoporphyrin ether uptake and photobleaching kinetics. Photochem Photobiol 1987; 46: 853-858.
    
    16. Mikvy P, Messman H, MacRobert AJ et al. Photodynamic therapy of a transplanted pancreatic cancer model using meta-tetrahydroxyphenylchlorin (mTHPC). BrJ Cancer 1997; 76: 713-718.
    
    17. Liu CD, Kwan D, Saxton RE, McFadden DW. Hypericin and photodynamic therapy decreases human pancreatic cancer in vitro and in vivo. J Surg Res 2000; 93: 137-143.
    18. Whitaker C J, Battah SH, Forsyth MJ, Edwards C, Boyle RW, Matthews EK. Photosensitization of pancreatic tumour cells by delta-aminolaevulinic acid esters. Anticancer Drug Des 2000; 15: 161-170.
    19. Bown SG, Rogowska AZ, Whitelaw DE et al. Photodynamic therapy for cancer of the pancreas. Gut 2002; 50: 549-557.
    20.张波,赵玉沛,张太平等.光动力疗法对裸鼠实验性胰腺癌治疗机制的研究.中华普通外科杂志.2002,17:263-264.
    21.赵玉沛,杨波,张太平等.血卟啉衍生物光动力作用杀伤人胰腺癌细胞的实验研究.中华外科杂志.2000.38:204-207.
    22.蒋丽金.竹红菌素的结构、性质、光化学反应及反应机制(Ⅰ).科学通报.1990,35:1681-1690.
    23. Diwu ZJ, Jiang LJ, Zhang MH. Electronic spectra ofhypocrellin A, B and their derivatives. Sci China B 1990; 33: 18-26.
    24. Estey EP, Brown K, Diwu Z et al. Hypocrellins as photosensitizers for photodynamic therapy: a screening evaluation and pharmacokinetic study. Cancer Chemother Pharmacol 1996; 37: 343-350.
    25. Miller GG, Brown K, Moore RB et al. Uptake kinetics and intracellular localization of hypocrellin photosensitizers for photodynamic therapy: a confocal microscopy study. Photochem Photobiol 1995; 61: 632-638.
    26. Miller GG, Brown K, Ballangrud AM et al. Preclinical assessment of hypocrellin B and hypocrellin B derivatives as sensitizers for photodynamic therapy of cancer: progress update. Photochem Photobiol 1997; 65: 714-722.
    27. Wilson BC. Photodynamic therapy: light delivery and dosage for second-generation photosensitizers. Ciba Found Symp 1989; 146: 60-73.
    28. Merlin JL, Azzi S, Lignon D, Ramacci C, Zeghari N, Guillemin F. MTT assays allow quick and reliable measurement of the response of human tumour cells to photodynamic therapy. Eur J Cancer 1992; 28A: 1452-1458.
    29. Richter AM, Waterfield E, Jain AK et al. Photosensitising potency of structural analogues of benzoporphyrin derivative (BPD) in a mouse turnour model. Br J Cancer 1991; 63: 87-93.
    30. Diwu ZJ, Haugland RP, Liu J et al. Photosensitization by anticancer agents 21: new perylene- and aminonaphthoquinones. Free Radic Biol Med 1996; 20: 589-593.
    31. Agarwal ML, Clay ME, Harvey EJ, Evans HH, Antunez AR, Oleinick NL. Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells. Cancer Res 1991; 51: 5993-5996.
    32. Zaidi SI, Agarwal R, Eichler G, Rihter BD, Kenney ME, Mukhtar H. Photodynamic effects of new silicon phthalocyanines: in vitro studies utilizing rat hepatic microsomes and human erythrocyte ghosts as model membrane sources. Photochem Photobiol 1993; 58: 204-210.
    33. Webber J, Luo Y, Crilly R, Fromm D, Kessel D. An apoptotic response to photodynamic therapy with endogenous protoporphyrin in vivo. J Photochem Photobiol B 1996; 35:209-211.
    34. Henderson BW, Dougherty TJ. How does photodynamic therapy work? Photochem Photobiol 1992; 55: 145-157.
    35. Peng Q, Moan J, Nesland JM. Correlation ofsubcellular and intratumoral photosensitizer localization with ultrastructural features after photodynamic therapy. Ultrastruct Pathol 1996; 20: 109-129.
    36. Moor AC. Signaling pathways in cell death and survival after photodynamic therapy. J Photochem Photobiol B 2000; 57: 1-13.
    37. Berg K, Moan J. Lysosomes and microtubules as targets for photochemotherapy of cancer. Photochem Photobiol 1997; 65: 403-409.
    
    38. Estey EP, Brown K, Diwu Z et al. Hypocrellins as photosensitizers for photodynamic therapy: a screening evaluation and pharmacokinetic study. Cancer Chemother Pharmacol 1996; 37: 343-350.
    
    39. He XY, Sikes RA, Thomsen S, Chung LW, Jacques SL. Photodynamic therapy with photofrin II induces programmed cell death in carcinoma cell lines. Photochem Photobiol 1994; 59: 468-473.
    
    40. Dellinger M. Apoptosis or necrosis following Photofrin photosensitization: influence of the incubation protocol. Photochem Photobiol 1996; 64: 182-187.
    
    41. Luo Y, Kessel D. Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine. Photochem Photobiol 1997; 66: 479-483.
    
    42. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996; 86: 147-157.
    
    43. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999; 13: 1899-1911.
    
    44. von Ahsen O, Renken C, Perkins G, Kluck RM, Bossy-Wetzel E, Newmeyer DD. Preservation of mitochondrial structure and function after Bid- or Bax-mediated cytochrome c release. J Cell Biol 2000; 150: 1027-1036.
    
    45. Susin SA, Lorenzo HK, Zamzami N et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441-446.
    
    46. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating LAP inhibition. Cell 2000; 102: 33-42.
    
    47. Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001; 412: 95-99.
    
    48. Lorenzo HK, Susin SA, Penninger J, Kroemer G. Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ 1999; 6: 516-524.
    
    49. Fisher DE. Apoptosis in cancer therapy: crossing the threshold. Cell 1994; 78: 539-542.
    
    50. Alnemri ES, Livingston DJ, Nicholson DW et al. Human ICE/CED-3 protease nomenclature. Cell 1996; 87: 171.
    
    51. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998; 281: 1312-1316.
    
    52. Granville DJ, Carthy CM, Jiang H, Shore GC, McManus BM, Hunt DW. Rapid cytochrome c release, activation of caspases 3, 6, 7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy. FEBS Lett 1998; 437: 5-10.
    
    53. He J, Whitacre CM, Xue LY, Berger NA, Oleinick NL. Protease activation and cleavage of poly(ADP-ribose) polymerase: an integral part of apoptosis in response to photodynamic treatment. Cancer Res 1998; 58: 940-946.
    
    54. Varnes ME, Chiu SM, Xue LY, Oleinick NL. Photodynamic therapy-induced apoptosis in lymphoma cells: translocation of cytochrome c causes inhibition of respiration as well as caspase activation. Biochem Biophys Res Commun 1999; 255: 673-679.
    
    55. Vantieghem A, Assefa Z, Vandenabeele P et al. Hepericin-induced photosensitizeation of HeLa cells leads to apoptosis or necrosis. Involvment of cytochrom c and procaspase-3 activation in the mechansim of apotosis. FEBS Lett. 440, 19-24. 1998.
    56. Granville DJ, Jiang H, An MT, Levy JG, McManus BM, Hunt DW. Bcl-2 overexpression blocks caspase activation and downstream apoptotic events instigated by photodynamic therapy. Br J Cancer 1999; 79: 95-100.
    57. Carthy CM, Granville DJ, Jiang H et al. Early release of mitochondrial cytochrome c and expression of mitochondrial epitope 7A6 with a porphyrin-derived photosensitizer: Bcl-2 and Bcl-xL overexpression do not prevent early mitochondrial events but still depress caspase activity. Lab Invest 1999; 79: 953-965.
    58. Zhang WG, Ma LP, Wang SW, Zhang ZY, Cao GD. Antisense bcl-2 retrovirus vector increases the sensitivity of a human gastric adenocarcinoma cell line to photodynamic therapy. Photochem Photobiol 1999; 69: 582-586.
    59. Baeuerle PA, Baltimore D. NF-kappa B: ten years after. Cell 1996; 87: 13-20.
    60. Karin M, Ben Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 2000; 18:621-663.
    61. Marumo T, Schini-Kerth VB, Busse R. Vascular endothelial growth factor activates nuclear factor-kappaB and induces monocyte chemoattractant protein-1 in bovine retinal endothelial cells. Diabetes 1999; 48:1131-1137.
    62. Matroule JY, Bonizzi G, Morliere P et al. Pyropheophorbide-a methyl ester-mediated photosensitization activates transcription factor NF-kappaB through the interleukin-1 receptor-dependent signaling pathway. J Biol Chem 1999; 274: 2988-3000.
    63. Volanti C, Matroule JY, Piette J. Involvement of oxidative stress in NF-kappaB activation in endothelial cells treated by photodynamic therapy. Photochem Photobiol 2002; 75: 36-45.
    64. Fisher AM, Ferrario A, Rucker N, Zhang S, Gomer CJ. Photodynamic therapy sensitivity is not altered in human tumor cells after abrogation of p53 function. Cancer Res 1999; 59:331-335.
    65. Whitacre CM, Feyes DK, Satoh T et al. Photodynamic therapy with the phthalocyanine photosensitizer Pc 4 of SW480 human colon cancer xenografts in athymic mice. Clin Cancer Res 2000; 6: 2021-2027.
    66. Ahmad N, Gupta S, Mukhtar H. Involvement of retinoblastoma (Rb) and E2F transcription factors during photodynamic therapy of human epidermoid carcinoma cells A431. Oncogene 1999; 18: 1891-1896.
    67. Yokota T, Ikeda H, Inokuchi T, Sano K, Koji T. Enhanced cell death in NR-S1 tumor by photodynamic therapy: possible involvement of Fas and Fas ligand system. Lasers Surg Med 2000; 26: 449-460.
    68. Xue LY, Qiu Y, He J, Kung HJ, Oleinick NL. Etk/Bmx, a PH-domain containing tyrosine kinase, protects prostate cancer cells from apoptosis induced by photodynamic therapy or thapsigargin. Oncogene 1999; 18: 3391-3398.
    69. Luna MC, Wong S, Gomer CJ. Photodynamic therapy mediated induction of early response genes. Cancer Res 1994; 54: 1374-1380.
    70. Gomer CJ, Ryter SW, Fermrio A, Rucker N, Wong S, Fisher AM. Photodynamic therapy-mediated oxidative stress can induce expression of heat shock proteins. Cancer Res 1996; 56: 2355-2360.
    71. Xue LY, Chiu SM, Oleinick NL. Photodynamic therapy-induced death of MCF-7 human breast cancer cells: a role for caspase-3 in the late steps of apoptosis but not for the critical lethal event. Exp Cell Res 2001; 263: 145-155.72. Vantieghem A, Xu Y, Declercq W et al. Different pathways mediate cytochrome c release after photodynamic therapy with hypericin. Photochem Photobiol 2001; 74:133-142.
    73. Simizu S, Umezawa K, Takada M, Arber N, Imoto M. Induction of hydrogen peroxide production and Bax expression by caspase-3(-like) proteases in tyrosine kinase inhibitor-induced apoptosis in human small cell lung carcinoma cells. Exp CellRes 1998; 238: 197-203.
    74. Hildeman DA, Mitchell T, Teague TK et al. Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 1999; 10: 735-744.
    75. Watabe M, Kakeya H, Onose R, Osada H. Activation of MST/Krs and c-Jun N-terminal kinases by different signaling pathways during cytotrienin A-induced apoptosis, J Biol Chem 2000; 275: 8766-8771.
    76. Simizu S, Takada M, Umezawa K, Imoto M. Requirement of caspase-3(-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs. J Biol Chem 1998; 273: 26900-26907.
    77. Kim HR, Luo Y, Li G, Kessel D. Enhanced apoptotic response to photodynamic therapy after bcl-2 transfection. Cancer Res 1999; 59: 3429-3432.
    78. Xue LY, Chiu SM, Oleinick NL. Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Oncogene 2001; 20: 3420-3427.
    79. Usuda J, Chiu SM, Murphy ES, Lam M, Nieminen AL, Oleinick NL. Domain-dependent photodamage to Bcl-2. A membrane anchorage region is needed to form the target of phthalocyanine photosensitization. J Biol Chem 2003; 278: 2021-2029.
    80. Pueyo ME, Gonzalez W, Nicoletti A, Savoie F, Arnal JF, Michel JB. Angiotensin Ⅱ stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Bio12000; 20:645-651.
    81. Cominacini L, Pasini AF, Garbin U et al. Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J Biol Chem 2000; 275: 12633-12638.
    82. Collard CD, Agah A, Stahl GL. Complement activation following reoxygenation of hypoxic human endothelial cells: role of intracellular reactive oxygen species, NF-kappaB and new protein synthesis. Immunopharmacology 1998; 39: 39-50.
    83. Counter CM, Hirte HW, Bacchetti S, Harley CB. Telomerase activity in human ovarian carcinoma. Proc Natl Acad Sci USA 1994; 91:2900-2904.
    84. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer 1997; 33: 787-791.
    85. Bednarek A, Budunova I, Slaga TJ, Aldaz CM. Increased telomerase activity in mouse skin premalignant progression. Cancer Res 1995; 55: 4566-4569.
    86. Brousset P, al Saati T, Chaouche N, Zenou RC, Mazerolles C, Delsol G. [Techniques for detection of telomerase activity in tissue samples. Diagnostic and prognosis importance]. Ann Pathol 1997; 17: 364-368.
    87. Scates DK, Muir GH, Venitt S, Carmichael PL. Detection of telomerase activity in human prostate: a diagnostic marker for prostatic cancer? Br J Urol 1997; 80: 263-268.
    88. Umbricht CB, Saji M, Westra WH, Udelsman R, Zeiger MA, Sukumar S. Telomerase activity: a marker to distinguish follicular thyroid adenoma from carcinoma. Cancer Res 1997; 57:2144-2147.89. Hoos A, Hepp HH, Kaul S, Ahlert T, Bastert G, Wallwiener D. Telomerase activity correlates with tumor aggressiveness and reflects therapy effect in breast cancer. Int J Cancer 1998; 79: 8-12.
    90. Egorov EE, Akhmalisheva AK, Smimova Ⅰ et al. [Azidothymidine, blocking telomerase functioning, shortens telomeric repeats in transformed human cells]. Genetika 1997; 33:1444-1446.
    91. Mata JE, Joshi SS, Palen B et al. A hexameric phosphorothioate oligonucleotide telomerase inhibitor arrests growth of Burkitt's lymphoma cells in vitro and in vivo. Toxicol Appl Pharmacol 1997; 144: 189-197.
    92. Ren JG, Xia HL, Just T, Dai YR. Hydroxyl radical-induced apoptosis in human tumor cells is associated with telomere shortening but not telomerase inhibition and caspase activation. FEBS Lett 2001; 488: 123-132.
    93. Ren JG, Xia HL, Tian YM, Just T, Cai GP, Dai YR. Expression of telomerase inhibits hydroxyl radical-induced apoptosis in normal telomerase negative human lung fibroblasts. FEBS Lett 2001; 488: 133-138.
    94. Multani AS, Li C, Ozen M, Imam AS, Wallace S, Pathak S. Cell-killing by paclitaxel in a metastasic murine melanoma cell-line is mediated by extensive telomere. Oncol.Rep. 6, 39-44. 1999
    95. Akiyama M, Horiguchiyamada J, Saito S et al. Cytostatic concentrations of anticancer agents do not affect telomerase activity of luekemic-cell in-vitro. Eur.J.Cancer 35, 309-315.1999
    96. Henle ES, Han Z, Tang N, Rai P, Luo Y, Lima S. Sequence-specific DNA cleavage by Fe~(2+) mediated Fenton reactions Has possible biological implicatons. J.Biol.Chem. 274, 962-971. 1999
    97. von Zglinicki T, Pilger R, Sitte N. Accumulation of sigle-stand breakes is the major cause of telomere shortening in human fibroblasts. Free Radic.Biol.Med. 28, 64-74. 2000.
    98. Artandi SE, DePinho RA. A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr Opin Genet Dev 2000; 10: 39-46.1. Dougherty TJ, Gomer CJ, Henderson BW et al. Photodynamic therapy. J Natl Cancer Inst 1998; 90: 889-905.
    
    2. Henderson BW, Dougherty TJ. How does photodynamic therapy work? Photochem Photobiol 1992; 55: 145-157.
    
    3. von Tappeiner H, Jodlauer A. Uber die Wirkung der Photodynamischen (fluorescierenden) Stoffe auf Protozoen und Enzyme. Deutsches Arch.Klin.Med. 39,427-487. 1904.
    
    4. Blum HF. Photodynamic action and disease caused by light. New York: Reinhold, 1941.Reprinted, New York: Hamer. 1964.
    
    5. Amagasa J. Dye blinding and photodynamic action. Photochem.Photobiol. 33, 947-955. 1981.
    
    6. Foote CS. Type I and Type II mechanisms of photodynamic action. Light-Activted Pesticides, Heitz, J.R. (Eds.), American Chemical Society, Washington DC, 22. 1987.
    
    7. Moan J. Properties for optimal PDT sensitizers. J Photochem Photobiol B 1990; 5: 521-524.
    
    8. Athar M, Elmets CA, Bickers DR, Mukhtar H. A novel mechanism for the generation of superoxide anions in hematoporphyrin derivative-mediated cutaneous photosensitization. Activation of the xanthine oxidase pathway. J Clin Invest 1989; 83: 1137-1143.
    
    9. Jori G, Spikes JD. Photothermal sensitizers: possible use in tumor therapy. J Photochem Photobiol B 1990; 6: 93-101.
    
    10. Vaux DL, Strasser A. The molecular biology of apoptosis. Proc Natl Acad Sci U S A 1996; 93: 2239-2244.
    
    11. Samali A, Gorman AM, Cotter TG. Apoptosis -- the story so far... Experientia 1996; 52: 933-941.
    
    12. Webber J, Luo Y, Crilly R, Fromm D, Kessel D. An apoptotic response to photodynamic therapy with endogenous protoporphyrin in vivo. J Photochem Photobiol B 1996; 35: 209-211.
    
    13. He XY, Sikes RA, Thomsen S, Chung LW, Jacques SL. Photodynamic therapy with photofrin II induces programmed cell death in carcinoma cell lines. Photochem Photobiol 1994; 59: 468-473.
    
    14. Luo Y, Kessel D. Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine. Photochem Photobiol 1997; 66: 479-483.
    
    15. Bonnett R, Djelal B. New drug reach the clinic. 1993.
    
    16. Rowe PM. Photodynamic therapy begins to shine. Lancet 1998; 351: 1496.
    
    17. Dougherty TJ. Activated dyes as antitumor agents. J.Natl.Cancer Inst. 52, 1333. 1974.
    
    18. Dougherty TJ, et al. Research in Photobiology. Castellani, A. (Ed.), Plenum Press, New York, 735. 1977.
    
    19. Bonnett R, White RD, Winfield UJ, Berenbaum MC. Hydroporphyrins of the meso-tetra (hydroxyphenyl) porphyrin series as tumour photosensitizers. Biochem J 1989; 261: 277-280.
    
    20. Mlkvy P, Messmann H, Regula J et al. Photodynamic therapy for gastrointestinal tumors using three photosensitizers--ALA induced PPIX, Photofrin and MTHPC. A pilot study. Neoplasma 1998; 45: 157-161.
    
    21. Spikes JD, Bommer JC. Photosensitizing properties of mono-L-aspartyl chlorin e6 (NPe6): a candidate sensitizer for the photodynamic therapy of tumors. J Photochem Photobiol B 1993; 17: 135-143.
    22. Allen R, Kessel D, Tharratt RS, Volz W. Photodynamic therapy of superficial malignacies with Npe6 in man. In: Photodynamic therapy and biomedical lasers. Spinelli, P., Dalfante, M., Marchese, R. (Eds.), 441. 1992.
    
    23. Macpherson AN, Kessel D, Morgan AR. J.Chem.Soc.Faraday Trans. 86, 3081. 1990.
    
    24. Kessel D. Determinants of photosensitization by purpurins. Photochem Photobiol 1989; 50: 169-174.
    
    25. Morgan AR, Garbo GM, Keck RW, Selman SH. Tin (IV) etiopupurin dichloride: an alternative to DHE. Proc.Soc.Photo-opt.Instrum.Eng. 847, 172. 1987.
    
    26. Shopova M, Mantareva V, Krastev K et al. Comparative pharmacokinetic and photodynamic studies with zinc (II) phthalocyanine in hamsters bearing an induced or transplanted rhabdomyosarcoma. J Photochem Photobiol B 1992; 16: 83-89.
    
    27. Svanberg K, Andersson T, Killander D. Photodynamic therapy of human skin malignancies and laser-induced fluorescence diagnostic utilizing Photofrin and amino levulinic acid. Photodynamic Therapy and Biomedical Lasers, 436-440. 1992. London: Excerpta Medica, Spinelli P, Dal Fante M, Marchesi R.
    
    28. Rosenthal I, et al. Phthalocyanines. Principles and applications. Lever, A.B.P., et al.,(Eds.)VCH Publishers Inc., New York. 395. 1989.
    
    29. Verini MA, Casazza AM, Fioretti A, Rodenghi F, Ghione M. Photodynamic action of daunomycin. I. Effect on bacteriophage T2 and bacteria. Giornale di Microbioligia 16, 55. 1968.
    
    30. Leopold WR, Nelson JM, Plowman J, Jackson RC. Anthrapyrazoles, a new class of intercalating agents with high-level, broad spectrum activity against murine tumors. Cancer Res 1985; 45: 5532-5539.
    
    31. Ehrenberg B, Anderson jL, Foote CS. Kinetics and yield of singlet oxygen photosensitized by hypericin in organic and biological media. Photochem.Photobiol. 68, 135-140. 1998.
    
    32. Jacobs TM, Rosen GM. Photodynamic therapy as a treatment for esophageal squamous cell carcinoma in a dog. J Am Anim Hosp Assoc 2000; 36: 257-261.
    
    33. Sattler S, Schaefer U, Schneider W, Hoelzl J, Lehr CM. Binding, uptake, and transport of hypericin, by Caco-2 cell monolayer. J.Pharm.Sci. 86, 1120-1126. 1997.
    
    34. Diwu Z. Novel therapeutic and diagnostic applications of hypocrellins and hypericins. Photochem Photobiol 1995; 61: 529-539.
    
    35. Estey EP, Brown K, Diwu Z et al. Hypocrellins as photosensitizers for photodynamic therapy: a screening evaluation and pharmacokinetic study. Cancer Chemother Pharmacol 1996; 37: 343-350.
    
    36. Miller GG, Brown K, Ballangrud AM et al. Preclinical assessment of hypocrellin B and hypocrellin B derivatives as sensitizers for photodynamic therapy of cancer: progress update. Photochem Photobiol 1997; 65: 714-722.
    
    37. Peng Q, Moan J, Nesland JM. Correlation of subcellular and intratumoral photosensitizer localization with ultrastructural features after photodynamic therapy. Ultrastruct Pathol 1996; 20: 109-129.
    
    38. Moan J. Porphyrin photosensitization and phototherapy. Photochem Photobiol 1986; 43: 681-690.
    
    39. Kessel D, Woodburn K, Gomer CJ, Jagerovic N, Smith KM. Photosensitization with derivatives of chlorin p6. J.Photochem.Photobiol.B: Biol. 28, 13-18. 1995.
    
    40. Kessel D, Woodburn K, Henderson BW, Chang CK. Sites of photodamage in vivo and in vitro by a cationic porphyrin. Photochem Photobiol 1995; 62: 875-881.41. Kessel D, Luo Y. Mitochondrial photodamage and PDT-induced apoptosis. J Photochem Photobiol B 1998; 42: 89-95.
    42. Moor AC. Signaling pathways in cell death and survival after photodynamic therapy. J Photochem Photobiol B 2000; 57: 1-13.
    43. Berg K, Moan J. Lysosomes and microtubules as targets for photochemotherapy of cancer. Photochem Photobiol 1997; 65: 403-409.
    44. Newmeyer DD, Farschon DM, Reed JC. Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 1994; 79: 353-364.
    45. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996; 86: 147-157.
    46. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999; 13: 1899-1911.
    47. Schendel SL, Xie Z, Montal MO, Matsuyama S, Montal M, Reed JC. Channel formation by antiapoptotic protein Bcl-2. Proc Natl Acad Sci U S A 1997; 94:5113-5118.
    48. Schendel SL, Azimov R, Pawlowski K, Godzik A, Kagan BL, Reed JC. Ion channel activity of the BH3 only Bcl-2 family member, BID. J Biol Chem 1999; 274: 21932-21936.
    49. Schlesinger PH, Gross A, Yin XM et al. Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc NatlAcadSci USA 1997; 94:11357-11362.
    50. Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407: 770-776.
    51. Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999; 399: 483-487.
    52. Desagher S, Osen-Sand A, Nichols A et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 1999; 144: 891-901.
    53. Eskes R, Desagher S, Antonsson B, Martinou JC. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 2000; 20: 929-935.
    54. Mikhailov V, Mikhailova M, Pulkrabek DJ, Dong Z, Venkatachalam MA, Saikumar P. Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J Biol Chem 2001; 276:18361-18374.
    55. Zhai D, Huang X, Han X, Yang F. Characterization of tBid-induced cytochrome c release from mitochondria and liposomes. FEBS Lett 2000; 472: 293-296.
    56. Zhai D, Miao Q, Xin X, Yang F. Leakage and aggregation of phospholipid vesicles induced by the BH3-only Bcl-2 family member, BID. Eur J Biochem 2001; 268: 48-55.
    57. von Ahsen O, Renken C, Perkins G, Kluck RM, Bossy-Wetzel E, Newmeyer DD. Preservation of mitochondrial structure and function after Bid- or Bax-mediated cytochrome c release. J Cell Biol 2000; 150: 1027-1036.
    58. Reed JC. Cytochrome c: can't live with it--can't live without it. Cell 1997; 91: 559-562.
    59. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281: 1309-1312.
    60. Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol 2000; 10: 369-377.
    61. Susin SA, Lorenzo HK, Zamzami N et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441-446.
    62. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102: 33-42.
    63. Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001; 412: 95-99.
    
    64. Lorenzo HK, Susin SA, Penninger J, Kroemer G. Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ 1999; 6: 516-524.
    
    65. Li H, Yuan J. Deciphering the pathways of life and death. Curr Opin Cell Biol 1999; 11: 261-266.
    
    66. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000; 1: 11-21.
    
    67. Foyouzi-Youssefi R, Arnaudeau S, Borner C et al. Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc Natl Acad Sci U S A 2000; 97: 5723-5728.
    
    68. Pinton P, Ferrari D, Rapizzi E, Di Virgilio FD, Pozzan T, Rizzuto R. The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J 2001; 20: 2690-2701.
    
    69. Welihinda AA, Tirasophon W, Kaufman RJ. The cellular response to protein misfolding in the endoplasmic reticulum. Gene Expr 1999; 7: 293-300.
    
    70. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998; 281: 1312-1316.
    
    71. Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 2000; 150: 887-894.
    
    72. Nakagawa T, Zhu H, Morishima N et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000; 403: 98-103.
    
    73. Rao RV, Hermel E, Castro-Obregon S et al. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 2001; 276: 33869-33874.
    
    74. Mehmet H. Caspases find a new place to hide. Nature 2000; 403: 29-30.
    
    75. Turk V, Turk B, Turk D. Lysosomal cysteine proteases: facts and opportunities. EMBO J 2001; 20: 4629-4633.
    
    76. Turk B, Turk D, Turk V. Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 2000; 1477: 98-111.
    
    77. Ishisaka R, Utsumi T, Yabuki M et al. Activation of caspase-3-like protease by digitonin-treated lysosomes. FEBS Lett 1998; 435: 233-236.
    
    78. Vancompernolle K, Van Herreweghe F, Pynaert G et al. Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Lett 1998; 438: 150-158.
    
    79. Isahara K, Ohsawa Y, Kanamori S et al. Regulation of a novel pathway for cell death by lysosomal aspartic and cysteine proteinases. Neuroscience 1999; 91: 233-249.
    
    80. Adamec E, Mohan PS, Cataldo AM, Vonsattel JP, Nixon RA. Up-regulation of the lysosomal system in experimental models of neuronal injury: implications for Alzheimer's disease. Neuroscience 2000; 100: 663-675.
    
    81. Guicciardi ME, Deussing J, Miyoshi H et al. Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 2000; 106: 1127-1137.
    
    82. Leist M, Jaattela M. Triggering of apoptosis by cathepsins. Cell Death Differ 2001; 8: 324-326.
    
    83. Li W, Yuan X, Nordgren G et al. Induction of cell death by the lysosomotropic detergent MSDH. FEBS Lett 2000; 470: 35-39.
    
    84. Salvesen GS. A lysosomal protease enters the death scene. J Clin Invest 2001; 107: 21-22.
    85. Stoka V, Turk B, Schendel SL et al. Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem 2001; 276: 3149-3157.
    
    86. Zhao M, Eaton JW, Brunk UT. Protection against oxidant-mediated lysosomal rupture: a new anti-apoptotic activity of Bcl-2? FEBS Lett 2000; 485: 104-108.
    
    87. Li H, Kolluri SK, Gu J et al. Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science 2000; 289: 1159-1164.
    
    88. Agarwal ML, Clay ME, Harvey EJ, Evans HH, Antunez AR, Oleinick NL. Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells. Cancer Res 1991; 51: 5993-5996.
    
    89. Kamuhabwa AR, Agostinis PM, D'Hallewin MA, Baert L, de Witte PA. Cellular photodestruction induced by hypericin in AY-27 rat bladder carcinoma cells. Photochem Photobiol 2001; 74: 126-132.
    
    90. Hadjur C, Richard MJ, Parat MO, Favier A, Jardon P. Photodynamically induced cytotoxicity of hypericin dye on human fibroblast cell line MRC5. J Photochem Photobiol B 1995; 27: 139-146.
    
    91. Lavie G, Kaplinsky C, Toren A et al. A photodynamic pathway to apoptosis and necrosis induced by dimethyl tetrahydroxyhelianthrone and hypericin in leukaemic cells: possible relevance to photodynamic therapy. BrJ Cancer 1999; 79: 423-432.
    
    92. Alnemri ES, Livingston DJ, Nicholson DW et al. Human ICE/CED-3 protease nomenclature. Cell 1996; 87: 171.
    
    93. Zeuner A, Eramo A, Peschle C, De Maria R. Caspase activation without death. Cell Death Differ 1999; 6: 1075-1080.
    
    94. Fadeel B, Zhivotovsky B, Orrenius S. All along the watchower: on the regulation of apotosis regular. FASEB J. 13, 1647-1657. 1999.
    
    95. Kessel D, Luo Y. Photodynamic therapy: a mitochondrial inducer of apoptosis. Cell Death Differ 1999; 6: 28-35.
    
    96. Vantieghem A, Assefa Z, Vandenabeele P et al. Hepericin-induced photosensitizeation of HeLa cells leads to apoptosis or necrosis. Involvment of cytochrom c and procaspase-3 activation in the mechansim of apotosis. FEBS Lett. 440, 19-24. 1998.
    
    97. Granville DJ, Carthy CM, Jiang H, Shore GC, McManus BM, Hunt DW. Rapid cytochrome c release, activation of caspases 3, 6, 7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy. FEBS Lett 1998; 437: 5-10.
    
    98. He J, Whitacre CM, Xue LY, Berger NA, Oleinick NL. Protease activation and cleavage of poly(ADP-ribose) polymerase: an integral part of apoptosis in response to photodynamic treatment. Cancer Res 1998; 58: 940-946.
    
    99. Varnes ME, Chiu SM, Xue LY, Oleinick NL. Photodynamic therapy-induced apoptosis in lymphoma cells: translocation of cytochrome c causes inhibition of respiration as well as caspase activation. Biochem Biophys Res Commun 1999; 255: 673-679.
    
    100. Xue LY, Chiu SM, Oleinick NL. Photodynamic therapy-induced death of MCF-7 human breast cancer cells: a role for caspase-3 in the late steps of apoptosis but not for the critical lethal event. Exp Cell Res 2001; 263: 145-155.
    
    101. Vantieghem A, Xu Y, Declercq W et al. Different pathways mediate cytochrome c release after photodynamic therapy with hypericin. Photochem Photobiol 2001; 74: 133-142.
    
    102. Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med 2000; 6: 513-519.
    103. Mayer A, Neupert W, Lill R. Translocation of apocytochrome c across the outer membrane of mitochondria. J Biol Chem 1995; 270: 12390-12397.
    
    104. Reed JC. Double identity for proteins of the Bcl-2 family. Nature 1997; 387: 773-776.
    
    105. Granville DJ, Jiang H, An MT, Levy JG, McManus BM, Hunt DW. Bcl-2 overexpression blocks caspase activation and downstream apoptotic events instigated by photodynamic therapy. Br J Cancer 1999; 79: 95-100.
    
    106. Carthy CM, Granville DJ, Jiang H et al. Early release of mitochondrial cytochrome c and expression of mitochondrial epitope 7A6 with a porphyrin-derived photosensitizer: Bcl-2 and Bcl-xL overexpression do not prevent early mitochondrial events but still depress caspase activity. Lab Invest 1999; 79: 953-965.
    
    107. Zhang WG, Ma LP, Wang SW, Zhang ZY, Cao GD. Antisense bcl-2 retrovirus vector increases the sensitivity of a human gastric adenocarcinoma cell line to photodynamic therapy. Photochem Photobiol 1999; 69: 582-586.
    
    108. Kim HR, Luo Y, Li G, Kessel D. Enhanced apoptotic response to photodynamic therapy after bcl-2 transfection. Cancer Res 1999; 59: 3429-3432.
    
    109. Xue LY, Chiu SM, Oleinick NL. Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Oncogene 2001; 20: 3420-3427.
    
    110. Fisher AM, Ferrario A, Rucker N, Zhang S, Gomer CJ. Photodynamic therapy sensitivity is not altered in human tumor cells after abrogation of p53 function. Cancer Res 1999; 59: 331-335.
    
    111. Whitacre CM, Feyes DK, Satoh T et al. Photodynamic therapy with the phthalocyanine photosensitizer Pc 4 of SW480 human colon cancer xenografts in athymic mice. Clin Cancer Res 2000; 6: 2021-2027.
    
    112. Zhang WG, Li XW, Ma LP, Wang SW, Yang HY, Zhang ZY. Wild-type p53 protein potentiates phototoxicity of 2-BA-2-DMHA in HT29 cells expressing endogenous mutant p53. Cancer Lett 1999; 138: 189-195.
    
    113. Ahmad N, Gupta S, Mukhtar H. Involvement of retinoblastoma (Rb) and E2F transcription factors during photodynamic therapy of human epidermoid carcinoma cells A431. Oncogene 1999; 18: 1891-1896.
    
    114. Yokota T, Ikeda H, Inokuchi T, Sano K, Koji T. Enhanced cell death in NR-S1 tumor by photodynamic therapy: possible involvement of Fas and Fas ligand system. Lasers Surg Med 2000; 26: 449-460.
    
    115. Chiu SM, Davis TW, Meyers M, Ahmad N, Mukhtar H, Separovic D. Phthalocyanine 4-photodynamic therapy induces ceramide generation and apoptosis in acid sphingomyelinase-deficient mouse embryonic fibroblasts. Int J Oncol 2000; 16: 423-427.
    
    116. Kalka K, Ahmad N, Criswell T, Boothman D, Mukhtar H. Up-regulation of clusterin during phthalocyanine 4 photodynamic therapy-mediated apoptosis of tumor cells and ablation of mouse skin tumors. Cancer Res 2000; 60: 5984-5987.
    
    117. Xue LY, Qiu Y, He J, Kung HJ, Oleinick NL. Etk/Bmx, a PH-domain containing tyrosine kinase, protects prostate cancer cells from apoptosis induced by photodynamic therapy or thapsigargin. Oncogene 1999; 18: 3391-3398.
    
    118. Luna MC, Wong S, Gomer CJ. Photodynamic therapy mediated induction of early response genes. Cancer Res 1994; 54: 1374-1380.119. Gomer CJ, Ryter SW, Ferrario A, Rucker N, Wong S, Fisher AM. Photodynamic therapy-mediated oxidative stress can induce expression of heat shock proteins. Cancer Res 1996; 56: 2355-2360.
    120. Siebenlist U, Franzoso G, Brown K. Structure, regulation and function of NF-kappa B. Annu Rev Cell Biol 1994; 10: 405-455.
    121. Baeuerle PA, Baltimore D. NF-kappa B: ten years after. Cell 1996; 87: 13-20.
    122. Karin M, Ben Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 2000; 18:621-663.
    123. Marumo T, Schini-Kerth VB, Busse R. Vascular endothelial growth factor activates nuclear factor-kappaB and induces monocyte chemoattractant protein-1 in bovine retinal endothelial cells. Diabetes 1999; 48:1131-1137.
    124. Pueyo ME, Gonzalez W, Nicoletti A, Savoie F, Arnal JF, Michel JB. Angiotensin Ⅱ stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Biol 2000; 20:645-651.
    125. Cominacini L, Pasini AF, Garbin U et al. Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J Biol Chem 2000; 275: 12633-12638.
    126. Collard CD, Agah A, Stahl GL. Complement activation following reoxygenation of hypoxic human endothelial cells: role of intracellular reactive oxygen species, NF-kappaB and new protein synthesis. Immunopharmacology 1998; 39: 39-50.
    127. Blackburn EH. Structure and function oftelomeres. Nature 1991; 350: 569-573.
    128. Levis RW, Ganesan R, Houtchens K, Tolar LA, Sheen FM. Transposons in place oftelomeric repeats at a Drosophila telomere. Cell 1993; 75: 1083-1093.
    129. Greider CW. Telomere length regulation. Annu Rev Biochem 1996; 65: 337-365.
    130. Le Blancq SM, Kase RS, Van der Ploeg LH. Analysis ofa Giardia lamblia rRNA encoding telomere with [TAGGG]n as the telomere repeat. Nucleic Acids Res 1991; 19: 5790.
    131. Walmsley RW, Chan CS, Tye BK, Petes TD. Unusual DNA sequences associated with the ends of yeast chromosomes. Nature 1984; 310: 157-160.
    132. Moyzis RK, Buckingham JM, Cram LS et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 1988; 85: 6622-6626.
    133. Prowse KR, Greider CW. Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc Natl Acad Sci USA 1995; 92: 4818-4822.
    134. Counter CM, Hirte HW, Bacchetti S, Harley CB. Telomerase activity in human ovarian carcinoma. Proc Natl Acad Sci USA 1994; 91:2900-2904.
    135. Weinrich SL, Pruzan R, Ma L et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet 1997; 17: 498-502.
    136. Aviv A, Aviv H. Reflections on telomeres, growth, aging, and essential hypertension. Hypertension 1997; 29: 1067-1072.
    137. Yasumoto S, Kunimura C, Kikuchi K et al. Telomerase activity in normal human epithelial cells. Oncogene 1996; 13: 433-439.
    138. Taylor RS, Ramirez RD, Ogoshi M, Chaffins M, Piatyszek MA, Shay JW. Detection of telomerase activity in malignant and nonmalignant skin conditions. J Invest Dermatol 1996; 106: 759-765.139. Hiyama K, Hirai Y, Kyoizumi S et al. Activation of telomerase in human lymphocytes and hematopoietic progenitor ceils. J Immunol 1995; 155:3711-3715.
    140. Kameshima H, Yagihashi A, Yajima T et al. Helicobacter pylori infection: augmentation of telomerase activity in cancer and noncancerous tissues. WorldJ Surg 2000; 24: 1243-1249.
    141. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer 1997; 33: 787-791.
    142. Bednarek A, Budunova I, Slaga TJ, Aldaz CM. Increased telomerase activity in mouse skin premalignant progression. Cancer Res 1995; 55: 4566-4569.
    143. Brousset P, al Saati T, Chaouche N, Zenou RC, Mazerolles C, Delsol G. [Techniques for detection of telomerase activity in tissue samples. Diagnostic and prognosis importance]. Ann Pathol 1997; 17: 364-368.
    144. Scates DK, Muir GH, Venitt S, Carmichael PL. Detection oftelomerase activity in human prostate: a diagnostic marker for prostatic cancer? Br J Urol 1997; 80: 263-268.
    145. Umbricht CB, Saji M, Westra WH, Udelsman R, Zeiger MA, Sukumar S. Telomerase activity: a marker to distinguish follicular thyroid adenoma from carcinoma. Cancer Res 1997; 57:2144-2147.
    146. Hoos A, Hepp HH, Kaul S, Ahlert T, Bastert G, Wallwiener D. Telomerase activity correlates with tumor aggressiveness and reflects therapy effect in breast cancer. Int J Cancer 1998; 79: 8-12.
    147. Egorov EE, Akhmalisheva AK, Smirnova I et al. [Azidothymidine, blocking telomerase functioning, shortens telomeric repeats in transformed human cells]. Genetika 1997; 33: 1444-1446.
    148. Mata JE, Joshi SS, Palen B et al. A hexameric phosphorothioate oligonucleotide telomerase inhibitor arrests growth of Burkitt's lymphoma cells in vitro and in vivo. Toxicol Appl Pharmacol 1997; 144: 189-197.
    149. McCaughan JS, Jr., Hawley PC, Bethel BH, Walker J. Photodynamic therapy of endobronchial malignancies. Cancer 1988; 62: 691-701.
    150. Overholt BF, Panjehpour M. Photodynamic therapy for Barrett's esophagus: clinical update. Am J Gastroenterol 1996; 91: 1719-1723.
    151. Lightdale CJ, Heier SK, Marcon NE et al. Photodynamic therapy with porfimer sodium versus thermal ablation therapy with Nd:YAG laser for palliation of esophageal cancer: a multicenter randomized trial. Gastrointest Endosc 1995; 42:507-512.
    152. Moghissi K, Dixon K, Stringer M, Freeman T, Thorpe A, Brown S. The place of bronchoscopic photodynamic therapy in advanced unresectable lung cancer: experience of 100 cases. Eur J Cardiothorac Surg 1999; 15: 1-6.
    153. Imamura S, Kusunoki Y, Takifuji N et al. Photodynamic therapy and/or external beam radiation therapy for roentgenologically occult lung cancer. Cancer 1994; 73: 1608-1614.
    154. Furuse K, Fukuoka M, Kato H et al. A prospective phase Ⅱ study on photodynamic therapy with photofrin Ⅱ for centrally located early-stage lung cancer. The Japan Lung Cancer Photodynamic Therapy Study Group. J Clin Oncol 1993; 11: 1852-1857.
    155. Kato H, Okunaka T, Shimatani H. Photodynamic therapy for early stage bronchogenic carcinoma. J Clin Laser Med Surg 1996; 14: 235-238.
    156. Biel MA. Photodynamic therapy of head and neck cancers. Semin Surg Oncol 1995; 11: 355-359.
    157. Biel MA. Photodynamic therapy and the treatment of neoplastic diseases of the larynx. Laryngoscope 1994; 104: 399-403.158. Grosjean P, Savary JF, Mizeret J et al. Photodynamic therapy for cancer of the upper aerodigestive tract using tetra(m-hydroxyphenyl)chlorin. J Clin Laser Med Surg 1996; 14: 281-287.
    159. Fan KF, Hopper C, Speight PM, Buonaccorsi G, MacRobert AJ, Bown SG. Photodynamic therapy using 5-aminolevulinic acid for premalignant and malignant lesions of the oral cavity. Cancer 1996; 78: 1374-1383.
    160. Ormrod D, Jarvis B. Topical aminolevulinic acid HC1 photodynamic therapy. Am J Clin Dermatol 2000; 1: 133-139.
    161. Dijkstra AT, Majoie IM, van Dongen JW, van Weelden H, van Vloten WA. Photodynamic therapy with violet light and topical 6-arninolaevulinic acid in the treatment of actinic keratosis, Bowen's disease and basal cell carcinoma. J Eur Acad Dermatol Venereol 2001; 15: 550-554.
    162. Wang I, Bendsoe N, Klinteberg CA et al. Photodynamic therapy vs. cryosurgery of basal cell carcinomas: results of a phase Ⅲ clinical trial. Br J Dermato12001; 144: 832-840.
    163. Gayl S, V. Photofrin-mediated photodynamic therapy for treatment of aggressive head and neck nonmelanomatous skin tumors in elderly patients. Laryngoscope 2001; 111: 1091-1098.
    164. Panellla TJea. Lutetium texaphyrin (Lu-Tex) photodynamic therapy (PDT) of patients with refractory locally recurrent breast cancer. Proc ASCO. 17, 165 Abstract 632. 1998.
    165. Sindelar W. Intraperitoneal photodynamic therapy showa efficacy in phase I trial. Proc.Am.Soc.Clin.Oncol. 14, 447. 1995.
    166. Hendren SK, Hahn SM, Spitz FR et al. Phase Ⅱ trial of debulking surgery and photodynamic therapy for disseminated intraperitoneal tumors. Ann Surg Oncol 2001; 8:65-71.
    167. Dugan M, Crawford E, Nseyo O. Photodynamic therapy (PDT) after transurthal resection (tur) for superficial papillary bladder cancer (SBC): a randomized trail. Proc ASCO. 10, 173. 1991.
    168. Nseyo UO, Shumaker B, Klein EA, Sutherland K. Photodynarnic therapy using porfimer sodium as an alternative to cystectomy in patients with refractory transitional cell carcinoma in situ of the bladder. Bladder Photofrin Study Group. J Urol 1998; 160: 39-44.
    169. Muller PJ, Wilson BC. Photodynamic therapy for malignant newly diagnosed supratentorial gliomas. J Clin Laser Med Surg 1996; 14: 263-270.
    170. Kostron H, Obwegeser A, Jakober R. Photodynamic therapy in neurosurgery: a review. J Photochem Photobiol B 1996; 36: 157-168.
    171. Holyoke ED. New surgical approaches to pancreatic cancer. Cancer 1981; 47: 1719-1723.
    172. Schroder T, Chert IW, Sperling M, Bell RH, Jr., Brackett K, Joffe SN. Hematoporphyrin derivative uptake and photodynamic therapy in pancreatic carcinoma. J Surg Oncol 1988; 38: 4-9.
    173. Tralau CJ, Barr H, Sandeman DR, Barton T, Lewin MR, Bown SG. Aluminum sulfonated phthalocyanine distribution in rodent tumors of the colon, brain and pancreas. Photochem Photobiol 1987; 46: 777-781.
    174. Mang TS, Wieman TJ. Photodynamic therapy in the treatment of pancreatic carcinoma: dihematoporphyrin ether uptake and photobleaching kinetics. Photochem Photobiol 1987; 46: 853-858.
    175. Mang TS, McGinnis C, Liebow C, Nseyo UO, Crean DH, Dougherty TJ. Fluorescence detection of tumors. Early diagnosis of microscopic lesions in preclinical studies. Cancer 1993; 71: 269-276.
    176. Chatlani PT, Nuutinen PJ, Toda N et al. Selective necrosis in hamster pancreatic tumours using photodynamic therapy with phthalocyanine photosensitization. Br J Surg 1992; 79: 786-790.177. Matthews EK, Cui ZJ. Photodynamic action of sulphonated aluminium phthalocyanine (SALPC) on isolated rat pancreatic acini. Biochem Pharmacol 1990; 39: 1445-1457.
    178. Bellnier DA, Ho YK, Pandey RK, Missert JR, Dougherty TJ. Distribution and elimination of Photofrin Ⅱ in mice. Photochem Photobiol 1989; 50: 221-228.
    179. Barr H, Tralau CJ, Boulos PB, MacRobert AJ, Tilly R, Bown SG. The contrasting mechanisms of colonic collagen damage between photodynamic therapy and thermal injury. Photochem Photobiol 1987; 46: 795-800.
    180. McCaughan JS, Jr., Mertens BF, Cho C, Barabash RD, Payton HW. Photodynamic therapy to treat tumors of the extrahepatic biliary ducts. A case report. Arch Surg 1991; 126:111-113.
    181. Hajri A, Coffy S, Vallat F, Evrard S, Marescaux J, Aprahamian M. Human pancreatic carcinoma cells are sensitive to photodynamic therapy in vitro and in vivo. Br J Surg 1999; 86: 899-906.
    182. Liu CD, Kwan D, Saxton RE, McFadden DW. Hypericin and photodynamic therapy decreases human pancreatic cancer in vitro and in vivo. J Surg Res 2000; 93: 137-143.
    183. Bown SG, Rogowska AZ, Whitelaw DE et al. Photodynamic therapy for cancer of the pancreas. Gut 2002; 50: 549-557.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700