预应力锚具下混凝土局部受压基本问题试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
局部受压承载力计算是预应力混凝土结构设计中的关键问题之一。我国在上个世纪八十年代对局部受压问题进行了一系列的研究,其研究成果已写入我国相关设计规范。近些年来的工程实践和科学研究表明,我国现行的《混凝土结构设计规范》(GB50010-2002)(以下简称现行规范)中局部受压承载力计算方法存在一些问题有待完善。围绕这些问题,论文开展了五个方面的研究工作。
     (1)针对现行规范公式中没有考虑预留孔道及孔道直径大小对混凝土局部受压强度提高系数的影响这一问题,完成了12个带预留孔道的素混凝土棱柱体试件的局部受压试验。研究了预留孔道直径和局部受压的计算底面积与混凝土局部受压面积的比值Ab/Al(以下简称局压面积比)的变化对素混凝土试件局部受压性能的影响,获得了试件破坏形态、楔形体特征、荷载位移曲线及裂缝开展特点等第一手试验资料。研究表明,预留孔道的存在将使混凝土局部受压强度提高系数降低,其降低幅度随孔道直径的增大而增大,不同局压面积比下的降低规律大体相同。提出了考虑预留孔道大小影响的局部受压承载力计算公式,即在现行规范局部受压承载力计算公式中引入了预留孔道影响系数λ_d。λ_d随预留孔道直径与承压板边长的比值和预留孔道直径与试件边长的比值的增大而线性降低,其中后一个比值的变化对λ_d影响显著。
     (2)针对现行规范公式中没有反映出间接钢筋内表面范围内混凝土核心面积对局部受压承载力的影响这一问题,完成了29个配置间接钢筋的混凝土棱柱体试件轴心局部受压试验。研究了间接钢筋型式、混凝土核心面积、局压面积比等参数变化对混凝土局部受压性能的影响,获得了试件破坏形态、楔形体特征、荷载位移曲线、裂缝开展特点及间接钢筋应变分布等第一手试验资料。研究表明,混凝土核心面积对局部受压承载力影响显著,当网片式间接钢筋的种类、直径、根数、网片间距不变或螺旋式间接钢筋的种类、直径及螺旋间距不变时,混凝土核心面积越大,间接钢筋对局部受压承载力的贡献越大。
     提出了混凝土核心面积与局部受压面积的比值Acor/Al不小于1.35时的考虑混凝土核心面积影响的局部受压承载力计算方法。这个方法的思路是将现行规范局部受压承载力计算公式中配置间接钢筋的局部受压承载力提高系数βcor以多项式5.91βcor-4.52代替。
     提出了Acor/Al小于1.35时的混凝土局部受压承载力计算方法。这个方法的思路是将现行规范局部受压承载力计算公式中间接钢筋贡献项乘以间接钢筋强度折减系数λ_s,而且当Acor/Al<1时将公式中βcor取为1,将间接钢筋对局部受压承载力贡献项中的局部受压净面积Aln以Acor,n代替,Acor,n为Acor扣除孔道、凹槽部分的面积。λ_s与局压面积比Ab/Al和Acor/Al两个比值有关,且随着两比值乘积的增大而增大。
     (3)针对预应力梁在与其垂直的边梁侧面锚固的情况,完成了12个模拟这一锚固情况的混凝土试件局部受压试验。研究了承压板宽度不变情况下长度变化及边梁宽度变化时,边梁对预应力梁锚固区局部受压性能的影响,获得了试件破坏形态、荷载位移曲线、间接钢筋应变分布等第一手试验资料。研究表明,边梁对预应力梁端部局部受压锚固区有较强的约束作用。当局部受压计算底面积在预应力梁侧以外的尺寸不大于2倍的边梁宽度、边梁宽度不小于局部受压面积的短边尺寸时,局部受压计算底面积可以按照与局部受压面积同心、对称的原则扩展到边梁侧表面中。
     (4)针对我国现行标准中混凝土局部受压承载力计算公式对活性粉末混凝土(RPC)的适用性问题,完成48个活性粉末混凝土棱柱体试件局部受压试验。研究了活性粉末混凝土强度等级和局压面积比变化对其局部受压性能的影响,获得了试件破坏形态、裂缝开展特点、楔形体特征和荷载位移曲线等第一手试验资料。研究表明,RPC局部受压性能与普通混凝土局部受压性能基本相似,其局部受压承载力也随局压面积比的增大而增大,同面积比条件下,RPC局部受压强度提高系数较普通混凝土局部受压强度提高系数低。掺加钢纤维能明显改善RPC的局部受压性能,但钢纤维的掺量对其局部受压性能影响较小。基于试验结果分别提出了素RPC和掺加钢纤维RPC局部受压承载力的两类计算模式。素RPC局部受压承载力计算模式Ⅰ中RPC强度影响系数随局压面积比增大而线性降低;模式Ⅱ利用单一的RPC局部受压强度影响系数综合考虑RPC强度及局部受压两因素对试件局部受压承载力的影响。掺加钢纤维RPC局部受压承载力计算模式Ⅰ取RPC强度影响系数为常数;模式Ⅱ利用单一的RPC局部受压强度影响系数综合考虑钢纤维特征及掺量、RPC强度及局部受压等因素对试件局部受压承载力的影响。
     (5)给出了局部受压承载力计算及端部间接钢筋配置的建议方法。
Calculation of local compression bearing capacity is one of pivotal problems in design of prestressed concrete structure. A series of problems on local compression have been investigated in the eighties of the twentieth century. The research achievement has been involved in relevant national design criterions. Engineering practice and science research in latest years show that there are some problems in the calculation method of local compression bearing capacity in the current Code for Design of Concrete Structure (“the Current Code”for abbreviation) and they need to be improved. To solve these problems, five parts of research work are accomplished in this dissertation.
     (1) The influence of ducts and its diameter on the enhancement coefficient of concrete strength for local compression has not been taken into account in the calculation formula in the Current Code. Considering this problem, local compression experiments on 12 plain concrete prism specimens with ducts are completed. The influence of ducts’diameter and the ratio of calculated bottom area for local compression (Ab) to local compression area of concrete (Al) on local compression performance of plain concrete specimens have been researched. The first-hand experimental data are got, such as failure modes of specimens, features of the wedges, load-displacement curves and characteristics of crack distribution. Researches show that the enhancement coefficient of concrete strength for local compression decreases due to ducts, and the decrease degree increases with the increase of diameter of ducts. The law for decrease of concrete strength is the same in general for different Ab/ Al. The calculation formula for local compression bearing capacity of concrete considering the influence of diameter of ducts is brought forward, in which an influence coefficientλ_d is introduced. Theλ_d decreases linearly with the increase of the ratio of diameter of ducts to length of bearing plate and the ratio of diameter of ducts to length of specimen side. The second value has notable influence onλ_d.
     (2) The influence of concrete core area within the range for inner surface of indirect reinforcements on the local compression bearing capacity has not been reflected in the calculation formula in the Current Code. Considering this problem, local compression experiments on 29 concrete prism specimens with indirect reinforcements are completed. The influence of some factors on local compression performance of concrete specimens have been researched, such as the variety of indirect reinforcement, concrete core area and the ratio of the calculated bottom area for local compression to local compression area of concrete. The first-hand experimental data are got, such as failure modes of specimens, features of the wedges, load-displacement curves, characteristics of crack distribution and strain distribution of the indirect reinforcement. Researches show that concrete core area has notable influence on local compression bearing capacity. When the variety, diameter, number, and spacing of mesh indirect reinforcement keep constant, or the variety, diameter, and spacing of spiral indirect reinforcement keep constant, contribution of indirect reinforcements to local compression bearing capacity increases with the increase of concrete core area.
     The calculation method for local compression bearing capacity considering the influence of concrete core area is brought forward when the ratio of concrete core area (Acor) to local compression area of concrete (Al) is not less than 1.35. The idea is the enhancement coefficient of local compression bearing capacity due to indirect reinforcements (βcor) is replaced by a multinomial (5.91βcor-4.52) in the calculation formula in the Current Code.
     The calculation method for local compression bearing capacity is brought forward when Acor/Al is less than 1.35. The idea is the contribution of indirect reinforcements to local compression bearing capacity in the Current Code is multiplied by the reduction factor of strength of indirect reinforcements (λ_s). When Acor/Al<1,βcor equals to 1, and the net local compression area (Aln) in the indirect reinforcements contribution is replaced by Acor,n. Acor,n is the residual area of removing the ducts and caves from Acor.λ_s relates to Ab/Al and Acor/Al , and it increases with the increase of the product of the two ratios.
     (3) Considering the case that prestressed concrete beams are anchored in the side of boundary beam perpendicular to the prestressed concrete beam, local compression experiments on 12 concrete specimens which simulating this case are completed. The influence of boundary beam on local compression performance of anchorage zone of prestressed concrete beams have been researched with length of bearing plate and width of boundary beam varying and width of bearing plate keeping constant. The first-hand experimental data are got, such as failure modes of specimens, load-displacement curves and strain distribution of the indirect reinforcement. Researches show that boundary beam has strong restrictions on end anchorage zone of prestressed concrete beam. When the ratio of length of calculated bottom area outside the section of prestressed concrete beam to width of boundary beam is less than 2 and width of boundary beam is larger than the shorter length of local compression area, the calculated bottom area for local compression can be extended to the side face of boundary beam according to the principle of the local compression area is concentric or symmetric to the calculated bottom area.
     (4) Considering the applicability of calculation formulas on concrete local compression bearing capacity in present national standards to reactive powder concrete (RPC), local compression experiments on 48 RPC prism specimens are completed. Influences of RPC strength and the ratio of calculated bottom area for local compression to local compression area on RPC local compression performance have been researched. The first-hand experimental data are got, such as failure modes of specimens, characteristics of crack distribution, features of the wedges and load-displacement curves. Researches show that local compression performance of RPC is similar to the ordinary concrete. Local compression bearing capacity of RPC increases with the increases of Ab/Al. The enhancement coefficient of RPC strength for local compression is smaller than the ordinary concrete under the same Ab/Al. Local compression performance of RPC can be improved by mixing steel fiber into RPC, but the dosage of steel fiber has little influence on it.
     Based on experimental results, two kinds of calculation formulas for local compression bearing capacity of plain RPC and RPC with steel fiber are brought forward. In formula one of plain RPC, influence coefficient of RPC strength (βc) linearly decreases with the increase of Ab/Al, and in formula two, the single influence coefficient of local compression strength is uses to synthetically take into account the influence of strength of RPC and local compression on local compression bearing capacity of specimens. In formula one of RPC with steel fiber,βc is taken as constant and in formula two, the single influence coefficient of local compression strength is used to reflect the influence of factors on local compression bearing capacity of specimens, such as character and dosage of steel fiber, RPC strength and local compression.
     (5) Suggested methods for calculation of local compression load bearing capacity and placing of indirect reinforcement in end zone are presented.
引文
1杜拱辰.现代预应力混凝土结构.中国建筑工业出版社,1988
    2陶学康.后张预应力混凝土设计手册.中国建筑工业出版社,1996
    3吕志涛,孟少平.现代预应力设计.中国建筑工业出版社,1998
    4郑文忠,王英.预应力混凝土房屋结构设计统一方法与实例.黑龙江科学技术出版社,1998
    5中国建筑科学研究院.混凝土结构设计.中国建筑工业出版社,2002
    6 J. Schlaich, K. Schafer and M. Jennewein. Toward a Consistent Design of Reinforeced and Prestressed Concrete Structure. PCI Journal. 1987, 32(3): 74~151
    7蔡绍怀.混凝土及配筋混凝土的局部承压强度.土木工程学报,1963,9(6):1~10
    8 W. Shelson. Bearing Capacity of Concrete. ACI Journal. 1957, 54(5): 405~414
    9 T. Au, D. L. Baird. Bearing Capacity of Concrete Blocks. ACI Journal. 1960, 56(9): 869~879
    10 K. T. Sundara Raja Iyengar. Two-Dimensional Theories of Anchorage Zone Stresses in Post-Tensioned Prestressed Beam. ACI Journal. 1962, 59(10): 1443~1466
    11 K. T. Sundara Raja Iyengar, and C. V. Yogananda. A Three-Dimensional Stress Distribution Problem in the Anchorage Zone of a Post-Tensioned Concrete Beam. Magazine of Concrete Research. 1966, 18(55): 75~84
    12 N. M. Hawkins. The Bearing Strength of Concrete Loaded Through Rigid Plates. Magazine of Concrete Research. 1968, 20(62): 31~40
    13 M. W. Hyland, and W. F. Chen. Bearing Capacity of Concrete Blocks. ACI Journal. 1970, 67(3): 228~236
    14 S. K. Niyogi. Bearing Strength of Concrete-Geometric Variations. Journal of Structural Division, ASCE, 1973, 99(ST7): 1471~1490
    15 S. K. Niyogi. Concrete bearing Strength-Support, Mix, Size Effect. Journal of Structural Division, ASCE, 1974, 100(ST8): 1471~1490
    16 R. J. Lenschow and M. A. Sozen. Practical Anylasis of the Anchorage Zone Problem in Prestressed Beams. ACI Journal. 1965, 62(11): 1421~1439
    17 P. Gergely, and M. A. Sozen. Design of Anchorage-Zone reinforcement in prestressed Concrete Beams. PCI Journal. 1967, 12(2): 63~75
    18 C. Y. Tuan, S. A. Yehia, N. Jongpitaksseel, and M. K. Tadros. End Zone Reinforcement for Prestressed concrete Girders. PCI Journal. 2004, 49(3): 68~82
    19 A. L. Yettram and K. Robbins. Anchorage Zone Stresses in Axially Post-Tensioned I-Section members with End-Blocks. Magazine of Concrete Research. 1971, 23(74): 37~42
    20 J. Kannel, C. French, and H. Stolarski. Release Methodology of Strands to Reduce End Cracking in Pretensioned Concrete Girders. PCI Journal. 1997, 42(1): 42~54
    21 D. H. Sanders, and J. E. Breen. Post-Tensioned Achorage Zones-a Survey and a Solution. Concrete International. 1995, 17(8): 65~70
    22 W. C. Stone and J. E. Breen. Behavior of Post-Tensioned Girder Anchorage Zones. PCI Journal. 1984, 29(1): 64~109
    23 W. C. Stone and J. E. Breen. Behavior of Post-Tensioned Girder Anchorage Zones. PCI Journal. 1984, 29(2): 28~61
    24 D. Sarles, and R. Y. Itani. Effect of End Blocks on Anchorage Zone Stresses in Prestressed Concrete Girders. PCI Journal. 1984, 29(6):100~114
    25 R. C. Fenwick, and S. C. Lee. Anchorage Zones in Prestressed Cooncrete members. Magazine of Concrete Research. 1986, 38(135): 77~89
    26 Y. K. Yong, Gadeqbeku, B. K. Christopder, and E. G. Navvy. Achorage Zone Stresses of Beam Subjected to Shear Forces. Journal of Structural Engineering. 1987, 113(8): 1789~1805
    27 Comite Euro-International du Beton. Anchorage Zones of Prestressed Concrete Members. No.181, April 1987
    28 American Association of State Highway and Transportion Officials (AASHTO). LRFD Specification for Highway Bridges. First Edition, 1993
    29 American Association of State Highway and Transportion Officials (AASHTO). Segmental Bridge Specification. First Edition, 1991
    30 ACI Committee 318. Building Code Requirements for Structural Concrete(ACI 318-99) and Commentary (318R-99). American Concrete Institute, Farmington Hills, 1999
    31 C. L. Roberts-Wollmann and J. E. Breen. Design and Test Specification for Local Tendon Anchorage Zones. ACI Structure Journal. 2000, 97(6): 867~875
    32 American Association of State Highway and Transportion Officials (AASHTO). LRFD Specification for Highway Bridges. Third Edition, 2005
    33 ACI Committee 318. Building Code Requirements for Structural Concrete and Commentary (318M-05). American Concrete Institute, Farmington Hills, 2005
    34 S. F. Brena and M. C. Morriso. Factors Affecting Strength of Elements Designed Using Strut-and-Tie Models. ACI Structure Journal. 2007, 104(3): 267~277
    35 O. E. Hu, K. H. Tan, and X. H. Liu. Behaviour and Strut-and-Tie Predictions of High-Strenght Concrete Deep Beams with Trapezoidal Web Opennings. Magazine of Concrete Research. 2007, 59(7): 529~541
    36 D. H. Sanders, and J. E. Breen. Post-Tensioned Achorage Zones with Single Straight Concrete Anchorages. ACI Structure Journal. 1997, 94(2): 146~158
    37 T. J. Ibell and C. J. Burgoyne. Experimental Investigation of Behaviour of Anchorage Zones. Magazine of Concrete Research. 1993, 45(165): 281~291
    38 T. J. Ibell and C. J. Burgoyne. Plasticity Analysis of Anchorage Zones. Magazine of Concrete Research. 1994, 46(166): 39~48
    39 T. J. Ibell and C. J. Burgoyne. Generalized Lower-Bound Analysis of Anchorage Zones. Magazine of Concrete Research. 1994, 46(167): 133~143
    40 B. H. Oh, D. H. Lim, and S. S. Park. Stress distribution and Cracking Behavior at Anchorage Zones in Prestressed Concrete Members. ACI Structure Journal. 1997, 94(5): 549~557
    41 D. J. Oehlers. Longitudinal Splitting in the Anchorage Zones of Post-Tensioned Members. Magazine of Concrete Research. 1997, 49(180): 173~183
    42 Z. G. Ma, M. A. Saleh, and M. K. Tadros. Optimized Post-Tensioning Anchorage in Prestressed Concrete I-Beam. PCI Journal. 1999, 44(2): 56~69in FRP-Prestressed Concrete. Magazine of Concrete Research. 2006, 58(8): 547~563
    44 M. Choi. Anchorage zones for FRP Prestressed Concrete Structures. Structural Engineering. 2002, 80(6): 14~22
    45 M. Choi, and T. J. Ibell. Behavior of Fiber-Reinforced Polymer-Reinforced Anchorage Zones for Post-Tensioned Concrete Structure. ACI Structure Journal. 2004, 101(5): 625~632
    46 L. Gale and T. J. Ibell. Mulltiple Anchorage Zones in Fibre-Reinforced Polymer Prestressed Concrete Structures. Magazine of Concrete Research. 2005, 57(3): 149~165
    47 S. Haroon, N. Yazdani, and K. Tawfiq. Feasibility of Steel Fibre Concrete in End Zones of Possttensioned Bridge Girders: Result of Special Anchorage-Device Acceptance Test. Transportation Research Record. 2004, n 1892: 117~125
    48 S. Haroon, N. Yazdani, and K. Tawfiq. Posttensioned Anchorage Zone Enhancement with Fiber-Reinforced Concrete. Journal of Bridge Engineering. 2006, 11(5):566~572
    49《钢筋混凝土结构设计规范》TJ 10-74.中国建筑工业出版社,1974
    50中国建筑科学研究院.混凝土及钢筋混凝土局部承压计算.《钢筋混凝土结构设计与构造》. 85年设计规范背景资料汇编. 1985:156~161
    51中国建筑科学研究院建筑结构研究所,清华大学建工系.大吨位预应力束锚固区混凝土局部承压问题的研究.《钢筋混凝土结构研究报告集(2)》.中国建筑工业出版社,1981:255~288
    52刘永颐,关建光,周凤廉,王传志.控制预应力混凝土梁端面张拉裂缝的方法.中国建筑科学研究院《建筑科学研究报告》. 1982,No.19:1~14
    53刘永颐,关建光等.混凝土和配筋混凝土的局部承压强度.中国建筑科学研究院《建筑科学研究报告》. 1982,No.25:1~47
    54刘永颐,关建光,王传志.预应力混凝土结构端部锚固区的抗裂验算与配筋设计.建筑结构学报. 1983,4(5):11~22
    55刘永颐,关建光,王传志.混凝土局部承压强度及破坏机理.土木工程学报. 1985,18(2):53~65
    56曹声远,杨熙坤,钮长仁.混凝土轴心局部承压破坏及强度的试验研究.哈尔滨建筑工程学院学报. 1980,(1):1~73
    57曹声远,杨熙坤,钮长仁.混凝土轴心局部承压变形的试验研究.哈尔滨建筑工程学院学报. 1980,(1):74~83
    58曹声远,杨熙坤.混凝土局部承压的工作机理及强度理论.哈尔滨建筑工程学院学报. 1982,(3):44~53
    59曹声远,杨熙坤.混凝土偏心局部承压强度试验研究及计算方法的建议.哈尔滨建筑工程学院学报. 1982,(4):1~11
    60曹声远,杨熙坤,徐凯怡.钢筋混凝土局部承压的试验研究.哈尔滨建筑工程学院学报. 1983,(2):1~14
    61曹声远,杨熙坤,徐凯怡.钢筋混凝土局部承压的工作机理.哈尔滨建筑工程学院学报. 1984,(1):1~8
    62曹声远,杨熙坤,徐凯怡.钢筋混凝土局部承压强度理论.哈尔滨建筑工程学院学报. 1984,(2):25~33
    63杨熙坤,曹声远.混凝土及配筋混凝土局部承压抗裂度计算方法的建议.哈尔滨建筑工程学院学报. 1984,(3):20~30
    64局部承压专题组.混凝土及钢筋混凝土的局部承压问题.建筑结构(建筑技术通讯). 1982,(4):1~9
    65《混凝土结构设计规范》GBJ 10-89.中国建筑工业出版社,1989
    66蔡绍怀,薛立红.高强混凝土的局部承压强度.土木工程学报. 1994,27(5):52~61
    67杨幼华,薛爱.高强混凝土局部承压极限强度理论.四川建筑科学研究. 1995,(4):42~46
    68杨幼华,薛爱.高强混凝土局部承压开裂强度的分析和计算.四川建筑科学研究. 1996,(1):24~27
    69胡敏云,杨幼华.高强混凝土局部承压试验研究.四川建筑. 1996,16(2):52~54
    70李子青,李子春.正方形荷载下高强混凝土局部承压试验研究.重庆交通学院学报. 1998,17(3):65~71
    71李子青,李子春.条形荷载下高强混凝土局部承压试验研究.西安公路交通大学学报. 1998,18(3):29~33
    72《混凝土结构设计规范》GB 50010-2002.中国建筑工业出版社,2002
    73段建中,何利.有间接钢筋混凝土双向局部承压构件的试验研究.合肥工业大学学报(自然科学版). 2002,25(1):82~85
    74段建中.混凝土双向局部承压的试验研究.合肥工业大学学报(自然科学版). 1995,18(1):60~66
    75孙敏,朱晓济.轻骨料混凝土局压承载力研究.混凝土. 2002,(11):33~35
    76刘强,孙敏,朱聘儒,邓景纹.间接配筋轻骨料混凝土局部受压承载力计算公式的优化分析.苏州大学学报(工科版). 2006,26(1):33~37
    77张吉柱.密布预应力束锚具下混凝土局部受压承载力计算方法的研究.哈尔滨工业大学硕士学位论文. 2003
    78郑文忠,张吉柱.密布预应力束锚具下混凝土局部受压承载力计算方法.建筑结构学报. 2004,25(4):60~65
    79罗继前,肖礼经,王卫锋等.预应力混凝土连续梁桥锚下局部应力分析.中外公路. 2003,(6):48~50
    80许惟国,何广汉.连续刚构桥锚固区局部应力的研究.西南交通大学学报. 2004,39(3):372~374
    81罗新才.箱梁桥大吨位预应力锚具锚下局部应力分析.四川建筑. 2005,25(1):91~92
    82王勇.预应力混凝土箱梁锚下局部应力分析.城市道路与防洪. 2005,(3):50~53
    83程玉,车龙兰.后张预应力宽幅空心板梁锚具下局部承压的有限元分析.西部探矿工程. 2006,118(2):197~198
    84王卫锋,颜全胜,谭毅平,李静.预应力张拉时锚下局部应力的测试与分析.郑州大学学报(工学版). 2006,27(3):42~45
    85李静辉,郝向伟,傅科奇.简支转连续梁扁锚局压应力分析.东北林业大学学报. 2006,34(3):74~77
    86陈嘉毅.大跨度预应力混凝土箱梁锚固区局部应力的理论分析与试验研究.浙江大学硕士学位论文. 2006
    87杨转运,张亮亮,刘会.薄壁箱梁大吨位预压力锚固区局部承压.重庆大学学报(自然科学版). 2007,30(6):114~120
    88马俊,盛洪飞,陈彦江.箱型截面大吨位锚下局压应力空间有限元分析.哈尔滨工业大学学报. 2007,39(6):866~869
    89潘龙,易建国,江雪波等.新型大吨位镦头锚体系及其锚下应力分析.同济大学学报. 1999,27(2):220~223
    90 P. Richard and M. Cheyrezy. Composition of Reactive Powder Concretes. Cement and Concrete Research. 1995, 25(7): 1051~1511
    91 J. Dugat, N. Roux, and G. Bernier. Mechanical Properties of Reactive Powder Concrete. Materail Structure. 1996, 29(4): 233~240
    92 H. Zanni, M. Cheyrezy, and V. Maret. Investigation of Hydration and Pozszolanic Reactive Powder Concrete Using Si NMR. Cement and Concrete Research. 1996, 26(1): 93~100
    93 M. Cbeyrezy, V. Maret, and L. Frouin. Microstructural analysis of RPC. Cement and Concrete Composites. 1996, 26(18): 1491~1500
    94 A. Feylessoufi. Water Enviroment and Nanostructural Network in a Reactive Powder Concrete. Cement and Concrete Composites. 1996, 26(18): 23~29
    95 P. Richard and M. Cheytezy. Reactive Powder Concrete with High Ductility and 200-800MPa Compressive Strength. ACI 1997, Sp144: 507-518
    96 O. Bonneau, C. Poulin, and J.Dugat. Mechanical Properties and Durability of Two Industrial Reactive Powder Concrete. ACI Material Journal. 1997, 94(4): 286~290
    97覃维祖,曹峰.一种超高性能混凝土—活性粉末混凝土.工业建筑. 1999,29(4):16~18
    98何峰,黄政宇. 200~300MPa活性粉末混凝土的制备技术研究.混凝土与水泥制品. 2000,(4):3~7
    99何峰,黄政宇.养护制度对活性粉末混凝土强度的影响研究.混凝土. 2000,(2)
    100单波,扬吴生,黄政宇.钢纤维对RPC抗压强度增强作用的研究.湘潭大学自然科学学报. 2002,24(1):109~112
    101龙广成,谢友均.活性粉末混凝土的性能与微观结构.硅酸盐学报. 2005,33(4):456~461
    102施韬,陈宝春,施惠生.掺矿渣活性粉末混凝土配制技术的研究.材料科学与工程学报. 2005,23(6):867~870
    103何峰,黄政宇.硅灰和石英粉对活性粉末混凝土抗压强度贡献的分析.混凝土. 2006,(1):39~42
    104黄政宇,王艳,肖岩,卢芳云.应用SHPB试验对活性粉末混凝土动力性能的研究.湘潭大学自然科学学报2006,28(2):113~117
    105王震宇,王俊亭,袁杰.活性粉末混凝土配比试验研究.混凝土. 2006,(6):80~83
    106柯开展,周瑞忠.掺短切碳纤维活性粉末混凝土的受压力学性能研究.福州大学学报(自然科学版). 2006,34(5):739~744
    107刘红娟,宋少民.颗粒分布对活性粉末混凝土性能及微观结构影响.武汉理工大学学报. 2007,29(1):26~29
    108 O. Bayard. Fracture Mechanics of Reactive Powder Concrete: Material Modeling and Experimental Investigations. Engineering Fracture Mechanics. 2003, 70(7-8): 839~851
    109 Y. W. Chan, and S. H. Chu. Effect of Silica Fume on Steel Fiber Bond Characteristics in Reactive Powder Concrete. Cement and Concrete Research. 2004, 34(7): 1167~1172
    110 F. Kazunori, and S. Takanori. Effects of strain rate on tensile behavior of Reactive Powder Concrete. .Journal of Advanced Concrete Technology. 2006, 4(1): 79~84
    111黄政宇,岑小艳,柳红霞.碳纤维筋与活性粉末混凝土粘结性能试验研究.铁道科学与工程学报. 2006,3(1):65~69
    112王德荣,葛涛,周泽平,王明洋.钢纤维超高强活性粉末混凝土抗侵彻计算方法研究.爆炸与冲击. 2006,26(4):367~371
    113季文玉,周超民.预应力RPC箱梁剪力滞效应分析.中国铁道科学. 2007,28(1):19~22
    114安明喆,张盟,季文玉.光圆钢筋与活性粉末混凝土的粘结性能研究.铁道学报. 2007,29(1): 90~94
    115 Y. B. Pierre, and C. Marco. Precast, Prestressed Pedestrian Bridge-World’s First Reactive Powder Concrete Structure. PCI Journal. 1999, 44(5): 60~71
    116 M. G. Lee, Y. C. Wang, and C. T. chiu. A Preliminary Study of Reactive Powder Concrete as A New Repair Material. Construction and Building Materials. 2007, 21(1): 182~189
    117周一桥,杜亚凡.世界上第一座预制预应力活性粉末混凝土结构—舍布鲁克人行桥.国外桥梁. 2000,(3):18~23
    118陈毅卓.铁路桥梁活性粉末混凝土人行道板设计与试验研究.北方交通大学博士学位论文. 2003
    119方志,扬剑. FRP和RPC在土木工程中的研究与应用.铁道科学与工程学报. 2005,2(4):54~61
    120张立军,安明喆,阎贵平.活性粉末混凝土及其工程应用.世界科技研究与发展. 2005,27(6):49~52
    121周秩峰,阎贵平.活性粉末混凝土预制桥墩的设计研究.铁道建筑. 2006,(1):6~9
    122王远洋,陈宝春. 1000m跨径混凝土拱桥研究.世界桥梁. 2006,(1):1~3
    123陈昀明,陈宝春,吴炎害,等. 432m活性粉末混凝土拱桥的设计.世界桥梁. 2005,(1):1~4,16
    124《高强混凝土结构技术规程》CECS 104:99.中国建筑工业出版社,1999
    125《纤维混凝土结构技术规程》CECS 38:2004.中国计划出版社,2004
    126蔡正永,王足献.正交设计在混凝土中的应用.中国建筑工业出版社,1985
    127哈尔滨工业大学等.混凝土与砌体结构.中国建筑工业出版社,2002
    128郑文忠,李莉.活性粉末混凝土配制及其配合比计算方法.(已投稿)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700