二氧化锰的水热合成、形态表征及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用水热合成法制备一系列不同晶型结构和形态的二氧化锰粉体材料。利用X射线衍射(XRD)、电感藕合等离子体原子发射光谱(ICP-AES)、傅立叶变换红外光谱(FT-IR)、热重-差热分析议(TG-DTA)、场发射扫描电镜(FESEM)和电化学工作站等技术,并通过改变二价锰盐反应物的类型及掺杂镧元素对材料的结构、形态及电化学性能进行了深入的研究。
     以KMnO4和MnSO4为反应物,采用水热法制备纳米MnO2粉体。通过改变水热反应的温度、时间和酸度等反应条件,制备出α晶型的MnO2纳米棒。研究表明:水热反应时间及温度对MnO2晶型结构的影响不大,但MnO2的结晶度随反应时间的增加而增加。保持反应时间和温度不变,随着反应体系溶液pH的增加,二氧化锰产物结构由α-MnO2型向无定形MnO2转化,即在碱性条件下,更有利于无定形二氧化锰的形成。
     用AUTOLab电化学工作站测试不同条件下α-MnO2的放电性能。当水热反应时间为24小时、水热反应温度为140℃、溶液pH为1.5时生成的α-MnO2放电容量最高,为150mAh/g。分别以MnSO4、Mn(NO3)2和MnCl2为还原剂,与KMnO4反应。研究阴离子对产物的晶型结构、形态和电化学性能的影响。研究表明:在含NO3-或Cl-二价锰盐溶液中易形成γ-MnO2,在含SO42-二价锰盐溶液中有利于形成α-MnO2。相同的充放电条件下,含γ-MnO2的α-MnO2的粉体,其电极材料的首次放电容量比单相α-MnO2的容量高,可达203 mAh/g。
     为提高α-MnO2的循环充放电性能,对α-MnO2进行La元素掺杂改性。当La/Mn摩尔比为0.0029时,能有效的改善α-MnO2循环充放电性能,首次放电容量为122.7 mAh/g,循环放电28次后,放电容量为101 mAh/g,衰减容量占首次放电容量的17.7﹪,远远低于不掺杂La的α-MnO2电极材料,其衰减容量66.4﹪。随着La/Mn摩尔比的增加,掺杂La的α-MnO2的首次放电容量有所降低。研究表明掺杂适量La元素,能有效改善MnO2的循环放电性能,有效抑制MnO2容量的衰减,能够满足电池对材料的要求。
In this thesis, manganese dioxide which have a series of different crystal structures and morphologies, have been prepared by a hydrothermal method. The crystal structure, morphology and electrochemical performance of productions have been studied deeply by X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric - differential thermal analysis meeting (TG-DTA), field emission scanning electron microscopy ( FESEM) , electrochemical workstation and so on. The conclusion is summarized as follows:
     Nanomanganese dioxide was synthesized by hydrothermal method which used KMnO4 and MnSO4 as precursors. By investigating the influence of different hydrothermal reaction conditions, such as time, temperature and acidity, on the crystal structure, theα-MnO2 nanoclud was acquired. Results show that reaction time and temperature have little influence on the crystal structure of MnO2, but the Crystallinity of MnO2 increase with increasing reaction temperature. Keep the hydrothermal reaction time and temperature as constant, when increasing acidy of solution, the crystal structure of MnO2 change fromα-MnO2 to amorphous MnO2. Thus under alkaline conditions, it is more conducive to the formation of amorphous manganese dioxide.
     Discharge performance ofα-MnO2 which made under different conditions was tested by electrochemical workstation. The discharge capacity ofα-MnO2 is 150mAh/g which made under 24 hours, 140℃and solution pH of 1.5, it is the best in all. MnSO4, Mn (NO3)2 and MnCl2 were used as reducing agent, than reacted with KMnO4. Research the influence of anions on the crystal structure, morphologies and electrochemical properties of production. Results indicate that theγ-MnO2 forme only in NO3- or Cl- solution. Under the same concentration of K+, SO42- is propitious to formα-MnO2. The initial discharge capacity ofα-MnO2 which containedγ-MnO2 is 203 mAh / g, higher than single-phaseα-MnO2.
     To improve the cycle charge-discharge performance ofα-MnO2, we synthesized La-dopingα-MnO2 and studied its charge-discharge capability. La3+ can dope well intoα-MnO2 structure without forming La2O3 phase. When La/Mn was equal 0.0029, La could effectively improve charge-discharge capability ofα-MnO2. The initial charge capacity is 122.7 mAh/g, and then decrease to 101 mAh/g after 28 charge-discharge cycles. Attenuation capacity account for 17.7% of initial discharge capacity, far lower than 66.4﹪of La-undopingα-MnO2. The initial discharge capacity of La-dopingα-MnO2 decrease with increasing La/Mn, and capacity fade seriously.Studies show that doping amount of La element, can improve the cycle charge-diacharge performance of MnO2, and effectively inhibite the capacity of MnO2 to attenuate. It can meet the requirements of the battery material.
引文
[1]姚培慧.中国锰矿志[M].冶金工业出版社, 1995: 12-20.
    [2] Qi Feng, Hirofumi Kanoh and Kenta Ooi. Manganese oxide porous crystals[J]. J. Mater. Chem. 1999, 9: 319-333.
    [3]郑洪河.锂离子电池电解质[M].化学工业出版社, 2007.
    [4] Wu,N,L. Nanocrystalline oxide supercapacitors[J]. Materials Chemistry and Physics. 2002, 75: 6-11.
    [5]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(1) [J].电池. 2004, 6(34): 411-414.
    [6]程林.锰、钒氧化物正极材料的制备及应用于锂电池和锂离子电池的电化学性能[D].福建师范大学, 2007.
    [7] M, Michael Thackeray.MANGANESE OXIDES FOR LITHIUM BATTERIES[J]. Prog. Solids. Chem. 1997, 25: 1-71.
    [8]宋文顺.化学电源工艺学[M].中国轻工业出版社, 1998.
    [9]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(2)[J].电池. 2005, 35(1): 27-30.
    [10] S. Sarciaux, A. Le Gal La Salle,γ-MnO2 for Li batteries Part I.γ-MnO2: Relationships between synthesis conditions, material characteristics and performances in lithium batteries[J]. Journal of Power Sources. 1999, 81-82: 656-660.
    [11] Elaine Nicolas-Tolentino, Zheng-Rong Tian, Hua Zhou, Guanguang Xia, and Steven L. Suib. Effects of Cu2+ Ions on the Structure and Reactivity of Todorokite- and Cryptomelane-Type Manganese Oxide Octahedral Molecular Sieves[J]. Chem. Mater. 1999, 11(7): 1733-1741.
    [12] Stanton Ching, Diana J. Petrovay, and Matthew L. Jorgensen. Sol-Gel Synthesis of Layered Birnessite-Type Manganese Oxides[J]. Inorg. Chem. 1997, 36: 883-890.
    [13] Stephanie L,Brock. Niangao ,Duan .Zheng, Rong.A Review of Porous Manganese Oxide Materials[J]. Chem. Mater. 1998, 10(10): 2619-2628.
    [14] Feng, Q. Kento, H. Synthesis of Hollandate-type manganese dioxide with H+ form for lithium rechargeable battery[J]. J Electrochem Soc. 1994, 141(10): 135-136.
    [15] Ohzuku T, Kitagawa M, Sawai K, et al.Topotactic reduction of alpha-manganese (di)oxide in nonaqueous lithium cells[J]. J Electrochem Soc. 1991, 138(2): 360-365.
    [16] C.S. Johnson, S. Sarciaux, A. Le Gal La Salle, A. Verbaere, Y. Piffard, D. Guyomard,Structural and electrochemical studies of a-manganese dioxide (a-MnO2) 1[J]. Journal of Power Sources. 1997, 68: 570-577.
    [17] Norihito. Kijima, Yasuhiko. Takahashi Junji. Akimoto et al. Lithium ion insertion and extraction reactions with Hollandite-type manganese dioxide free from any stabilizing cations in its tunnel cavity[J].Journal of Solid State Chemistry. 2005, 178: 2741-2750.
    [18] Teruhito Sasaki, Shinichi Komaba Naoaki Kumagai,et al .Synthesis of Hollandite-Type Ky(Mn1-χMχ)O2(M=Co,Fe) by Oxidation of Mn(II) Precursor and Preliminary Results on Electrode Characteristics in Rechargeable Lithium Batteries[J]. Electrochem.Solid-State Leff.2005, 9(8): A471-A475.
    [19] Q, Feng . L, Liu.and K, Yanagisawa. Effects of synthesis parameters on the formation of birnessite-type manganese oxides[J]. Journal of Materials Science Letters. 2000, 19: 567-1570.
    [20] Lihui Liu, Qi Feng, K. Yanagisawa and Yi Wang. Characterization of birnessite- type sodium manganese oxides prepared by hydrothermal reaction process[J]. Journal of Materials Science Letters. 2000, 19: 2047-2050.
    [21] Ogata, S. Komabaa, R. Baddour-Hadjean, J.-P. et al. Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery[J]. Electrochimica Acta. 2008, 53: 3084-3093.
    [22] Laurence Athoue, Francüois Moser, Romain Dugas,et al. Variation of the MnO2 Birnessite Structure upon Charge/Discharge in an Electrochemical Supercapacitor Electrode in Aqueous Na2SO4 Electrolyte[J]. J. Phys. Chem. C. 2008, 112: 7270-7277.
    [23]黄慧民,温立哲,邓淑华.水热法制备氧化锆微粉的进展[J].无机盐工业. 2003, 35(2): 16-18.
    [24]吴会军,刘笑笑,朱冬生等.水热反应法制备纳米粉体的研究进展[J].现代化工. 2003, 23(增刊): 37-40.
    [25] Yanagisawa K. Ioku K. Yamasaki N. Feng Q. HYDROTHERMAL SINGLE CRYSTAL GROWTH OF CALCITE IN AMMONIUM ACETATE SOLUTION[J]. Journal of Crystal Growth. 1996, 163(3): 285.
    [26] V. Subramanian, Hongwei Zhu, Bingqing Wei. Nanostructured MnO2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material[J]. Journal of Power Sources. 2006, 159: 361-364.
    [27] V. Subramanian, Hongwei Zhu, Bingqing Wei et al .Nanostructured MnO2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material[J]. Journal of Power Sources. 2006, 159: 361-364.
    [28] Jikang Yuan, Wei-Na Li, Sinue Gomez, and Steven L. Suib.Shape-Controlled Synthesis of Manganese Oxide Octahedral Molecular Sieve Three-Dimensional Nanostructures[J]. J. Am. Chem. Soc. 2005, 127(42): 14184-14185.
    [29] Laurie I. Hill, Alain Verbaere, Dominique Guyomard.MnO2 (α-,β-,γ-) compounds prepared by hydrothermal-electrochemical synthesis: characterization, morphology,and lithium insertion behavior[J]. Journal of Power Sources. 2003, 119-121: 226-231.
    [30] Yuan Z Y,Zhang Z L,Du G H,et al. A simple method to synthesis single-crystalline manganese oxide nanowires[J]. Chemical Physics Letters. 2003, 378(3-4): 349-353.
    [31] Huang Xingkang, LüDongp ing, Yue Hongjun, et al. Controllable synthesis ofα- andβ- MnO2: cationic effect on hydrothermal crystallization[J]. Nanotechnology. 2008, 19(22): 1-7.
    [32] V. Subramanian, Hongwei Zhu, Bingqing Wei. Nanostructured MnO2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material[J]. Journal of Power Sources. 2006, 159: 361-364.
    [33] Kinga A. Malinger , Yun-Shuang Ding , Shanthakumar Sithambaram et al. Microwave frequency effects on synthesis of cryptomelane-type manganese oxide and catalytic activity of cryptomelane precursor[J]. Journal of Catalysis. 2006, 239: 290-298.
    [34] WangX , LiY. Synthesis and Formation Mechanism of Manganese Dioxide Nanowires/Nanorods[J]. Chem Eur J. 2003, 9(1): 300-306.
    [35] Shen X F,Ding Y S,Hanson J C,Aindow M,Suib S L.In situ synthesis of mixed-valent manganese oxide nanocrystals:An in situs synchrotron X-ray diffraction study[J]. J.Am.Chem.Soc. 2006, 128: 4570-4571.
    [36] HtlczkoA. Template-based synthesis of nanomaterials[J]. APPI. Phys A. 2000, 70: 365-376.
    [37] Fangyi Cheng, Zhanliang Tao, Jing Liang, and Jun Chen.Template-Directed Materials for Rechargeable Lithium-Ion Batteries[J]. Chem. Mater. 2008, 20(3): 667-681.
    [38] Wang X Y,Wang X Y,Huang W G,et al,Sol–gel template synthesis of highly ordered MnO2 nanowire arrays[J]. Journal of Power Sources. 2005, 140(1): 21-215.
    [39] Jia-Yan Luo, Jing-Jun Zhang And Yong-Yao et al.Highly Electrochemical Reaction of Lithium in the Ordered Mesoporosusβ-MnO2[J]. Chem. Mater. 2006, 18(23): 5618-5623.
    [40] HAO, TANG. MEI,YUN,XI. XI,MING,HUANG.et al. Rheological phase reaction synthesis of lithium intercalation materialsfor rechargeable battery[J]. JOURNAL OF MATERIALS SCIENCE LETTERS. 2002, 21: 999-1001.
    [41]陈慧兰.高等无机化学[M].北京:高等教育出版社, 2005.
    [42]张宝宏,张娜,纳米MnO2超级电容器的研究[J].物理化学学报. 2003, 19(3): 286-288.
    [43]李娟,李清文,夏熙等,纳米二氧化锰粉末的固相合成及其电化学性能研究[J].应用科学学报. 1999, 17(2): 245-249.
    [44]黄剑锋溶胶-凝胶原理与技术[M].化学工业出版社, 2005.
    [45] Stanton Ching, Eric J.Welch,Steven M.Hughes, et al. Nonaqueous Sol-Gel Syntheses of Microporous Manganese Oxides[J]. Chem.Mater. 2004, 14: 1292-1299.
    [46] S.BACH,M.HENRY,N.BAFFIER, J.LIVAGE. Sol-Gel Synthesis of Manganese Oxides[J]. JOURNAL OF SOLID STATE CHEMISTRY. 1990, 88: 325-333.
    [47] Stanton Ching, Diana J.Petrovay, Matthew L.Jorgensen Steven L.Suib. Sol-Gel Synthesis of Layered Birnessite-Type Manganese Oxides[J]. Inorg.Chem. 1997, 36: 883-890.
    [48] Jeffrey W.Long ,Rhonda M.Stroud, Debra R.Rolison. Controlling the pore-solid architecture of mesoporous,high surface area manganese oxides with the birnessite structure[J]. Journal of Non-Crystalline Solids. 2001, 285: 288-294.
    [49] Jun John Xu, Jingsi Yang. Nanostructured amorphous manganese oxide cryogel as a high-rate lithium intercalation host[J]. Electrochemistry Communications. 2003, 5: 230-235.
    [50]张治安,杨邦朝,邓梅根.胡永达.超级电容器氧化锰电极材料的研究进展[J].无机材料学报. 2005, 20(3): 529-536.
    [51] Winter M, Besenhard J O, Al M E S E. Insertion Electrode Materials for Rechargeable Lithium Batteries[J]. Adv.Mater. 1998, 10(10): 725-763.
    [52] Tsuda.,M, Arai. H, Sakurai.Y, lmproved cyclability of Na-bimessite Partially substituted by cobalt[J]. Journal of Power Sources. 2002, 110(1): 52-56.
    [53] Bach,S. Pereira-Ramos,J-P. Cachet,C. Bode,M.. Effect of Bi-doping on the electrochemical behavior of layered MnO2 as lithium intercalation compound [J]. Electrochimica Acta. 1995, 40(6): 785-789.
    [54] Chung. K.Y, Ryu. C.W, Kim. K.B. Onset mechanism of Jahn-Teller distortion in 4V LiMn2O4 and its suppression by LiM0.05Mn1.95O4(M=Co, Ni) coating[J]. Journal of theElectrochemical Society. 2005, 152(4): A791-A795.
    [55] S.J.Bao,Y.Y.Liang,W.J.Zhou et al.Synthesis and Electrochemical ProPerties of LiAl0.1Mn1.9O4 by Microwave- assisted Sol-gel Method[J]. J.Power Sources. 2006, 154(1): 239-245.
    [56]邓新荣,胡国荣,彭忠东等.锂离子电池正极材料表面包覆改性研究进展[J].电池工业. 2007, 12(5): 349-352.
    [57] Rhodes C P, Long J W, Al M S D E. Charge insertion into hybrid nanoarchitectures: mesoporous manganese oxide coated with ultrathin poly(phenylene oxide)[J]. Journal of Non-Crystalline Solids. 2004, 350: 73-79.
    [58]张治安,杨邦朝,胡永达,汪斌华.超级电容器氧化锰电极电容特性研究[J].材料热处理学报. 2005, 26(2): 10-13.
    [59]张晶.高性能锂-二氧化锰电池正极的研究[D].天津大学化工学院, 2007.
    [60] J-M.Taraseon,M.Armand.,Issues and challenges facing recharge able lithium batteries[J]. Macmillan Magzines Ltd. 2001, 414(15): 359-367.
    [61] M. Armand and J.-M. Tarascon. Building better batteries[J]. nature. 2008, 451(7): 652-657.
    [62]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(1)[J]. 2004.
    [63]张治安,杨邦朝,邓梅根等.超级电容器氧化锰电极材料的研究进展[J].无机材料学报. 2005, 20(3): 529-531.
    [64] S B, M H, Baffier N E. Sol-gel synthesis of manganese oxide[J]. J.Solid State Chemistry. 1990, 285: 288-294.
    [65] Deguzman R N, Shen Y, Neth E J, et al. Synthesis and Characterization of Octahedral Molecular Sieves (OMS-2) Having the Hollandite Structure[J]. Journal of Power Sources. 1994, 6(815-821).
    [66] Subramaniana V, Zhua H, Wei B. Nanostructured MnO2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material [J]. Journal of Power Sources. 2006, 159(1): 361-364.
    [67] Li W N, Yuan J, Shen X F, et al. Hydrothermal Synthesis of Structure- and Shape-Controlled Manganese Oxide Octahedral Molecular Sieve Nanomaterials[J]. Advanced Functional Materials. 2006, 16(9): 1247-1253.
    [68]北京师范大学.高等学校教材无机化学[M].北京:高等教育出版社, 1981.
    [69] Ding Y S,Shen X F,Sithambaram S,Gomez S,et al. Synthesis and catalytic activity of crytomelane-type manganese dioxide nanomaterials Produced by a novel solvent-free method[J]. Chem.Mater. 2005, 17: 5382-5389.
    [70] Leroux F, Nazar L F. 3-volt manganese dioxide: the amorphous alternative[J]. Solid State Ionics. 1997, 100: 103-113.
    [71] J, Jian, Luo. Steven ,S,L. Preparative Parameters, Magnesium Effects, and Anion Effects in the Crystallization of Birnessites[J]. Phys. Chem. B. 1997, 101(49): 10403-10413.
    [72]杨宏孝凌芝无机化学(第3版)[M].高等教育出版社, 2002.
    [73]张熊.二氧化锰及其纳米复合材料的可控制备与性能研究[M].北京化工大学博士论文, 2008.
    [74]黃行康.二氧化锰的制备、结构表征及其电化学性能[M].厦门大学博士论文, 2006.
    [75] S. Sarciaux, A. Le Gal La Salle, A. Verbaere, et al .γ-MnO2 for Li batteries Part I.γ-MnO2 : Relationships between synthesis conditions, material characteristics and performances in lithium batteries [J]. Journal of Power Sources. 1999, 81-82: 656-660.
    [76] S. Sarciaux, A. Le Gal La Salle, A. Verbaere, et al .γ-MnO2 for Li batteries Part II. Some aspects of the lithium insertion process intoγ-MnO2 and electrochemically lithiatedγ-Li x MnO2 compounds [J]. Journal of Power Sources. 1995, 81-82: 661-665.
    [77] Kwon I, Song M Y. Electrochemical properties of LiCoyMn2?yO4 synthesized by the combustion method for lithium secondary battery[J]. Solid State Ionics. 2003, 158(1-2): 103-111.
    [78] Taniguchi I, Song D, Wakihara M. Electrochemical properties of LiM1/6Mn1/6O4 (M = Mn, Co, Al and Ni) as cathode materials for Li-ion batteries prepared by ultrasonic spray pyrolysis method [J]. Journal of Power Sources. 2002, 109(2): 333-339.
    [79] Su Y, Zou Q, Wang Y, et al. Structure and electrochemical behavior of LiCryMn2?yO4 compositions [J]. Materials Chemistry and Physics. 2004, 84(2-3): 302-307.
    [80] Kim B, Choi Y, Choa Y. Synthesis of LiFexMn2?xO4 cathode materials by emulsion method and their electrochemical properties[J]. Solid State Ionics. 2003, 158(3-4): 281-285.
    [81] Julien C, Ziolkiewicz S, Lemal M, et al. SYNTHESIS, STRUCTURE AND ELECTROCHEMISTRY OF LiMn 2-yAlyO 4 PREPARED BY A WET-CHEMISTRY METHOD[J]. J.Mater.Chem. 2001, 11: 1837.
    [82] Deng B, Nakamura H, Al Q Z E. Greatly improved elevated-temperature cycling behavior of Li1+xMgyMn2?x?yO4+δspinels with controlled oxygen stoichiometry [J]. Electrochimica Acta. 2004, 49(11): 1823-1830.
    [83]范洪福,王磊,关杰等.稀土掺杂PbO2电极的制备及催化性能研究[J].中国稀土学报. 2007, 25(3): 299.
    [84]卢星河.尖晶石型锰酸锂正极材料的合成及电化学性能研究[J].天津大学博士论文. 2005.
    [85] Femandes,J.B, Desai.B, Dalai.V. N. K, Studies on chemically Precipitated Mn(IV)oxides[J]. ElectrochimicaActa. 1983, 28: 309-315.
    [86] M.V.Ananth, Sushama Pethkar, K.Dakshinamurthi, Distortion of MnO6 Octahedral and electrchemicial activity of Nstutite-based MnO2 Polymorphs for Alkaline electrolytes and FI-RT study [J]. Joumal of Power Sources. 1998, 75: 278-282.
    [87] Jun Cai, Jia Liu, William S. Willis, and Steven L. Suib,Framework Doping of Iron in Tunnel Structure Cryptomelane[J]. Chem. Mater. 2001, 13: 2413-2433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700