生物相容及环境响应亲水性胶束和空心球的制备、表征和初步应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies on Preparation, Characterization and Preliminary Applications of Biocompatible,Stimuli-Responsive,Hydrophilic and Polymeric Micelles & Hollow Spheres
  • 作者:张幼维
  • 论文级别:博士
  • 学科专业名称:高分子化学与物理
  • 学位年度:2005
  • 导师:江明
  • 学科代码:070305
  • 学位授予单位:复旦大学
  • 论文提交日期:2004-11-09
摘要
纳米材料由于其独特的结构和性能成为了材料科学的研究热点。分子自组装是形成具有功能单元的多层次有序结构的先进材料的有效途径。利用高分子链构筑自组装纳米材料是目前最具活力的研究领域之一。其中,聚合物空心球因其结构稳定,中空核区能容纳大量或大尺寸客体分子的能力,尤受人们的关注。
     用自组装方法制备聚合物空心球的途径很多。传统由嵌段共聚物制备聚合物空心球的方法步骤多,难度大:首先是设计和制备含有可交联嵌段和可降解嵌段的嵌段共聚物,然后在选择性溶剂中制备胶束,再通过壳层的交联以锁定胶束的结构,最后通过降解胶束核制得空心球。近年来我研究组发展了一种“无嵌段共聚物制备聚合物空心球”的新方法:由无规共聚物/均聚物或均聚物/均聚物对(pair)在选择性溶剂中制备核和壳之间由非共价键连接的胶束(NCCM),然后通过壳交联反应固定胶束的结构,最后利用NCCM的核和壳之间非共价键连接的特性可简单地用溶剂溶解空化胶束核,获得聚合物空心球。这种制备空心球的新方法可避免制备具有可交联和可降解特性的嵌段共聚物及化学降解胶束核的复杂步骤,简单易行。我组利用这一新方法成功地在有机溶剂中制备了聚(4-乙烯基吡啶)空心球。
     近年来,应生物医学等领域的发展要求,制备生物相容、生物可降解、环境响应的胶束和空心球,以及制备高浓度胶束和空心球,已成为新的发展趋势。本论文的工作是基于上述研究背景及发展新趋势展开的。在本论文中,首先,我们将“无嵌段共聚物制备聚合物空心球”的方法拓展至水相领域:选用生物相容的和pH敏感的水溶性聚合物及可生物降解的聚合物,制备了生物相容和pH敏感的聚合物空心球;结合自组装和自由基聚合方法,我们发展了“原位聚合”的新方法,由此可制备较高浓度的、具有核—壳结构的温敏胶束(纳米粒子)及空心球,进一
Due to their unique structure and properties, nano-materials become a hot subject in material science. Self-assembly is the most efficient way to prepare various functional materials with ordered structure on multi-scales. Self-assemby of polymer chains to nano-materials is one of the mostly active research areas. Among these materials, polymeric hollow spheres have attracted special attention because of their stable structure and potential ability to encapsulate large-sized or large quantity of guest molecules.There are many routes to fabricate polymeric hollow spheres by self-assembly. The traditional route to prepare hollow spheres using block copolymer micelles as precursor is multi-step and fairly difficult. It includes the following steps: synthesizing block copolymer composed of cross-linkable block and degradable block, micellization of the block copolymer in a selective solvent, fixing the micelle structure by shell cross-linking and finally, the degradation of the micelle core. In recent years, our group has developed several new approaches to obtain "noncovalently connected micelles" (NCCM) based on so-called "block-copolymer-free" strategies. Differing from the traditional block copolymer micelles, the NCCMs have noncovalent interactions (mainly hydrogen bonding) connecting the core chains and the shell chains. Using NCCM as precursor, we can easily obtain hollow spheres by simply cross-linking the shell chains and subsequent dissolution of the core chains. This procedure could avoid the possible difficulties in the synthesis of the block copolymers and the subsequent degradation of the core chains. Thus, a broad range of common polymers can be used. In addition, the size and the thickness of the hollow spheres can be adjusted easily in a certain range through changing preparation conditions such as the weight ratio of the shell to the core. Using this method, Wang have obtained hollow spheres of cross-linked poly (4-vinylpyridine) in chloroform/nitromethane/DMF.Quite recently, driven by the requirements in biological and medicine sciences, the preparations of biocompatible, biodegradable and stimuli-responsive micelles and hollow spheres, and their solutions at high concentration became the new developing orientations. In the thesis, we first extended the block-copolymer-free strategies to aqueous solutions: biocompatible polymer, pH-responsive polymer and biodegradable polymer were selected to prepare biocompatible and pH-responsive hollow spheres. Combining self-assembly and free radical polymerization, we developed a new "polymerization in situ" method to fabricate core-shell thermo-sensitive nanoparticles and hollow spheres at higher concentration.
    Further work proved that the method is somewhat versatile and could be used to fabricate different core-shell polymeric nanoparticles. In addition, we studied the loading behavior of the core-shell thermo-sensitive nanoparticles with pyrene and dye DB79. Specifically, five sections of work were carried out as follows:(1) Biocompatible polyvinyl alcohol (PVA) and carboxyl-ended polybutadiene (CPB) self-assembled into non-covalently connected micelles of (CPB)-PVA with CPB core and PVA shell in water/THF (20/1, v/v). By cross-linking the PVA shell with glutaradehyde and cavitation of CPB core by dissolution with THF, PVA hollow nanospheres were obtained. DLS was used to study the pH dependence of CPB nanoparticles and (CPB)-PVA micelles, proving that the micelles were co-stabilized by the electrostatic interactions of ionized carboxyl end groups of CPB and the hydrogen bonding interactions between the unionized carboxyl end groups of CPB and hydroxyl groups of PVA. The influences of dilution, temperature, time and etc. on the stability of the micelles were also studied. Furthermore, we studied the effect of the initial concentration of PVA aqueous solution on the micelles and found that at a certain condition, there is a critical value for the number of PVA chains connected to CPB core through hydrogen bonding, and above the critical value, the surplus PVA chains exist in solution as free chains. DLS and FTIR were used to trace the shell cross-linking process of the micelles, and the influences of glutaradehyde concentration and cross-linking time were studied. The real cross-linking degree of the micelle shell was characterized quantitatively by FTIR. DLS was used to follow the changes in micelle diameter and scattering intensity during the cavitation process, i.e. removal of CPB core by dissolution with THF. The morphologies of the micelles, shell-cross-linked micelles and hollow spheres were observed by TEM, SEM and AFM. The influences of the shell thickness and cross-linking degree on the SEM morphologies of hollow spheres were also studied.(2) pH-responsive polyacrylic acid (PAA) and biodegradable poly (e-caprolactone) (PCL) self-assembled in the selective solvent, leading to the formation of non-covalently connected micelles of (PCL)-PAA with PCL core and PAA shell. The micelle shell was fixed by cross-linking PAA chains with di-amine, followed by cavitation through core-dissolution with DMF or core-biodegradation with enzyme. Thus, pH-responsive PAA hollow nanospheres were obtained. For the first time, it was found that stable nanoparticles formed when PCL solution was added dropwisely into water without surfactant, and it was proved that PCL nanoparticles were stabilized by both the hydrophilic interactions and electrostatic interactions. And the presence of a small amount of organic solvent is the key to the long-term stability of the nanoparticles in solution. The influences of the concentrations of initial PAA aqueous solution and PCL/DMF solution on the micellization were studied and it was found the micelle size has a minimum at a certain concentration of PCL solution. DLS and FTIR were used to trace the process of shell cross-linking and found that due to the
    interaction between catalyst ETC for cross-linking reaction and PAA shell, the micelle size first increased and then decreased with the time. Changes in micelle size and scattering intensity during the core degradation process with enzyme were monitored by DLS. The results showed that the enzyme could form complex with PAA chains, leading to an initial increase in scattering intensity. TEM and SEM were used to observe the morphologies of the micelles, shell-cross-linked micelles, hollow spheres, and particularly the morphological change during the core cavitation process with DMF. DLS studies proved that PAA hollow sphere exhibited a large change in the diameter with pH: when pH of the solution raised from 6 to 8, the diameter increased from 126nm to 534nm corresponding to a 75 times volume expansion. Furthermore, this volume-pH dependence is found to be completely reversible provided the effect of ionic strength is excluded. The salt effect on the hollow sphere size was found to depend on pH, and the influences of the shell cross-linking degree and shell thickness on the pH- and salt- dependence of PAA hollow spheres size were also studied.(3) By combining self-assembly and polymerization, we developed a new "polymerization in situ" method to fabricate core-shell thermo-sensitive nanoparticles and hollow spheres. PCL nanoparticles containing a suitable amount of hydrophobic initiator AIBN were prepared by adding PCL/DMF solution in water. Water-soluble monomer N-iso propylacrylamide (NIPAM) and methylene bisacrylamide (MBA) as the cross-linker were introduced to the PCL dispersion, followed by raising temperature to initiate the polymerization. Polymerization mainly takes place on the surface of PCL nanoparticles, and the polymerization and self-assembly occur simultaneously, thus leading to nanoparticles with PCL core and cross-linked PNIPAM shell (PCL/PNIPAM). This method is simple and convenient. Furthermore, it can be used to prepare near mono-dispersed core-shell nanoparticles at higher concentration. The thermo-responsive behavior of the nanoparticles was studied by DLS. The nanoparticles were converted to PNIPAM hollow spheres after the degradation of PCL core. Changes in nanoparticle size and scattering intensity during the core degradation process of nanoparticles with enzyme were monitored by DLS. FTIR, SEM and TEM were used to characterize the change in the structure and morphology of the nanoparticles caused by core degradation with enzyme. A combination of DLS and SLS was used to characterize the temperature dependence of the diameter and structure of the nanoparticles and the corresponding hollow spheres, and it was found that the temperature dependence is completely reversible. Compared with nanoparticle, PNIPAM hollow sphere displays a larger size change with the temperature.(4) The relationship between the reaction conditions and the structure of the nanoparticles PCL/PNIPAM, including the influenences of the weight ratio of the total amount of monomer and cross-linker to that of PCL, target shell cross-linking degree, the concentration of initial PCL/DMF solution, and initiator content etc. on the size and its
引文
1. Whitesides G. M., Mathias J. E, Seto C. T. Science 1991, 254, 1312;
    2. Whitesides G. M., Grzybowski B. Science 2002, 295, 2418;
    3. Thomas E. L. Science 1999, 286,1307;
    4. Goldacker T., Abetz V. Macromolecules 1999, 32, 5165;
    5. Shefelbine T. A., Vigild M. E., Matsen M. W. et al. J. Am. Chem. Soc. 1999, 121, 8457;
    6. Klok H. A., Lecommandoux S. Adv. Mater. 2001, 13, 1217;
    7. Breiner U., Krappe U., Thomas E. L., Stadler R. Macromolecules 1998, 31, 135;
    8. Chen J. T., Thomas E. L., Ober C. K., Hwang S. S. Macromolecules 1995, 28, 1688;
    9. Chen J. T., Thomas E. L., Ober C. K., Mao G. P. Science 1996, 273, 343;
    10. Thomas E. L., Chen J. T., O'Rourke M. J. E., Ober C. K., Mao G. P. Macromol. Symp. 1997, 117, 241;
    11. Lee M., Cho B. K., Ihn K. J., Lee W. K., Oh N. K., Zin W. C. J. Am. Chem. Soc. 2001,123, 4647;
    12. Wang Y.M., Kausch C. M., Chun M. S.et al. Macromolecules 1995, 28, 904;
    13. Haliloglu T., Bahar I., Erman B. et al. Macromolecules 1996, 29, 4764;
    14. Zhang L. F., Eisenberg A. Science 1995, 268, 1728;
    15. Zhang L. R, Eisenberg A. J. Am. Chem. Soc. 1996,118, 3168;
    16. Zhang L. R, Yu K., Eisenberg A. Science 1996, 272, 1777;
    17. Guo A., Liu G. J., Tao J. Macromolecules 1996, 29, 2487;
    18. Kikuchi A., Nose T. Macromolecules 1996, 29, 6770;
    19. Kikuchi A., Nose T. Macromolecules 1997, 30, 896;
    20. Resendes R., Massey J. A., Dorn H. et al. Angew. Chem. Int. Ed. 1999, 38, 2570;
    21. Halperin A., Tirrell M., Lodge T. P. Advances in Polymer Science 1992,100,31;
    22. Foster S., Berton B., Hentze H. P., Kramer E., Antonietti M., Lindner P., Macromolecules 2001, 34, 4610;
    23. Moffitt M., Khougaz K., Eisenberg A. Acc. Chem. Res. 1996, 29, 95;
    24. Yu K., Eisenberg A. Macromolecules 1996,29,6359;
    25. Shen H. W., Zhang L. R, Eisenberg A. J. Phys. Chem. B 1997,101, 4697;
    26. Yu K., Eisenberg A. Macromolecules 1998, 31, 3509;
    27. Shen H. W., Eisenberg A. Angew. Chem. Int. Ed.2000, 39, 3310;
    28. Luo L. B., Eisenberg A. Angew. Chem. Int. Ed.2002, 41,1001;
    29. Jenekhe S. A., Chen X. L. Science 1998, 279,1903;
    30. Jenekhe S. A., Chen X. L. Science 1999, 283,372;
    31. Cornelissen. J. J. L. M., Dornners J. J. J. M., De Gelder R., Graswinckel W. S., Metselaar G A., Rowan A. E., Sommerdijk N. A. J. M., Nolte R. J. M. Science 2001, 293, 676;
    32. Vriezema D. M., Hoogboom J., Velonia K., Takazawa K., Christianen P. C. M., Maan J. C, Rowan A. E., Nolte R. J. M.. Angew. Chem. Int. Ed. 2003,42, 772;
    33. Zhao J. X., Allen C, Eisenberg A. Macromolecules 1997,30, 7143;
    34. Tao J.,Liu G. J., Ding J. F. et al. Macromolecules 1997, 30,4084;.
    35. Topp M. D. C, Dijkstra P. J., Talsma H., Feijen J. Macromolecules 1997, 30, 8518;
    36. Weaver J. V. M, Armes S. P., Butun V. Chem. Commun. 2002,2122;
    37. Zhang J. X., Qiu L. Y, Zhu K. J., Jin Y. Macromol Rapid Commun. 2004, 25, 1563;
    38. Martin T. J., Prochazka K., Munk P., Webber S. E. Macromolecules 1996, 29, 6071;
    39. Liu S. Y, Armes S. P. Angew. Chem. Int. Ed. 2002, 41, 1413;
    40. Gohy J. R, Antoun S., Jerome R. Macromolecules 2001, 34, 7435;
    41. BiitunV., Billingham N. C, Armes S. P. J. Am. Chem. Soc. 1998,120, 11818;
    42. Dou H. J., Jiang M., Peng H. S., Chen D. Y., Hong Y. Angew. Chem. Int. Ed. 2003, 42, 1516;
    43. Wu C, Niu A., Leung L. M. et al. J. Am. Chem. Soc. 1999,121, 1954;
    44. Chen D. Y, Peng H. S. Jiang M. Macromolecules 2003, 36, 2576;
    45. Liu S. Y., Zhu H., Zhao H. Y, Jiang M., Wu C. Langmuir 2000,16, 3712;
    46. Yokoyama M., Kwon G.S., Okano T., Sakurai Y., Sato T., Kataoka K. Bioconjug. Chem. 1992, 3, 295;
    47. Harada A., Kataoka K. J. Macromol. Sci. Pure Appl. Chem. A 1997, 34, 2119;
    48. Harada A., Kataoka K. Langmuir 1999, 75, 4208;
    49. Harada A., Kataoka K. Macromolecules 1998, 31, 288;
    50. Wolfert M. A., Schacht E. H., Toncheva V., Ulbrich K., Nazarova O., Seymour L. W. Human Gene Therapy 1996, 7, 2123;
    51.Bronich T. K., Kabanov A.V., Kabanov V. A., Yu K., Eisenberg A. Macromolecules 1997, 30, 3519;
    52. Kabanov A. V., Bronich T. K., Kabanov V. A., Yu K., Eisenberg A. J. Am. Chem. Soc. 1998,120,9941;
    53. Peng H. S., Chen D. Y., Jiang M. Langmuir 2003,19,10989;
    54. Peng H. S., Chen D. Y., Jiang M. J. Phys. Chem. B 2003, 707,12461;
    55. Yao. X. M., Chen D. Y, Jiang M. J. Phys. Chem. B 2004, 705, 5225;
    56. Yao. X. M, Chen D. Y., Jiang M. Macromolecules 2004, 37,4211;
    57. Mu M. F., Ning F. L., Jiang M. Langmuir 2003,19, 9994;
    58. Van Hest J. C. M., Delnoye D. A. P., Baars M. W. P. L., Elissen R. C, Van Genderen M. H. P., Meijer E. W. Chem. Eur. J. 1996, 2, 1616;
    59. Yan D. Y, Zhou Y. F., Hou J. Science 2004, 303, 65;
    60. Jiang M., Li M., Xiang M. L., Zhou H. Advances in Polymer Science 1999, 146,121;
    61. Ilhan F., Galow T. H., Gray M., Clavier G, Rotello V. M. J. Am: Chem. Soc. 2000, 122, 5895;
    62. Yuan X. F., Jiang M., Zhao H. Y, Wang M., Zhao Y, Wu C. Langmuir 2001, 77, 6122;
    63. Liu S. Y, Zhang G. Z., Jiang M. Polymer 1999, 40, 5449;
    64. Liu S.Y., Jiang M., Liang H. J., Wu C. Polymer 2000, 41, 8697;
    65. Wang M., Zhang G. Z., Chen D. Y, Jiang M, Liu S. Y. Macromolecules 2001, 34, 7172;
    66. Orfanou K., Topouza D., Sakellariou G., Pispas S. J. Polym. Sci. Pol. Chem. 2003, 41, 2454;
    67. Duan H. W., Chen D. Y., Jiang M., Gan W. J. J. Am. Chem. Soc. 2001, 123, 12097;
    68. Kuang M., Duan H. W., Wang J., Chen D. Y., Jiang M. Chem. Commun. 2003, 496;
    69. Duan H. W., Kuang M., Wang J., Chen D. Y., Jiang M. J. Phy. Chem. B 2004, 15, 1550;
    70. Kuang M., Duan H. W., Wang J., Jiang M. J. Phys. Chem. B 2004, 108, 16023;
    71. Liu X. Y., Jiang M., Yang S. L., Chen M. Q. Angew. Chem. Int. Ed. 2002, 41, 2950;
    72. Won Y.-Y., Davis H. T., Bates F. S. Science, 1999, 283, 960;
    73.刘国军,王国昌著 何天白编 海外高分子科学的新进展 北京:化学工程出版社 39;
    74. Thurmond K. B. Ⅱ, Kowalewski T., Wooley, K. L. J. Am. Chem. Soc. 1996, 118, 7239;
    75. Thurmond K. B. Ⅱ, Kowalewski T., Wooley, K. L. J. Am. Chem. Soc. 1997, 119, 6656;
    76. Remsen E. E., Thurmond K. B. Ⅱ, Wooley, K. L. Macromolecules 1999, 32, 3685;
    77. Huang H. Y., Remsen E. E., Wooley, K. L. Chem. Commun.. 1998, 1415;
    78. Huang H. Y., Kowalewski T., Remsen E. E., Wooley, K. L. J. Am. Chem. Soc. 1997, 119, 11653;
    79. Huang H. Y., Remsen E. E., Kowalewski T., Wooley, K. L. J. Am. Chem. Soc. 1999, 121, 3805;
    80. Ding J. F.; Liu G. J. Macromolecules 1998, 31, 6554;
    81. Ding J. F.; Liu G. J. J. Phys. Chem. B 1998, 102, 6107;
    82. Steward S.; Liu G. J. Chem. Mater. 1999, 11, 1048;
    83. Butun V., Billingham N. C., Armes S. P. J. Am. Chem. Soc. 1998, 120, 12135;
    84. Butun V., Wang X.-S, Banez M. V., de Paz et al. Macromolecules 2000, 33, 1;
    85. Butun V., Lowe A. B., Billingham N. C., Armes S. P. J. Am. Chem. Soc. 1999, 121, 4288;
    86. Liu S. Y., Armes S. P. J. Am. Chem.Soc. 2001, 123, 9910;
    87. Astafieva I., Zhong X. F., Eisenberg A. Macromolecules 1993, 26, 7339;
    88. Price C. Pure and Appl. Chem. 1983, 55, 1563;
    89. Nakamura K., Endo R., Takeda M. J. Polym. Sci. 1976, 14, 1287;
    90. Turro N. J., Chung C. J. Macromolecules 1984, 17, 2123;
    91. Wilhelm M., Zhao C. L., Wang Y., Xu R., Winnik M. A., Mura J. L., Riess G., Croucher M. D. Macromolecules 1991, 24, 1033;
    92. Kalyanasundaram K., Thomas J. K. J. Am. Chem. Soc. 1977, 99, 2039;
    93. Winnik F. M., Davidson A. R., Hamer G. K., Kitano H. Macromolecules 1992, 25, 1876;
    94. Kwon G., Naito M., Yokoyama M., Okano T., Sakurai Y., Kataoka K. Langmuir 1993, 9, 945;
    95. Nakamura K., Endo R., Takeda M. J. Polym. Sci. Polym. Phys. Ed. 1977, 75, 2095;
    96. Kataoka K., Togawa H., Harada A., Yasugi K., Matsumoto T., Katayose S. Macromolecules 1996, 29, 8556;
    97. Nagasaki Y., Okada T., Scholz C, Iijima M., Kato M., Kataoka K. Macromolecules 1998, 31, 1473;
    98. Allemann E., Leroux J. C, Gurny R. Biodegradable nanoparticles of poly(lactic acid) and poly(lactic-co-glycolic acid) for parenteral administration, in: Lieberrnan H., Rieger M., Banker G. (Eds.), Pharmaceutical Dosage Forms: Disperse Systems, Vol. 3, Marcel Dekker, New York, 1998, pp. 163-193;
    99. Emmerich O., Hugenberg N., Schmidt M., Sheiko S. S., Baumanm F., Deubzer B., Weis J., Ebenhoch J. Adv. Mater. 1999,11, 1299
    100. Pavlyuchenko V. N., Sorochinskaya O. V., Ivanchev S. S., et al. J. Polym. Sci., Polym. Chem. 2001, 39, 1435;
    101. Jang J., Ha H. Langmuir 2002,18, 5613;
    102. Jang J., Lee K. Chem. Commun. 2002,1098;
    103. Tiarks F., Landfester K., Antonietti M. Langmuir 2001,17, 908;
    104. Dai Z., Vogit A., Leporatti S., Donath E., Dahne L., Mohwald H. Adv. Mater. 2001, 13,1339;
    105. Gittins D. I., Caruso F. J. Phys. Chem. B 2001,105, 6846;
    106. Park M. -K., Xia C, Advincula R. C. et al. Langmuir 2001,17, 7670;
    107. Caruso F., Trau D., Mohwald H., Renneberg R. Langmuir 2000,16, 1485;
    108. Wang D. Y, Rogach A. L., Caruso F. Nano Letters 2002, 2, 857;
    109. Sukhorukov G, Dahne L., Hartmann J., Donath E., Mohwald H. Adv. Mater. 2000, 12,112;
    110. Gao C. Y, Donath E., Mohwald H., Shen J. Angew. Chem. Int. Ed. 2002, 41, 3789;
    111. Marinakos S. M., Novak J. P., Brousseau L. C. et al. J. Am. Chem. Soc. 1999,121, 8518;
    112. Marinakos S. M., Shultz D. A., Feldheim D. L. Adv. Mater. 1999,11, 34;
    113. Marinakos S. M., Anderson M. F., Ryan J. A. et al. J. Phys. Chem. B 2001, 105, 8872;
    114. Kamata K., Lu Y, Xia Y. J. Am. Chem. Soc. 2003,125,2384;
    115. Sauer M., Streich D., Meier W. Adv. Mater. 2001,13, 1649;
    116. Nardin C, Hirt T., Leukel J., Meier W. Langmuir 2000,16, 1035;
    117. Du J. Z., Chen Y. M. Macromolecules 2004, 37, 5710;
    118. Murthy K. S., Ma Q. G, Clark C. G, Remsen E. E., Wooley K. L. Chem. Comm. 2001, 8, 773;
    119. Zhang Q., Remsen E. E., Wooley K. L. J. Am. Chem. Soc. 2000,122, 3642;
    120. Ding J. R, Liu G. J. J. Chem. Mater. 1998,10, 537;
    121. Sanji T., Nakatsuka Y, Ohnishi S., Sakurai H. Macromolecules 2000, 33, 8524;
    122. Wang M, Jiang M., Ning F. L., Cheng D. Y. Macromolecules 2002, 35, 5980;
    123. Breiteukamp, K.; Emrick, T. J. Am. Chem. Soc. 2003,125, 12070;
    124. Wong M. S., Cha J. N., Choi K. S., Deming T. J., Stucky G D. Nanoletters 2002, 2, 583;
    125. Jungmann N., Schmidt M., Ebenhoch J., Weis J., Maskos M. Angew. Chem. Int. Ed. 2003,42, 1714;
    126. Hu Y., Jiang X. Q., Ding Y, Chen Q., Yang C. Z. Adv. Mater. 2004,16, 933:
    127. Weaver J.V. M., Armes S. P., Liu S. Y Macromolecules 2003, 36, 9994;
    128. Lee E. S., Shin H. J., Na K., Bae Y H. J. Contro. Rel. 2003, 90, 363;
    129. Chu L. Y, Park S. H., Yamaguchi T., Nakao S. J. Membrane Sci. 2001,192, 27;
    130. Chu L. Y, Park S. H., Yamaguchi T., Nakao S. Langmuir 2002,18, 1856;
    131. Zha L. S., Zhang Y, Yang W. L., Fu S. K. Adv. Mater. 2002,14, 1090;
    132. Glinel K., Sukhorukov G B., Mohwald H., Khrenov V., Tauer K. Macromol. Chem. Phys. 2003, 204, 1784;
    133. Xiao X. C, Chu L. Y, Chen W. M., Wang S., Li Y Adv. Funct. Mater. 2003,13, 847;
    134. Checot R, Lecommandoux S., Gnanou Y, Klok H.-A. Angew. Chem. Int. Ed. 2002, 41, 1340;
    135. Checot F., Lecommandoux S., Klok H.-A., Gnanou Y The European Physical Journal E-Soft Matter, 2003,10, 25;
    136. Gao C. Y, Leporatti S., Moya S., Donath E., Mohwald H. Chemistry-A European Journal 2003, 9, 915;
    137. De'jugnat C., Sukhorukov G. B. Langmuir 2004, 20, 7265;
    138. Chu L. Y., Yamaguchi T., Nakao S. Adv. Mater 2002, 14, 386;
    139. Ibraz G., Dahne L., Donath E., Mohwald H. Adv. Mater 2001, 13, 1324;
    140. Ulbrich K., Konak C., Tuzar Z., Kopecek J. Makromol. Chem. 1987, 188, 1261;
    141. La S. B., Okano T., Kataoka K. J. Pharm. Sci. 1996, 85, 85;
    142. Bader J. H., Ringsdorf H., Schmidt B. Angew. Makromol. Chem. 1984, 123, 457;
    143. Jones M. C., Leroux J. C. Eur J. Pharm. Biopharm. 1999, 48, 101;
    144. Riley T., Govender T., Stolnik S., Xiong C. D., Garnett M. C., Illum L., Davis S. S. Colloids Surfaces B(Biointerfaces) 1999, 16, 147;
    145. Jeong Y. I., Nah J. W., Na H. K., Na K., Kim I. S., Cho C. S., Kim S. H. Drug Development and Industrial Pharmacy 1999, 25, 917;
    146. Allen C., Han J., Yu Y. S., Maysinger D., Eisenberg A. J. Control Rel. 2000, 63, 275;
    147. Liu L., Li C. X., Li X. C., Yuan Z., An Y. L., He B. L. J. Appl. Polym. Sci. 2001, 80, 1976;
    148. Ge H. X., Hu Y., Jiang X, Q., Cheng D. M., Yuan Y. Y., Bi H., Yang C. Z. J. Pharm. Sci. 2002, 91, 1463;
    149. Francis M. F., Piredda M., Winnik F. M. J. Control Rel. 2003, 93, 59;
    150. Francis M. F., Lavoie L., Winnik F. M., Leroux J. C. Eur. J. Pharm. Biopharm. 2003, 56, 337;
    151. Liu J. B., Xiao Y. H., Allen C. J. Pharm. Sci. 2004, 93, 132;
    152. Sharma P. K., Bhatia S. R. Int. J. Pharm. 2004, 278, 361;
    153. Shuai X. T., Merdan T., Schaper A. K., Xi F., Kissel T. Bioconjugate Chem. 2004, 15, 441;
    154. Tian L., Yam L., Wang J. Z., Tat H., Uhrich K. E. J. Mater. Chem. 2004, 14, 2317;
    155. Nagarajan R., Barry M., Ruckenstein, E. Langmuir 1986, 2, 2101;
    156. Tian M., Arca E., Tuzar Z., Stephen E., Webber S. E., Munk P. J. Polym. Sci. Part B: Polym. Phys. 1995, 33, 1713;
    157. Hurter P. N., Hatton T. A. langmuir 1992, 8, 1291;
    158. Kabanov A. V., Nazarova I. R., Atafieva I. R., Batrakova E. V. et al. Macromolecules 1995, 28, 2303;
    159. Liu X. M., Pramoda K. P., Yang Y. Y., Chow S. Y., He C. B. Biomaterials 2004, 25, 2619;
    160. Teng Y., Morrison M. E., Munk P., Webber S. E. Macromolecules 1998, 31, 3578;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700