CDMA蜂窝系统中基于串行干扰消除的资源管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CDMA蜂窝系统是干扰受限的,降低多址干扰是提高系统容量的有效途径。基站接收机可采用多用户检测算法降低多址干扰、提高系统容量,其中,串行干扰消除(Successive Interference Cancellation,SIC)由于具有低实现复杂度、高系统性能而受到了广泛的关注。尽管采用诸如SIC之类的多用户检测算法有助于降低CDMA蜂窝系统中的多址干扰、提高系统容量,但随着移动用户数目的快速增长以及用户对于通信业务要求的提高,系统对于无线资源将有更高的需求,有限的系统资源与无限的用户需求之间的矛盾依然存在。因此,即使在基于SIC的CDMA系统中,同样需要研究无线资源管理,即在保证服务质量(Quality of Service,QoS)的前提下,研究如何充分有效地利用无线资源的问题。在基于SIC的CDMA系统中,不同的译码顺序导致不同的系统性能,其无线资源管理与基于单用户检测(Single user detection,SUD)接收机的无线资源管理有所区别,此时,需要结合译码顺序的调整联合考虑。本文从系统设计出发,研究基于SIC的CDMA系统中的无线资源管理关键问题,包括功率控制、速率分配、呼叫接纳控制以及多径衰落分集信道下的容量分析等几个方面。本论文的主要工作总结如下:
     首先研究结合SIC的CDMA蜂窝系统中的功率控制及相关问题。推导出多小区情况下最佳功率分配的表达式;针对用户发射(接收)功率存在限制的情况,提出了如何检验系统可行与否的有效方法;针对用户发射(接收)功率存在限制的情况,推导出能够最小化系统中断概率的最优译码顺序;推导出能够最小化总发射功率的最优译码顺序。
     在基于SIC的CDMA蜂窝系统中,可能的速率模式与译码顺序随着用户数的增长而指数增长,如何有效地分配用户速率是一NP问题,需要考虑速率分配与译码顺序调整的联合优化。本文首先提出了两种贪婪算法求解此问题,算法具有较低的计算复杂度与较好的性能。进一步地,又提出了结合遗传算法的速率分配算法求解该问题,理论上证明了该算法能够完全收敛到全局最优解。仿真结果表明,较之贪婪算法而言,有着更高计算复杂性的结合遗传算法的速率分配算法能够获取更好的解。
     呼叫接纳控制也是无线资源管理的一个重要功能模块,本文接着研究采用SIC的CDMA系统中的呼叫接纳控制,提出两种呼叫接纳控制算法。一种是在用户发射(接收)功率限制下基于业务升降级的呼叫接纳控制算法,另外一种是在用户发射(接收)功率与基站接收机处总接收功率的共同限制下基于服务等级(Gradeof Service,GoS)设置接纳门限的呼叫接纳控制算法。前者在尽可能多地接纳新用户的同时有助于最大化系统吞吐量,后者有利于优化系统服务等级。
     SIC技术对于CDMA系统的容量也有重要影响,本文最后分析了多径衰落分集信道下基于SIC的多业务CDMA蜂窝系统容量,综合考虑了功率控制误差、阴影效应、多径衰落以及Rake接收机最大比合并多条分集信道等因素。分别用对数正态分布与高斯分布近似基站接收机处的总接收功率,得到了在这样的情况下系统容量的计算方法。在分析中,避免了当前文献中一些过于简单或理想的假设条件,相应得到的解析结果有助于为系统容量的规划与设计提供参考。
CDMA cellular systems are interference-limited and one effective way to increase the system capacity is to reduce the multiple access interference (MAI). The receiver in the base station can use multi-user detection (MUD) algorithms to reduce MAI and increase system capacity. Among these algorithms, successive interference cancellation (SIC) is widely employed due to its low implementation complexity and satisfying performance. Although MUD algorithms like SIC can help to reduce MAI and increase system capacity, CDMA cellular system desires more radio resources in response to the rapid increment of mobile users and the high requirements of communication services. This pose a challenge to satisfy the increasing users' requirements based on limited system resources. Hence, in CDMA systems based on SIC, it is also imperative to address the issue of radio resource management (RRM), i.e., subject to Quality of Service (QoS) guarantee, the issue how to fully and efficiently utilize radio resources needs to be carefully studied. In CDMA systems based on SIC, different decoding orders result in different system performance. Consequently, the issue of RRM in this kind of systems is different from those of RRM in systems based on the single user detection (SUD) receiver. In this case, the research of RRM needs to be studied by taking into account the adjustment of decoding orders. This dissertation, from a system design point of view, is devoted to the essential problems of RRM in CDMA systems based on SIC, such as power control, rate allocation, call admission control (CAC) and system capacity analysis under multi-path diversity fading channels. The main contributions of this dissertation can be summarized as follows:
     We first study power control and related problems in CDMA cellular systems with SIC. The optimal power allocation formula under the multi-cell model is derived. An efficient method for examining the feasibility of systems is proposed, where the transmission (received) powers of users are constrained. The optimal decoding order of minimizing the system outage probability is derived for the case where powers of users are constrained. Finally, the optimal decoding order of minimizing the total transmission power is proposed.
     In the CDMA cellular system based on SIC, the numbers of possible rate modes and decoding orders grow exponentially with the number of users. How to efficiently allocate rates is an NP problem, which involves the joint optimization of rate allocation and decoding order adjustment. We propose two greedy algorithms for this problem. As a result, both algorithms have a low computation of complexity while achieving good performance. Furthermore, another rate allocation algorithm based on the genetic algorithm is proposed to solve this kind of rate allocation problems. We theoretically prove that the algorithm can completely converge to the global optimum. The simulation results show that the latter algorithm with higher computational complexity can obtain the better solution than the greedy algorithms.
     CAC is also an important functional module of RRM, next, we turn to study CAC in CDMA cellular systems with SIC and propose two CAC algorithms. One is the CAC algorithm based on upgrading and degrading service levels under the limit of users' transmission (received) power, and the other is the CAC algorithm based on Grade of Service (GoS) to set the admission threshold under both limits of users' transmission (received) power and total received power in base stations. The former helps to maximize the throughput while allowing more users accepted, and the latter benefits to optimize the GoS of system.
     SIC has heavy impacts on the capacity of CDMA systems, finally, we analyze the capacity of multi-services CDMA cellular systems based on SIC under multi-path fading diversity channels. We take into account the aspects of power control error, shadowing effects, multi-path fading, and multiple diversity channels which are maximal ratio combined by the Rake receiver, etc. The log-normal distributed random variable and Gaussian distributed random variable are used to approximate the total received power in base stations, respectively. The method calculating system capacity in this situation is obtained. Unlike the methods in existing literatures, we avoid the simplified or unrealistic assumptions during analysis such that the corresponding results can be used as a reference for system capacity planning and design.
引文
[1] 3rd Generation Partnership Project, QoS concept and architecture(Release 1999). TS 23.107 V.3.3.0, June 2000
    [2] H. Holma, and A. Toskala. WCDMA for UMTS, 3rd ed.. West Sussex, England: John Wiely & Sons Ltd., 2004
    [3] Savo G. Glisic. Advanced Wireless Networks 4G Technologies West Sussex, England: John Wiely & Sons Ltd., 2006
    [4] A. E. Zooghby. Smart Antenna Engineering. Norwood, MA: Artech House INC., 2005
    [5] J. Bard, V. J. Kovarik. Software Defined Radio: The Software Communications Architecture West Sussex, England: John Wiley & Sons, Inc., 2007
    [6] J. P. Romero, O. Salient, R. Agust. Radio Resource Management Strategies in UMTS. West Sussex, England: John Wiley & Sons Ltd, 2005
    [7] M. Cardei, I. Cardei, D. Z. Du. Resource Management in Wireless Networking. Boston: Springer Science Business Media Inc., 2005
    [8] J. Zander, S-L Kim. Radio Resource Management for Wireless Networks. Norwood, MA:Artech House, 2001
    [9] Xiaodong Wang, H. V. Poor Wireless Communication Systems: Advanced Techniques for Signal Reception. Englewood Cliffs, NJ, USA: Prentice Hall, 2003
    [10] 3GPP2. Std. S.R0113, Cdma2000 Enhanced Packet Data Air Interface System-System Requirements Document, 3GPP2,2007
    [11] WiMAX Forum, White Paper, Mobile WiMAX-Part Ⅰ: A Technical Overview and Performance Evaluation, WiMAX Forum, August 2006
    [12] A. J. Paulraj, D. A. Gore, R. U. Nabar, et al. An overview of MIMO communications-a key to gigabit wireless. Proceedings of the IEEE. 2004, 92(2): 198-218
    [13] F. B. Frederiksen, R. Prasad. An overview of OFDM and related techniques towards development of future wireless multimedia communications. Radio and Wireless Conference,RAWCON. IEEE Press. 2002:19-22.
    [14] H. Holma, A. Toskala, WCDMA For UMTS-HSPA Evolution and LTE. West Sussex,England: John Wiely & Sons Ltd., 2007
    [15] F. Ivanek. Convergence and competition on the way toward 4G. IEEE Microwave Magazine, 2008, 9(4): 6-14
    [16] G. Liljana, A. Vladimir, R. Valentin, et al. Providing interoperability in heterogeneous environments towards 4G. ELMAR, 2008. 50th International Symposium. IEEE Press. 2008: 223-226
    [17] I. Szekely, T. Balan, F. Sandu, et al. Optimization of GSM-UMTS core network for IP convergence in 4G through Mobile IPv6. 11th International Conference on Optimization of Electrical and Electronic Equipment, 2008. OPTIM 2008. IEEE Press, 2008:217-222
    [18] 李乐民.通信网络的发展.中国数据通信,2001,3(1):14-15
    [19] T. Zahariadis, B. Doshi. Applications and services for the B3G/4G era IEEE Wireless Communications. 2004, 11(5): 3-5
    [20] Aurelian Bria, Fredrik Gessler, Olav Queseth. 4-Generation wireless infrastructures: scenarios and research challenges. IEEE Personal Communications, 2001, 8(6): 25-31
    [21] S. Verdu, Multi-user Detection. Cambridge, UK: Cambridge University Press, 1998
    [22] 3rd Generation Partnership Project, Radio resource management strategies. TR 25.922 V5.0.0, 2002.03
    [23] L. Jorguseski. Radio resource allocation in third generation mobile communication systems. IEEE Communication Magazine. 2001, 39(2): 117-123
    [24] T. S. Rappaport. Wireless Communications: Principles and Practice(Second Edition) Beijing: Publishing House of Electronics Industry. 2004
    [25] R. W. Nettleton, H. Alavi. Power control for Spread Spectrum cellular radio systems. Vehicular Technology Conference. IEEE Press, 1983:242-246
    [26] 张艳荣.蜂窝移动通信分布式功率控制及其性能分析:博士学位论文.成都:西南交通大学,2007
    [27] 薛文虎,甘仲民.CDMA系统中的功率控制.电波科学学报,2003,18(1):116-120
    [28] J. M. Aein, Power Balancing in Systems Employing Frequency Reuse. COMSAT Technical Review, NO. 3, 1973:277-299
    [29] H. J. Meyerhoff, Methods for Computing the Optimal Power Balance in Multi-beam Satellites. COMSAT Technical Review, NO. 4, 1974:139-146
    [30] H. Alavi, R. W. Nettleton, Downstream Power Control for a Spread-Spectrum Cellular Mobile Radio System. Proceedings of the IEEE Global Telecommunications Conference, (GLOBECOM '82), Miami, Florida, 1982:84-88
    [31] R. W. Nettleton, H. Alavi. Power Control for a Spread Spectrum Cellular Mobile Radio System. Proceedings, IEEE Vehicular Technology Conferenc. IEEE Press, 1983: 242-246,.
    [32] J. Zander. Performance of Optimum Transmitter Power Control in Cellular Radio Systems. IEEE Transactioins on Vehicular Technology, 1992, 41 (1): 57-62
    [33] J. Zander. Distributed Cochannel Interference Control in Cellular Radio Systems. IEEE Transactions on Vehicular Technology, 1992, 41 (3): 305-311.
    [34] G. L. Foschini, Z. Miljanic. A Simple Distributed Autonomous Powe Control Algorithm and its Convergence. IEEE Transactioins on Vehicular Technology, 1993, 42(4): 641-646
    [35] Y. D. Yates. A Framework for Uplink Power Control in Cellular Radio Systems. IEEE Journal on Selected Areas in Communications, 1995, 13(10): 1341-1347.
    [36] Y. W. Leung. Power Control in Cellular Networks Subject to Measurement Error. IEEE Transactions on Communications, 1996, 44(7): 772-775
    [37] R. Jantti, S. L. Kim, Second-Order Power Control With Asymptotically Fast Convergence. IEEE Journal on Selected Areas on Communications, 2000, 18(3): 447-457
    [38] R. Jerez, R. Garcia, D. Estrella. Effects of multipath fading on BER statistics in cellular CDMA networks with fast power control. IEEE Communications Ietters, 2000, 4(11): 349-351
    [39] R. Jerez, R. Garcia, D. Estrella. Effects of power control errors and multipath fading on BER in a cellular CDMA system. IEEE Vehicular Technology Conference. IEEE Press, 2593-2598
    [40] R. D. Yates. A framework for uplink power control in cellular radio systems. IEEE J. Select. Areas Commun., 1995, 13(7): 1341-1347
    [41] J. Zander. Distributed Cochannel Interference Control in Cellular Radio Systems. IEEE Transactions on Vehicular Technology, 1992, 41 (3): 305-311.
    [42] S. A. Grandhi, R. Vijayan and D. J. Goodman. Distributed power control in cellular radio systems.IEEE Transactions on Vehicular Technology, 1994, 42(2): 226-228.
    [43] P. R. Chang, B. C. Wang. Adaptive fuzzy proportional integral power control for a cellular CDMA system with time delay. IEEE Journal on Selected Areas in Communications,1996, 14(9): 1818-1829.
    [44] S. A. Grandhi, J. Zander, R. Yates. Constrained power control. IEEE Wireless Personal Communications, 1995, 1(4): 257-270.
    [45] C. W. Sung, W. S. Wong. The convergence of an asynchronous cooperative algorithm for distributed power control in cellular systems. IEEE Transactions on Vehicular Technology, 1999, 48(2): 563-570
    [46] M. Y. Rhee. CDMA cellular mobile communications and network security. Beijing: Publishing House of Electronics Industry, 2002
    [47] H. Saghaei, A. A. L. Neyestanak. Variable Step Closed-Loop Power Control in Cellular Wireless CDMA Systems under Multi-path Fading. IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, 2007. PacRim 2007. liEE Press, 2007, 157-160
    [48] 王莹,张平.无线资源管理.北京:北京邮电大学出版社,2005
    [49] H. Saghaei, B. Seyfe. New Approach to Closed-Loop Power Control in Cellular CDMA Systems under Multipath Fading. International Conference on Wireless Communications, Networking and Mobile Computing, 2008. WiCOM08. IEEE Press, 2008, 1-4
    [50] J. Gu, X, Che, S. Nie. QoS based outer loop power control for enhanced reverse links of CDMA systems, IEE Electronics Letters, 2005, 41(11): 659-661
    [51] V. Nagarajan, P, Dananjayan. A Game Theoretic Power Control Algorithm with Pricing for Spectral Efficient Communication in MIMO MC-DS/CDMA System. International Conferenc on Broadband Communications, Information Technology & Biomedical Applications. IEEE Press, 2008:129-136
    [52] D. Fudenberg, J Tirole. Game Theory. Cambridge, MA: MIT Press, 1991.
    [53] S. Buzzi, V. Massaro, H. V. Poor. Energy-efficient power control in multi-path CDMA channels via large system analysis. IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008. IEEE Press, 2008, 1-5
    [54] W. J. Song, W. H. Kirn, S. J. Kim, et al.Evolutionary computation and power control for radio resource management in CDMA cellular radio networks. The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. IEEE Press, 2002, 1417-1421
    [55] T. Ottosson, A. Svensson. Multi-rate schemes in DS/CDMA systems, IEEE 45th Vehicular Technology Conference, 1995, 1006-1010
    [56] L. C. Yun, D. G. Messerschmitt. Power control for variable QOS on a CDMA channel. Military Communications Conference, 1994. MILCOM'94. IEEE Press, 1994, vol. 1: 178-182
    [57] L. C. Yun, D. G. Messerschmitt. Variable quality of service in CDMA systems by statistical power control. IEEE International Conference on Communications, ICC 95. Seattle, 1995, 713-719
    [58] A. Sampath, P. S. Kumar and J. M. Holtzman. Power control and resource management for a multimedia CDMA wireless system. In Proc. IEEE PIMRC'95,1995, 21-25.
    [59] M. L. Sim, E. Gunawan, B. H. Soong, et al. Performance study ofclosed-loop power control algorithms for a cellular CDMA system. IEEE Transactions on Vehicular Technology, 1999, 48(3): 911-921.
    [60] D. Zhao, X. Shen, J. W. Mark. Radio Resource Management for Cellular CDMA Systems Supporting Heterogeneous Services. IEEE Transactions on Mobile Computing, 2003, 2(2): 147-160
    [61] H. Azad, A. H. Aghvami, and W. C. Chambers. Multiservice/Multirate Pure CDMA for Mobile Communications. IEEE Transactions on Vehicular Technology, 1999, 48(5): 1404-1413
    [62] Y. Guo and H. Chaskar. Class-Based Quality of Service Over Air Interface in 4G Mobile Networks. IEEE Communication Magazine, 2002, 40(3): 132-137, Mar. 2002.
    [63] O. Gurbuz, H. Owne. Dynamic Resource Scheduling Schemes for W-CDMA Systems. IEEE Communication Magazine, 2000, 38(2): 80-84.
    [64] T. Bonald and A. Proutiere. Wireless Downlink Data Channels: User Performance and Cell Dimensioning. Proc. ACM MobiCom, 2003, 339-352.
    [65] K. K. Leung and L. C. Wang. Integrated Link Adaptation and Power Control to Improve Error and Throughput Performance in Broadband Wireless Packet Networks. IEEE Transactions on Wireless Communications, 2002, 1(4): 619-629.
    [66] D. I. Kim, E. Hossain, V. K. Bhargava. Dynamic Rate Adaptation and Integrated Rate and Error Control in Cellular WCDMA Networks. IEEE Transactions on Wireless Communications, 2004, 3(1): 35-49
    [67] Y. K. Kwok, V. K. N. Lan. System Modeling and Performance Evaluation of Rate Allocation Schemes for Packet Data Services in Wideband CDMA Systems. IEEE Transactions on Computers, 2003, 52(6): 804-814.
    [68] S. L. Kim, Z. Rosberg, J. Zande. Combined Power Control and Transmission Rate Selection in Cellular Networks. Proc. IEEE Vehicular Technology Conf. (VTC '99), 1999, vol. 3: 1653-1657
    [69] C. W. Sung, W. S. Wong. Power Control and Rate Management for Wireless Multimedia CDMA Systems. IEEE Transactions on Communications, 2001, 49(7): 1215-1226.
    [70] J. W. Lee, R. R. Mazumdar, N. B. Shroff. Downlink Power Allocation for Multi-Class CDMA Wireless Networks. Proc. IEEE INFOCOM, 2002, vol. 3: 1480-1489.
    [71] M. Chatterjee, H. T. Lin, S. K. Das. Rate Allocation and Admission Control for Differentiated Services in CDMA Data Networks. IEEE Transactions on Mobile Computing, 2007, 6(2): 179-191
    [72] C. Y. Liao, L. C. Wang, C. J Chang. Power allocation mechanisms for downlink handoff in the CDMA system with heterogeneous cell structures. ACM/Kluwer WINET, 2005, 11(5): 593-605.
    [73] C. Y. Liao, L. C. Wang, C. J Chang. A Joint Power and Rate Assignment Algorithm for Multi-rate Soft Handoffs in Mixed-Size WCDMA Cellular Systems. IEEE Transactions on Vehicular Technology, 2007, 56(3): 1388-1398
    [74] R. M. Rao, C. Comaniciu, T. Lakshman, et al. An overview of CAC principles in DS-CDMA networks: Call admission control in wireless multimedia networks. IEEE Signal Processing Magazine, 2004, 21(5): 51-58
    [75] J. H. Zhang, J. P. Huai, R. Y Xiao, et al. Resource management in the next-generation DS-CDMA cellular networks. IEEE Wireless Communications, 2004, 11(4): 52-58
    [76] 廖丹.多业务无线蜂窝网中的调度与控制算法研究:博士学位论文.成都:电子科技大学,2007
    [77] Z. Liu; E. Zarki. SIR-based call admission control for DS-CDMA cellular systems. IEEE Journal on Selected Areas in Communications, 1994, 12(4): 638-644
    [78] I. M. Kim, B. C. Shin; D. J. Lee. SIR-based call admission control by inter-cell interference prediction for DS-CDMA systems. IEEE Communication Letters, 2000, 4(1): 29-31
    [79] A. M. Viterbi, A. J. Viterbi. Erlang capacity of a power controlled CDMA sytstem, IEEE Journal on Selected Areas in Commun., 1993, 11(6): 892-899
    [80] C. Y. Huang, R. D. Yates. Call admission in power controlled CDMA systems. IEEE 46th Vehicular Technology Conference, 1996, Vol 3:1665-1669
    [81] S. M. Shin, C. H. Cho, D. K. Sung. Interference-based channel assignment for DS-CDMA cellular systems. IEEE Transactions on Vehicular Technology, 1999, 48(1): 233-239
    [82] D. Hong, T. S. Rappaport. Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and nonprioritized handoff procedures. IEEE Transactions on Vehicular Technology, 1986, 35(8): 77-92
    [83] H. Holma, J. Laakso. Uplink admission control and soft capacity with MUD in CDMA systems. IEEE Vehicular Technology Conference, 1999, vol. 1:431-435
    [84] J. Kuri, P. Mermelstein. Call admission on the uplink of a CDMA system based on total received power. IEEE International Conference on Communications, 1999, vol.3:1431-1436
    [85] Z. Dziong, M. Jia, P. Mermelstein. Adaptive traffic admission for integrated services in CDMA wireless-access networks. IEEE Journal on Selected Areas in Communications, 1996, 14(9): 1737-1747
    [86] H. Tong, T. X. Brown. Adaptive call admission control under quality of service constraints: a reinforcement learning solution. IEEE Journal on Selected Areas in Communications, 2000, 18(2): 209-221
    [87] S. Aissa, J. Kuri, P. Mermelstein. Call Admission on the Uplink and Downlink of a CDMA System Based on Total Received and Transmitted Powers. IEEE Transactions on Wireless Communications, 2004, 3(6): 2407-2416
    [88] N. Dimitriou, G. Sfikas, R. Tafazolli. Call admission policies for UMTS. IEEE Vehicular Technology Conference, 2000, vol.3:1420-1424
    [89] D. Kim. Efficient interactive call admission control in power-controled mobile sytems, IEEE Transactions on Vehicular Technology, 2000, 49(3): 1017-1028
    [90] M. Naghshineh, A. S. Acampora. QoS provisioning in micro-cellular networks supporting multimedia traffic. IEEE INFOCOM. Boston, 1995:1075-1084
    [91] M. Naghshineh and M. Schwartz. Distributed call admission control in mobile/wireless networks. IEEE Journal on Selected Areas in Communications, 1996, 14(1): 57-75
    [92] H. Lin, S. Tzeng. Double-threshold admission control in duster-based micro/picocellular wireless networks. IEEE VTC Spring 2000. Tokyo, 2000:1440-1444
    [93] A. SUTIVONG, J. M. PEHA. Performance comparisons of call admission control algorithms in cellular systems. IEEE GLOBECOM 1997. Phoenix, 1997:1645-1649
    [94] B. M. Epstein, M. Schwartz. Predictive QoS-based admission control for multi-class traffic in cellular wireless networks. IEEE Journal on Selected Areas in Communications, 2000, 18(3): 523-534
    [95] D. M. Zhao, X. M. Shen, J. W. Mark. Call admission control for heterogeneous services in wireless networks. IEEE VTC 2000, 2000:193-200
    [96] N. Dimitriou, R. Tafazolli. Resource management issues for UMTS. 3G Mobile Communication Technologies, IEE ICC, 2000:401-405
    [97] Y. F. Ma, X. L. Hu, Y. Y. Zhang. Intelligent call admission control using fuzzy logic in wireless networks. American Control Conference. Portland, USA, 2005:3981-3985
    [98] F. Santucci, W. Huang, P. Tranquilli, et al. Admission Control in Wireless Systems with Heterogeneous Traffic and Overlaid Cell Structure. IEEE VTC2000, 2000:1106-1113
    [99] A. Abadpour, A. S. Alfa, A. C. K. Soong. Closed Form Solution for Maximizing the Sum Capacity of Reverse-Link CDMA System with Rate Constraints. IEEE Transactions on Wireless Communications, 2008, 7(4): 1179-1184
    [100] K. S.Githousen, I. M. Jacobs, R. Padovani, et al. On the capacity of a cellular CDMA system. IEEE Transactions on Vehicular Technology, 1991, 40(2): 303-312
    [101] R. Prasad, M. G. Jansen, A. Kegel. Capacity analysis of a cellular direct sequence code division multiple access system with imperfect power control, IEICE Transactions on Communications, 1993, E76-B(8): 1501-1504
    [102] A. J. Viterbi, A. M. Viterbi, E. Zehavi. Performance of power-controled wideband terrestrial digital communication, IEEE Transactions on Communications,1993, 4(4): 559-569
    [103] A. J. Viterbi, A. M. Viterbi, E. Zehavi. Other-cell interference in cellular power-controled CDMA. IEEE Transactions on Communications, 1994, 42(2/3/4): 1501-1504.
    [104] A. M. Viterbi, A. J. Viterbi. Erlang capacity of a power controlled CDMA sytstem, IEEE Journal on Selected Areas in Communications, 1993, 11 (6): 892-899
    [105] A. J. Viterbi. CDMA Principles of Spread Spectrum Communication, New York,Addison-Wesley Publishing Company, 1995:185-218
    [106] J. S. Evans, D. Everitt. On the teletraffic capacity of CDMA cellular networks, IEEE Transactions on Vehicular Technology, 1999, 48(1): 153-165
    [107] S. Choi, D. Cho. Capacity estimation of forward link in CDMA systems supporting high data-rote service, IEICE Transactions on Communications,2001, E84-B(8): 2170-2177
    [108] P. Pirinen. Conditional outage probability evaluation in WCDMA at high data rates, IEEE 6~(th) Int. Syrup. on Spread-Spectrum Tech&Appli. NJIT, New Jersey, USA, Sept.6-8,2000
    [109] A. Sampath, N. B. Mandayam, J. M. Holtzman. Erlang capacity of a power controlled integrated voice and data CDMA system. IEEE Vehicular Technology Conference, 1997: 1557-1561
    [110] N. B. Mandayam, J. M. Holtzman, S. Barberis. Performance and capacity of a voice/data CDMA system with variable bit rate sources, Insights into Mobile Multimedia Communications, Academic Press Inc., 1998:1557-1561
    [111] S. Golaup, A. H. Aghvami. Reverse link Erlang capacity of a W-CDMA system supporting voice and WWW users. IEEE Vehicular Technology Conference, 2001: 605-609
    [112] S. J. Lee, D. K. Sung. Capacity evaluation for DS-CDMA systems with multi-class on/off traffic. IEEE Communications Letter, 1998, 2(6): 153-155
    [113] J. Zou, V. K. Bhargava. Design issues in a CDMA cellular system with heterogeneous traffic types. IEEE Transactions on Vehicular Technology, 1998, 47(3): 871-883
    [114] R. Vannithamby, E. S. Sousa. Performance of multi-rate data traffic using variable spreading gain in the reverse link under wideband CDMA, IEEE Vehicular Technology Conference, 2000, 188-198
    [115] D. Ayyagari, A. Ephremides. Cellular multicode CDMA capacity for integrated (voice and data) services, IEEE Journal on Selected Areas in Communications, 1999, 17(5): 928-938
    [116] S. J. Lee, H. W. Lee, D. K. Sung. Capacites of single-code and multi-code DS-CDMA systems accommodating multiclass services. IEEE Transactions on Vehicular Technology, 1999, 48(2): 376-384
    [117] W. Choi, J. Y. Kim. Forward-link capacity of a DS/CDMA system with mixed multirate sources. IEEE Transactions on Vehicular Technology, 2001, 50(3): 737-749
    [118] S. Ariyavisitakul. Signal and interference statistics of a CDMA system with feedback power control. Ⅱ. IEEE Transactions on Communications, 1994, 42(3): 597-605
    [119] D. K. Kim, D. K. Sung. Capacity estimation for an SIR-based power-controlled CDMA system supporting ON-OFF traffic. IEEE Trans. Veh. Technol., 2000, 49(4): 1094-1101.
    [120] D. K. Kim, D. K. Sung. Capacity estimation for a multicode CDMA system with SIR-based power control, IEEE Transactions on Vehicular Technology, 2001, 50(3): 701-710.
    [121] D. K. Kim and F. Adachi. Theoretical analysis of reverse link capacity for an SIR-based power-controlled cellular CDMA system in a multipath fading environment. IEEE Transactions on Vehicular Technology, 2001, 50(2): 452-464.
    [122] L. Wang, A. H. Aghavami, W. G. Chambers. Capacity estimation of SIR-based power controlled CDMA cellular systems in presence of power control error. IEICE Transactions on Communications. 2003, E86-B(9): 2774-2776.
    [123] J. Gpe. V. Talavera, D. L. Rodriguez. Analytic Evaluation of the Uplink Erlang Capacity of CDMA Macrocells With Hotspot Microcells. Proceedings of the 7th International Caribbean Conference on Devices, Circuits and Systems, Mexico, 2008, 116-123
    [124] C. Tellez-Labao, J. M. Romero-Jerez, A. Diaz Estrella. Capacity Estimation of a SIR-Based Power-Controlled Cellular CDMA System With Base Station Diversity in a Multipath Fading Environment. IEEE Communications Letters, 2002, 6(9): 373-375
    [125] B. Hashem, E. S. Sousa. On the Capacity of Cellular DS/CDMA Systems Under Slow Rician/Rayleigh-Fading Channels. IEEE Transactions on Vehicular Technology, 2000, 49(5): 1752-1759
    [126] L. Wang, A. H. Aghvami, W. G. Chambers. Capacity of a wideband multirate CDMA system with multiservice in the presence of fading and power-control error. IEE Proceedings-Communications, 2003, 150(1): 59-63
    [127] Y. Zhang, P. Fan, M. Lee. Comments on 'capacity of a wideband multirate CDMA system with multiservice in the presence of fading and power-control error'. IET Communications., 2007, 1(5): 933-936
    [128] C. H. Lee, C. J. Chang, W. H. Sheen. A Capacity Analysis Method for Uplinks in DS/CDMA Cellular Systems with Imperfect SIR-Based Power Control and Multipath Fading. IEEE Transactions on Wireless Communications, 2008, 7(1): 78-83
    [129] John Proakis. Digital Communications. 4ed. New York: McGraw-Hill College
    [130] R. Lupas and S. Verdu. Linear Multiuser Detectors for Synchronous Code Division Multiple Access Channels. IEEE Transactions on Information Theory, 1989, 35(1): 123-136
    [131] U. Madhow and M. Honig. MMSE Interference Suppression for Direct-sequence Spread Spectrum CDMA. IEEE Transactions on Communications. 1994, 42 (12): 3178-3188
    [132] Z. Xie, R. T. Short, C. K. Rnshforth. A family of suboptimum detectors for coherent multiuser communications. IEEE Journal on Selected Areas in Communications, 1990, 8(4): 683-690
    [133] S. Moshavi. Multistage linear detectors for DS-CDMA Communications. Ph.D dissertation. Dept. Elec. Eng., City University of New York, NY, Jan. 1996:30-38
    [134] A. J. Viterbi. Very Low Rate Convolution Codes for Maximum Theoretical Performance of Spread-spectrum Multiple-access Channels. IEEE JSAC, 1990, 8(4): 641-649.
    [135] M. K. Varanasi, B. Aazhang. Multistage detection in asynchronous code-division multiple-access communications. IEEE Transactions on Communications, 1990, 38(4): 509-519
    [136] S. Moshavi. Multiuser detection for DS-CDMA communications. IEEE Communication Magazine, 1996, 7(3): 124-135
    [137] P. Patel, J. Holtzman. Performance comparison of a DS/CDMA system using a successive interference cancellation (IC) scheme and a parallel IC scheme under fading. Proc. of ICC'94, NewOrleans, LA, USA, 1994:510-514
    [138] D. J. Shyy, and J. Dunyak. Capacity Enhancement of CDMA Networks Using Interference Cancellation Techniques. IEEE Communication Magazine, 2006, 44(7): 86-92
    [139] Jie-Lei. Hou, J. E. Smee, H. D. Pfister, and S. Tomasin. Implementing Interference Cancellation to Increase The EV-DO RevA Reverse Link Capacity. IEEE Communication Magazine, 2006, 44(2): 58-64
    [140] J. G. Andrews. Interference Cancellation for Cellular Systems: A Contemporary Overview. IEEE Wireless Communications, 2005, 12(2): 19-29
    [141] G. Caire, R. R Muller, T. Tanaka. Iterative multi-user joint decoding: optimal power allocation and low-complexity implementation. IEEE Transactions on Information Theory, 2004, 50(9): 1950-1973
    [142] A. Agrawal, J. G. Andrews, J. M. Cioffi, et al. Iterative Power Control for Imperfect Successive Interference Cancellation. IEEE Transactions on Wireless Communications, 2005, 4(3): 878-884
    [143] C. A. St. Jean, B. Jabbari. On Wireless Game-Theoretic Power Control with Successive Interference Cancellation. IEEE 64th Vehicular Technology Conference. 2006, 1-5
    [144] C. A. St. Jean, B. Jabbari. Game-theoretic Power Control in DS-CDMA Wireless Networks with Successive Interference Cancellation. Electronics Letters, 2006, 42(3): 162-163
    [145] R. M. Buehrer. Equal BER performance in linear successive interference cancellation for CDMA systems. IEEE Transactions on Communications, 2001, 49(3): 1250-1258, July 2001.
    [146] G. Mazzini. Equal BER with successive interference cancellation DS-CDMA systems on AWGN and Ricean channels. IEEE PIMRC'95, 1995, 727-731.
    [147] J. H. Kim, S. W. Kim. Combined power control and successive interference cancellation in DS/CDMA communications. IEEE WPMC'02, 2002, 931-935.
    [148] Y. H. Lee, B. Ness. Power-adaptation strategies for DS/CDMA communications with successive interference cancellation in Nakagami-fading channels. IEEE Transactions on Vehicular Technology, 2004, 53(4): 1160-1166
    [149] M. S. Siu, R. S. Cheng. Power Control for Multi-rate CDMA Systems with Interference Cancellation. Proceedings of Global Telecommunications Conference (Globecom), 2000, vol.2:895-900
    [150] F. Berggren, S. B. Slimane. Power Allocation for A Simple Successive Interference Cancellation Scheme in A Multi-Rate DS-CDMA System. Proc. International Conference on Communications (ICC), 2002, vol. 1: 351-355
    [151] S. Jalali, and B. K. Khalaj. Power Control for Multirate DS-CDMA Systems With Imperfect Successive Interference Cancellation. IEEE Transactions on Vehicular Technology, 2008, 57(2): 600-603
    [152] M. Mohammad, R. M. Buehrer. The Effects of Ordering Criteria in Linear Successive Interference Cancellation in CDMA Systems. IEEE Transactions on Wireless Communications, 2008, 7(11): 4128-4132
    [153] Tao. Shu, and Zhi-sheng, Niu. Capacity Optimization by Using Cancellation-Error-Ascending Decoding Order in Multimedia CDMA Networks with Imperfect Successive Interference Cancellation. Proc. International Conference on Communications (ICC), 2003, vol.3: 2170-2174
    [154] A. Suarez, M. Debbah, L. Cottatellucci L, et al. Optimal decoding order under target rate constraints. IEEE the 8th Workshop on Signal Processing Advances in Wireless Communications, 2007. Helsinki, Finland: IEEE Signal Processing Society, 2007:1-5
    [155] D. Catrein, R. Mathar. Feasibility and Power Control for Linear Multiuser Receivers in CDMA Networks. IEEE Transactions on Wireless Communications, 2008, 7(2): 4700-4709
    [156] S. Ataman, A. Wautier. Capacity and Asymptotic User Capacity of a Multi-service CDMA Uplink with Successive Interference Cancellation. Proc. International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2006, 1-5
    [157] Hye-Won. Chung, Sang-Woon Jeon, Do-Hyung. Park, et al. Joint Determination of Power and Decoding Order for Successive Inter- and Intra-Cell Interference Cancellation. IEEE the 9th International Conference on Advanced Communication Technology, (ICACT), 2007, vol.3:1482-1486
    [158] K. Kumaran, Li-jun. Qian. Scheduling on Uplink of CDMA Packet Data Network with Successive Interference Cancellation. IEEE Wireless Communications and Networking Conference (WCNC), 2003, vol. 3:1645-1650
    [159] V. K. N. Lau. On the Macroscopic Optimization of Multicell Wireless Systems with Multiuser Detection and Multiple Antennas - Uplink Analysis. IEEE Transactions on Wireless Communications, 2005, 4(4): 1388-1393
    [160] D Veronesi, S. Tomasin, N. Benvenuto. Cross-layer optimization for multimedia traffic in CDMA cellular networks. IEEE Transactions on Wireless Communications, 2008, 7(4): 1379-1388
    [161] A. Maaref, S. Aissa, and S. Affes. Combined Flow Control and Interference Cancellation for Packet Data Transmission in Wideband CDMA Systems. Proc. International Conference on Communications (ICC), 2003, vol.1: 753-758
    [162] D. Warner and U. Madhow. On the capacity of cellular CDMA with successive decoding and controlled power disparities. IEEE the 48th Vehicular Technology Conference, 1998, vol. 3: 1873-1877.
    [163] Zihua Guo, K. B. Letaief. Erlang Capacity for Satellite CDMA Systems with Adaptive Power Control and Interference Cancellation. IEEE International Conference on Communications. 2000, vol.1: 119-123
    [164] M. Cai, X Zhang, Ning Zhou, et al. On the capacity of CDMA with linear successive interference cancellation. 5th European Personal Mobile Communications Conference, 2003, 362-366
    [165] A. Hasan, J. Andrews. Cancellation error statistics in a power-controlled CDMA system using successive interference cancellation. IEEE the Eighth International Symposium on Spread Spectrum Techniques and Applications, 2004,419- 423
    [166] Z. Dawy, S. Davidovic, A. Seeger. The Coverage-Capacity Tradeoff in Multiservice WCDMA Cellular Systems with Serial Interference Cancellation. IEEE Transactions on Wireless Communications, 2006,5(4): 818-828
    [167] H. Nie, T. Mathiopoulos, G. Karagiannidis. Reverse Link Capacity Analysis of Cellular CDMA Systems with Controlled Power Disparities and Successive Interference Cancellation. IEEE Transactions on Wireless Communications, 2006,5(9): 2447-2457
    [168] A. M. Silvester, R. Schober, P. T. Mathiopoulos. Analysis of Reverse Link Capacity for Cellular CDMA Systems Employing Group Successive Interference Cancellation. IEEE the 63rd Vehicular Technology Conference, 2006. Vol.5: 2513-2517
    [169] Y. H. Chen, C. J. Chang, S. Shen. Outage-based fuzzy call admission controller with multiuser detection for WCDMA systems. IEE Proceedings on Communications, 2005, 152(5): 617-623
    [170] Cristina Comaniciu, Narayan B. Mandayam, et al. Wireless Networks - Multiuser Detection in Cross-Layer Design. Boston: Springer, 2005
    [171] P. S. Kumar, J. Holtzman. Power control for a spread spectrum system with multi-user receivers. Sixth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 1995 Vol.3: 955-959
    [172] S. Ulukus, R. Yates. Adaptive power control and multiuser interference suppression. ACM Wireless Networks, 1998, 4(6): 489-496
    [173] Rudolf Mathar, Anke Schmeink. Proportional QoS Adjustment for Achieving Feasible Power Allocation in CDMA Systems. IEEE Transactions on Communications, 2008, 56(2): 254-260
    [174] Hui Zhang, Xuming Fang, Qin Yuan. A Game Theory-based Fairness Call Admission Control Scheme for CDMA Systems. Second International Conference on Communications and Networking in China. 2007, 1021-1025
    [175] Hui Zhang, Xuming Fang. A Pricing and Game Theory-Based Call Admission Control Scheme for CDMA Systems. International Conference on Wireless Communications, Networking and Mobile Computing. 2007, 6493-6496
    [176] Xing Zhang, Wen-bo Wang, Yuan-an Liu. Optimal joint rate and power allocation in a multi-cell multimedia CDMA network: IEEE International Symposium on Circuits and Systems, 2005, 4026-4029
    [177] 武林俊,朱世华,冯兴乐.多速率CDMA系统中非理想干扰消除条件下的功率控制.西安交通大学学报,2003,37(10):1079-1082
    [178] David Tse, Pramod Viswanath. Fundamentals of Wireless Communication. Cambridge, UK: Cambridge University Press, 2005
    [179] W. H. Tranter, K. S. Shanmugan, T. S. Rappaport, and K. L. Kosbar. Principles of Communication Systems Simulation with Wireless Applications, Englewood Cliffs, NJ, USA: Prentice-Hall, 2004
    [180] G. L. Stuber. Principles of mobile communications. 2~(nd) ed. Norwell, MA: Kluwer Academic Publishers, 2002
    [181] F. Meshkati, H. V. Poor, S. C. Schwartz. Energy-efficient resource allocation in wireless networks. IEEE Siganal Processing Magazine, 2007, 24(3): 56-58
    [182] Guo-cong Song, Ye Li. Cross-layer optimization for OFDM wireless networks-Part Ⅰ: theoretical framework. IEEE Trans. On Wireless Commun, 2005, 4(2): 614-624
    [183] Dan-lu Zhang, Oh Seong-Jun, Bhushan Naga. Optimal resource allocation for data service in CDMA reverse link. IEEE Transactions on Wireless Communications, 2007, 6(10): 3648-3656
    [184] 李敏强,寇纪淞,林丹等.遗传算法的基本理论与应用[M].北京:科学出版社,2002:17-119
    [185] 张丹丹,方旭明,朱龙杰.一种新的对称CDMA系统中非对称业务下的呼叫允许控制策略.电子学报,2006,34(10):6470-6476
    [186] Tsern-Huei Lee, Jui Teng Wang. Admission Control for Variable Spreading Gain CDMA Wireless Packet Networks. IEEE Transactions on Vehicular Technology, 2000, 49(2): 565-575
    [187] N. Dimitriou, R. Tafazoli, G. Sfikas. Quality of service for multimedia CDMA. IEEE Communication Magazine. July 2000, 38(2): 88-94
    [188] 王宇.多业务CDMA蜂窝通信系统容量性能和无线资源管理算法研究:博士学位论文.成都:电子科技大学,2002
    [189] Chi-Jui Ho, J. A. Copeland, Chin-Tau Lea, et al. On call admission control in DS/CDMA cellular Network. IEEE Transactions on Vehicular Technology, 2001, 50(6): 1328-1343

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700