汤丹某氧化铜尾矿的浸出研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近地表富矿的日趋枯竭,资源问题已经成为制约中国可持续发展战略的根本性问题,采用溶浸技术从低品位矿石中回收金属就显得意义重大。本文目的在于研究开发出一种有效利用氧化铜浸出尾矿的新方法,就云南汤丹某氧化铜尾矿在氨性溶液中的行为做了研究:在铵盐-氨水缓冲溶液中搅拌浸出尾矿样中的铜,得到常规浸出条件;研究氧化剂存在下的浸出行为,考察了氧化剂用量,浸出时间,浸矿剂总浓度及[NH4+]/NH3,反应温度,液固比,氧化剂添加顺序,氧化时间等因素对铜浸出率的影响,得到了该铜矿浸出的最佳条件。
     研究结果表明,该铜矿的浸出主要是扩散控制,浸出时间,反应温度,液固比对铜的浸出率均有显著影响。氧化剂选用H202,其物质的量浓度为0.0112mol/L。NH3·H2O-(NH4)2CO3中,反应温度40℃,液固比=10:1,加入H2O2, c(H2O2)=0.30mL/g,反应2h;然后添加NH3·H2O及(NH4)2CO3, c(NH4+)= 3.2mol/L, c(NH3)=0.8 mol/L,继续反应4h,铜浸出率69.3%。NH3·H2O-NH4Cl中,反应温度50℃,液固比=10:1,先加入H2O2, c(H2O2)=0.20mL/g,反应2h;然后添加NH3·H2O及NH4Cl,c(NH3)=0.75mol/L,c(NH4+)=2.25 mol/L,继续反应6h,铜浸出率达70.6%。NH3·H2O-(NH4)2SO4中,反应温度50℃,液固比=10:1,先加入H2O2,c(H2O2)=0.15mL/g,反应2h;然后添加NH3·H2O及(NH4)2SO4, c(NH3)= 0.67mol/L, c(NH4+)= 1.33mol/L继续反应4h,铜浸出率59.2%。
     浸出渣的物相分析表明,添加H2O2后,充分氧化了次生硫化铜矿,而对原生硫化铜矿作用有限。氧化剂下的浸出与常规浸出相比较,矿样中自由氧化铜矿、结合氧化铜矿及硅孔雀石的浸出率基本不变,而次生硫化铜矿的浸出率提高了2-5倍,这是氧化剂下铜浸出率较高的根本原因。
With depletion of the high content ores near-surface layer, resources has become essential issue of sustainable development strategies in China. Therefore, recovering copper from copper oxide,complex ores and low grade ores is more significance by leaching technology. The aim of this work is developing a new method to leach copper oxide ores and to utilize low-grade copper ores efficiently. In this paper, the leaching behaveiors of the tailings of refractory copper oxide ore from Tangdan in Yunnan Province in various solutions have been studied.The conditions of conventional leaching of tailings in ammonia-ammonium solutions have been investigated. The effects of dosage of oxidant, time, total ammonia concentration, [NH4]+/NH3,temperature,solid liquid ratio, oxidant feeding method and oxidation time on copper extraction have been also studied,to get the optimum condition.
     The results shows that the leaching process of copper ores is controlled by diffusion step.The leaching time, temperature, solid liquid ratio have significant effects on copper extraction. H2O2 is adopted as oxidant and the concentration is 0.0112mol/L.
     In NH3·H2O-(NH4)2CO3 system,the optimum leaching conditions are 40℃,liquid solid ratio 10/1, add H2O2(0.30mL/g),then adding to (NH4)2CO3 and NH3·H2O after 2 hours,c(NH4+)=3.2mol/L, c(NH3)=0.8 mol/L, reacting another 4 hours. The copper extraction is 69.3%. In NH3·H2O-NH4Cl system, the optimum leaching conditions are 50℃, liquid solid ratio 10/1, add H2O2(0.20mL/g), then adding to NH4C1 and NH3·H2O after 2 hours, c(NH4+)=2.25mol/L, c(NH3)=0.75mol/L, reacting another 4 hours. The copper extraction is 70.6%. In NH3·H2O-(NH4)2SO4 system the optimum leaching conditions are 50℃, liquid solid ratio 10/1, add H2O2(0.20mL/g), then adding to (NH4)2SO4 and NH3·H2O, c(NH4+)= 1.33mol/L, c(NH3)=0.67mol/L, reacting another 4 hours. The copper extraction is 59.2%.
     The phase analysis of residue of leaching tailing ore shows that the secondary copper sulphide ore is oxidized sufficiently by adding H2O2, but the primary copper sulphide ore almost remains unchanged.Compared with conventional leaching, while that from the secondary copper sulphide ore was raised 2~5 times, which is the basic reason of relatively high copper extraction on the effect of oxidant.
引文
[1]Sungmin Hong, Jean-Pierre Candelone, Clair C.Patterson, et al. History of Ancient Copper Smelting Pollution During Roman and Medieval Times Recorded in Gree-nland Ice. Science,1996(272):246~249.
    [2]刘平等.铜合金及其应用.北京:化学工业出版社,2007:3-12.
    [3]谢显耀.新中国有色金属:铜工业.《当代中国有色金属工业》编委会,1987:1-15
    [4]任鸿九等.有色金属提取冶金手册:铜镍.冶金工业出版社,2000(10):66-72.
    [5]伍衡山,招国栋,刘清,等.浅论低品位铜矿的浸出技术及其发展趋势.西部探矿工程,2004(2):65~66.
    [6]曹异生.中国有色金属二次资源再生利用.世界有色金属,2005(6):12-17.
    [7]The World Commission on Environment and Development. Our common future. Beijing:World Knowledge Press,1989.
    [8]中国有色金属工业年鉴编辑委员会.中国有色金属工业年鉴1991—-2003.北京:中国印刷总公司,1991—2003.
    [9]徐曙光,陈丽萍,张迎新,等.未来中国铜消费量的预测与评价.国土资源情报,2010(9):45~48.
    [10]第八届西博会“中国西部矿业峰会2007"暨第五届中国国际有色金属矿业论坛(成都).我国铜消费量将保持10%年增长率.资源再生,2007,7.
    [11]李盛森.中国的资源形势和发展政策.中国高新技术企业,2005(5):10-12.
    [12]苗俊杰.矿产资源缺口有多大.瞭望,2005(28):32~33.
    [13]任巍,高帆,王殿茹.矿产资源紧缺与我国矿产资源战略体系的构建.中国国土资源经济,2005(5):14-16.
    [14]左仁广.解决资源危机矿山的策略与方法.中国矿业,2005,14(7):44-47.
    [15]郭岚.浅析影响国际铜价的基本因素.黑龙江对外贸易,2010,189(3):34-35
    [16]中国产业研究报告网.2011年全球铜消费预测.2011.3.25.
    [17]李立清,杨丽钦.浅谈铜资源的综合利用问题.金属矿山,2010,409(7):169-172.
    [18]冯君从,张晓燕.近年来我国有色金属的进出口分析.世界有色金,2010(4):55-56.
    [19]Gang Cui, Fa-yu He, Chang-ke Bao, et al. Constructing New Safety Production Situation of China Non-ferrous Metals Industry. Nonferrous Metals,2010,62(3): 2-18.
    [20]陈毓川.建立我国矿产资源可持续发展安全供应体系及对策.国土资源,2002(5):4~7.
    [21]魏荣道.对我国及世界主要金属矿产资源现状的认知.工业科技,2005,34(3):44~46.
    [22]Yan-xiang Li. Study on Copper Smelting Technology at Jiuhuashan Site.Tsinghua Tongfang Knowledge Network Technology Co.2004,4(24):33~48.
    [23]Allan G C, Woodcock J T. A review of the flotation of native gold and deetrum. Minerals Engineering.2001,14(9):931~961.
    [24]于润仓,唐建,李有余.铜资源的危机和对策.有色金属金属工业,2002(8):8~13.
    [25]王成彦.低品位铜湿法冶炼现状及发展趋势.新疆地质,2001(12):281-285.
    [26]刘大星,蒋开喜.铜湿法冶金技术的现状及发展趋势.铜工业,2000,29(4):1-5.
    [27]毛玉元,刘援朝.非传统矿产资源的开发研究及前景浅析.成都理工学院学报,2000(27):60~62.
    [28]刘大星.湿法炼铜的发展与前景.有色金属再生与利用,2005(7):34-36.
    [29]庞海霞,姜燕冬,唐磊,等.低品位铜矿提铜工艺研究.河北化工,2003(1):29-30.
    [30]Hanniala.P, Kojo.V, Kyto.M. Kennecott-Outokumpu flash converting process-copper by clean technology. Sulfide Smelting Current and Future Practices. 1998(2):239~247.
    [31]Beijing General Research Institute of Mining and Metallurgy, Dongchuan Mining bureau. Semi-Industrial Test of electrolytic copper in Tangdan Oxidized Copper Ore by Ammoniacal Pressure Leaching-Solvent Extraction- Electrowinning Process(Report). Beijing:Beijing General Research Institute of Mining and Metallurgy,1991.
    [32]昆明瑞源巨冶金有限公司试验研究报告.2004,6.
    [33]W.C. Davenport. Copper Smelting Technology. Chemical Industry Press,2006, 1~5.
    [34]Warner.N. A. Low intensity continuous copper smelting. Mineral Processing and Extractive Metallurgy,2010(1):39~48.
    [35]Cui He-tao, Zhou Ming. Development of Metallurgical Technology of Copper in China. Mining and Metallurgy,1995(3):21~34.
    [36]G.A. Kordosky. Copper recovery using leach/solvent extraction/electrowinning technology. The Journal of The South African Institute of Mining and Metallurgy, 2002(11):445~450.
    [37]SONG Zhi-peng, HU Guo-rong, PENG Zhong-dong, et al. Studying on Leaching Process of African Copper Oxide Ore by Ammonium Carbonate Solution. Mining and Metallurgical Engineering,2008(3):21~24.
    [38]P.Hanniala. Copper Smelting Technology-How Sees Flash Smelting Technology Advancing. Metal Bulletin Conference Santiago Chile,1990.
    [39]Bell Peter, Carthy Justin. The Evolution of Early Copper Smelting Technology in Australia. Journal of Australasian Mining History,2010,8(9):1448~1471.
    [40]王淑玲.我国西北五省区矿产资源现状及其开发利用对策建议.中国矿业,2000,9(2):1~3.
    [41]招国栋.柏坊高碱性低品位氧化型铜尾砂浸出及动力学参数的优化研究.南华大学硕士学位论文,2004.
    [42]Dong-guo WU, Xue YU. Experimental Study on Capitalizing tailings again. Journal of China University of Mining and Technology,2007,23(3):26~29.
    [43]高保胜,王洪江.吴爱祥某铜矿尾砂氨浸影响因素试验研究.金属矿山,2009,41(11):169~171.
    [44]秦仁高.利用废弃尾矿再获铜铁资源.有色金属(矿山部分),2005,34(3):44-46.
    [45]王彦杰,曹向东.从铜矿尾砂中回收铜的工艺研究.武汉工程大学学报,2007,29(4):42~44.
    [46]Ilkka V. Kojo, Ari Jokilaakso, Pekka Hanniala. Flash smelting and converting furnaces:A 50 year retrospect. JOM Journal of the Minerals, Metals and Materials Society,2005,52(2):57~61.
    [47]兰兴华.铜生产仍以火法熔炼为主.世界有色金属.2004(3):43-44.
    [48]Li Xin-cai, Ding Chao-mo. Development of Copper Pyrometallurgy and Proplsal on Strengthening R & D of Copper Smelting Technology With Self-Reliance. Mining and Metallurgy,1995(4):24~26.
    [49]Ramana GReddy. Emerging technologies in extraction and processing of metals. Metallurgical and Materials Transactions B,2005(34):137~152.
    [50]H.M.FRIEDE, R. H. STEEL. Notes on Iron Age copper-smelting technology in the Transvaal. Journal of The South African Institute of Mining and Metaliurgy Etallurgy,1975(11):221~231.
    [51]周国军.世界火法炼铜的进展简介.大冶科技,1994(2):32~34.
    [52]余元俭.我国火法炼铜清洁生产现状及促进措施探讨.中国有色冶金,2005(2):47~50.
    [53]Castro, Sergio H, Sanchez, Mario. Environmental viewpoint on small-scale copper, gold and silver mining in Chile. Journal of Cleaner Production,2003, 11(2):207~213.
    [54]陈淑萍,伍赠玲,蓝碧波.火法炼铜技术综述.铜业工程,2010(4):44-49
    [55]Claes Brundenius. Technological change and the environmental imperative in Chile challenges to the largest copper producer in the world. Edward Elgar Publishing,2003.
    [56]Swinbourne Dr, West Rc, Reed Me, et al. Computational thermodynamic mod-elling of direct to blister copper smelting. Mineral Processing and Extractive Metallurgy,2011,120(9):1~9.
    [57]Lu.P. A study on granulated heap leaching of low graded and highly-mudded oxidized copper ore. Mining Research and Development,2004,21(2):32~34
    [58]Dixon.S. Definition of economic optimum for the leaching of high acid consuming copper ores. Minerals and Metallurgical Processing,2004,21(4): 198~201.
    [59]郭灵虹,钟辉,安连英.低品位铜矿堆浸工艺技术.四川有色金属,1995(4):9-13.
    [60]David Dreisinger. Copper leaching from primary sulfides:Options for biological and chemical extraction of copper. Hydrometallurgy,2006,83(9):10~20.
    [61]Paivi H.M, Kinnunen, Jaakko A.Puhakka. Characterization of iron and sulphide mineral-oxidizing moderately thermophilic acidophilic bacteria from an Indone-sian auto-heating copper mine waste heap and adeep South African gold mine. Journal of Industrial Microbiology & Biotechnology,2001,31(9):409~414.
    [62]Z.Sadowski, E.Jazdzyk and H.Karas. Bioleaching of copper ore flotation con-centrates. Minerals Engineering,2003,16(1):51~53.
    [63]M.Gericke, Y.Govender, A.Pinches. Tank bioleaching of low-grade chalcopyrite concentrates using redox control. Hydrometallurgy,2010,104(11):414~419.
    [64]Mariekie Gericke, Y. Govender, A. Pinches. Advances in Tank Bioleaching of Low-Grade Chalcopyrite Concentrates. Advanced Materials Research Biohy-drometallurgy,2009:71~73
    [65]WANG Jun, QIN Wen-qing, ZHANG Yan-sheng, et al. Bacterialle leaching of chalcopyright and bornite with native bioleaching microorganism. Transactions of Nonferrous Metals Society of China,2008(18):1468~1472.
    [66]XU Ai-ling, XIA Jin-lan, ZHANG Shuai. Bioleaching of chalcopyrite by UV-induced mutagenized Acidiphilium cryptum and Acidithiobacillusferrooxidan. Transactions of Nonferrous Metals Society of China,2010(20):315~321.
    [67]YU Run. lan, TAN Jian-xi, GU Gou-hua. Mechanism of bioleaching chalcopyrite by Acidithiobacillus ferrooxidans in agar-simulated extracellular polymeric subs-tances media. Cent South Univ Technol,2010(17):56~61.
    [68]A.X.Wu, Y.Xi, B.H.Yang, et al. Study on Grey Forecasting Model of Copper Extraction rate with Bioleaching of Primary sulfide ore. ScienceDirect Acta Metall Sin(English Letters),2007(20):117~128.
    [69]Wang Wei. Research of Copper Hydrometallurgy.Copper Engineering,2000(2): 7~13
    [70]Brewer, R.E. Copper concentrate pressure leaching plant scale up from conti-nuous laboratory testing. Minerals and Metallurgical Processing,2004,21 (4):202~204.
    [71]李青山,刘日辉.氧化铜矿的湿法冶金及其进展.湿法冶金,1992(3):9-12.
    [72]肖安雄.提高石菜铜矿选矿指标和降低消耗的可能性.有色金属(选矿部分),1982(6):8~9.
    [73]Jin Jixiang. New technique experimental progress in washability of oxide copper ore in Tangdan mine. Yunnan Metallurgy,1997,26(2):22~30.
    [74]阮仁满,温健康.紫金山铜矿细菌浸出研究.有色金属,2000(4):159-161.
    [75]马荣骏.湿法炼铜新技术.湖南长沙:湖南科学技术出版社,1985:116-161.
    [76]刘小平,刘炳贵.氧化铜矿搅拌酸浸实验研究.矿冶工程.2004(6):51-52.
    [77]温健康,姚国成,武名麟,等.含砷低品位铜矿生物堆浸工业试验.北京科技大学学报,2010(4):32-35.
    [78]王成彦.堆浸萃取电积铜厂在高寒地区的生产与实践.有色金属,2001(6):6-9.
    [79]王中生.宁夏某氧化铜矿柱浸-置换试验研究.矿产保护与利用,2003(1):38-40.
    [80]张大维.氧化铜矿粉的制粒及柱浸试验初探.矿产保护与利用.1994(3):33-35.
    [81]余斌.原地溶浸采矿技术研究与全流程工业试验.黄金,2001(7):12-16.
    [82]张峰,常晋元.低品位氧化铜矿地下溶浸工艺与生产.有色金属,2003(4): 5-6.
    [83]江亲才.武山铜矿南山矿带氧化矿特征及就地溶浸试验.金属矿山,2001(2):16-18.
    [84]王成彦.高碱性脉石低品位氧化铜矿的开发利用-浸出工艺研究.矿冶,2001,10(4):49~53.
    [85]Wang M, Cao B, Zhang Y. Selective recovery of copper, zinc and nickel from printed circuit boards by ammonia leaching under pressure. Huan Jing Ke Xue, 2011,32(2):596~602.
    [86]CHENG Jie-hong, CHEN Xian, KONG Feng, et al. Recovery of Copper and Nickel from Electroplating Sludge by Ammonia Leaching and Hydrogen Re-duction under High Pressure. Environmental Science & Technology,2010(1): 39~45.
    [87]D.M.Muir. A review of the selective leaching of gold from oxidised copper-gold ores with ammonia-cyanide and new insights for plant control and operation. Minerals Engineering,2010,24(6):576~582.
    [88]Hajime.Miki, Michael.Nicol, Lilian Velasquez Yevenes. The kinetics of dissolution of synthetic covellite, Chalcocite and Digenite in dilute chloride solutions at ambient temperature. Hydrometallurgy,2011(105):321~327.
    [89]FANG Jian-jun, LI Yi-fen, LU Xiang-lin, et al. Effects and Industry Application of Ammonia Leaching of Low Copper Oxide Ore under Normal Temperature and Pressure. Mining and Metallurgical Engineering,2008,28(3):81~83.
    [90]Jie ZHANG, Ai-xiang WU, Yi-ming WANG, et al. Experimental research in leaching of copper-bearing tailings enhanced by ultrasonic treatment. Journal of China University of Mining and Technology,2008,18(1):98~102.
    [91]陈维东.国外有色冶金工厂(铜).冶金工业出版社,1983(8):6-12.
    [92]LIU Wei, TANG Mo-tang, TANG Chao-bo. Dissolution kinetics of low grade complex copper ore in ammonia-ammonium chloride solution. Transactions of Nonferrous Metals Society of China,2010(20):910~917.
    [93]Carlos Palacios, Olivier Rouxel, Martin Reich, et al. Pleistocene recycling of copper at a porphyry system, Atacama Desert, Chile:Cu isotope evidence. Mineralium Deposita,2003,46(1):1~7.
    [94]Rajko Z.Vracar, Natasa Vuckovic, Zeljko Kamberovic. Leaching of Copper Sulphide by Sulphuric Acid Solution with Addition of Sodium Nitrate. Hydro-metallurgy,2003(70):143~151.
    [95]李金龙,李得春.低品位原生黄铜矿生物浸出技术的应用实践.铜业工程,2006(2):7~10.
    [96]巨少华MACA体系中铜、镍和金的冶金热力学及其低品位矿的堆浸工艺研究[博士学位论文].长沙,中南大学,2006.
    [97]F. King. Corrosion of copper in alkaline chloride environments. Integrity Corro-sion Consulting Ltd,2002(8):61~69.
    [98]A.J Parker, R.L Paul, G.P Power. Electrochemical aspects of leaching copper from chalcopyrite in ferric and cupric salt solutions. Australian Journal of Chemistry,2005,34(1):13~34.
    [99]Liu Da-xing, Zhao Bing-zhi, Jiang Kaixi, et al. Study on Treatment of Tangdan Refractory Copper Oxide Ore with High Content of Alkali Gangues. Mining & Metallurgy,2003,12(2):49~53.
    [100]程琼,张文彬.汤丹高钙镁氧化铜矿氨浸技术进展.云南冶金,2005(12):17-20.
    [101]国家技术监督局.铜矿石、 铅矿石和锌矿石化学分析方法.1994,GB/T14353.1-14353.16-93.
    [102]M.MENA, F.A.OLSON. Leaching of Chrysocolla with Ammonia-Ammonium Carbonate Solution. Metallurgical Transactions B,1985(16):441~448.
    [103]Guo-dong ZHAO, Qing Liu-c. Leaching of Copper from Tailings Using Ammonia/ Ammonium Chloride Solution and Its Dynamics. International Conference on Chemistry and Chemical Engineering,2010(2):216~219.
    [104]张青莲,申泮文.无机化学丛书第五卷(氧硫硒分族).科学出版社,1984:95-113.
    [105]张青莲,申泮文.无机化学丛书第六卷(卤素.铜分族.锌分族).科学出版社,1984:139-143.
    [106]王彦,朱爱萍,彭嘉玲,等.工业过氧化氢的滴定.GB 1616-2003.
    [107]J.A.迪安.兰氏化学手册(第十三版中文版).科学出版社,1991:10.2-10.5
    [108]武汉大学等.分析化学(第四版).高等教育出版社,2000(3):56-63
    [109]北京师范大学无机化学教研室,华中师范大学无机化学教研室,南京师范大学无机化学教研室.无机化学(第四版).高等教育出版社,2010:90-103.
    [110]林传仙,白正华,张哲儒.矿物及有关化合物热力学数据手册.科学出版社,1985(2):13~22
    [111]万洪文,詹正坤.物理化学.高等教育出版社,2002,附录三:521-530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700