新型层状二氧化锰的高压助熔剂合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化锰(MnO2)材料因其复杂的多孔结构而被广泛应用于电池、分子筛及催化等领域,受到了人们的广泛关注。同时MnO2作为电池阴极材料,价格低廉且对环境友好,已被研究多年,但目前实际应用中的MnO2的放电比容量与其理论容量相比尚有较大的提升空间,且因其循环性能不理想而在可充电池中的应用方面受到限制。它们的电化学活性取决于许多因素,但主要决定于二氧化锰的晶体结构。因此合成出晶体结构良好的二氧化锰材料具有重要的意义。
     传统的合成二氧化锰的方法主要有氧化还原沉淀法、水热法、低温固相法和溶胶-凝胶法等,但这些方法所合成出来的二氧化锰的尺寸普遍比较小,以纳米尺寸为主。利用高压技术可以得到许多常压下难以合成的新物质以及一些其他的具有特殊形貌和晶体结构的物质,助熔剂的使用可以降低反应的温度,使固体在熔融状态下发生反应,更有利于大单晶体的合成。因此,本论文主要研究了层状二氧化锰材料的合成及其结构的表征和电化学性能的测量,旨在通过高压方法合成出尺寸较大且电化学性能良好的二氧化锰电极材料。
     本文以MnO2为起始原料,以KOH作为助熔剂,在压力为100 MPa,温度为400℃的条件下,反应24 h,合成了新型层状化合物K0.33MnO162·0.4H2O。并对产物进行了XRD、EDS、TG、SEM和IR表征,以及电化学性能测量。化合物为片状单晶体,厚度大约为3-4μm,最大长度可以达到40-50μm,而且它具有很好的热稳定性,可以在700℃以下稳定存在;通过对其进行表征和性质测试,发现其具有良好的电化学性质,这也为制备大容量且性能良好的电池提供了新的途径。
     详细讨论了反应时间、反应温度、反应压力以及助熔剂摩尔比对K0.33MnO162·0.4H20组成和形貌的影响。实验结果表明,随着反应时间的增加,合成实验先生成δ-MnO2,之后会有少量的Mn304生成,当反应达到一定时间后,则全部转化为目标产物。而产物的形貌由小尺寸逐渐长成尺寸较大的片状单晶体。随着反应温度的升高,产物由Ko.33Mn0162·0.4H20逐渐转变为δ-MnO2,而且有少量的Mn304生成。产物的形貌由尺寸较大的片状晶体,逐渐变为尺寸较小的长条状晶体。在低配比时,反应物没有发生反应,随着配比的增加反应物逐渐反应,当配比达到1:20时反应物全部转化为产物,而且产物的晶体尺寸随着反应物配比的增加而增大。只有在高压下才能合成出Ko.33Mn0162·0.4H2O,并且高压产物的晶体尺寸也要明显大于常压产物的晶体尺寸。
     此外,本文采用高压助熔剂法还成功合成了δ-MnO2,并对其进行了结构的表征和性质的测试。与传统的合成方法相比,高压助熔剂法能合成出尺寸较大的δ-MnO2单晶体。X-射线粉末衍射测试表明,δ-MnO2的结晶度良好,属单斜晶系,空间群为C2/m,层间距约为0.72 nm;通过扫描电子显微镜观察其形貌,发现δ-MnO2为均一的圆形片状单晶体,厚度约为2-3μm,最大长度可达30-40μm;通过热重曲线分析得出,其具有良好的热稳定性,可以在800℃以下稳定存在;本文还通过红外光谱谱图初步分析了δ-MnO2的结构信息。
Manganese oxide (MnO2) has been investigated widely because of its applications in batteries, separation and catalysis, and used as cathodes for batteries for long time due to its good economy and low toxicity. However, the specific capacity of MnO2 in practical Li/MnO2 batteries is lower compared to its theoretical value, and its cyclic performance is not good for application in rechargeable batteries. Their electrochemical activity depends on many factors, but mainly on the crystal structure of manganese dioxide. Therefore, the synthesis of the manganese dioxide with good crystal structure is of great importance.
     The traditional method for the synthesis of manganese dioxide include redox precipitation, hydrothermal, low-temperature solid state method and sol-gel method, etc. However, the size of manganese dioxide synthesized by these methods is generally nano size-based. By means of high pressure technology, many new substances or substances with some special morphology and crystal structure can be made up. The flux, which can reduce the reaction temperature, is more conducive to the synthesis of a large single crystal. Therefore, this paper investigated the synthesis of the layered manganese oxide and its structure characterization and electrochemical properties. The manganese dioxide synthesized by high pressure methods, has large size and good electrochemical performance.
     MnO2 was used as the starting material, KOH as the flux, and the reaction is under the conditions of 100 MPa,400℃and 24 h. In this paper, it is the first synthesis of a novel layered compound, K0.33MnO1.62··0.4H2O. The crystal structure, morphology and electrochemical properties have been studied deeply by means of powder X-ray diffraction (XRD), energy dispersive spectrometer (EDS), thermogravimetric (TG), scanning electron microscopy (SEM), and infrared spectroscopy (IR), ect. The product is flaky crystal, its thickness could reach about 3-4μm, and the largest diameter was 40-50μm Meanwhile, it also has good thermal stability, which is stable up to 700℃. And it shows that, it has good electrochemical performance, which offers a new way for preparation of the batteries of high capacity and good performance.
     In addition, we also discussed the influences of the reaction time, reaction temperature, pressure and reactant ratio on the composition and morphology of K0.33MnO1.62·0.4H2O. With increasing reaction time,δ-MnO2 was first generated, and then a small amount of Mn3O4 would appear. When a certain time is reached, they all converted into the target product, and the size of the product also increases. With rising reaction temperature, the K0.33MnO1.62·0.4H2O gradually transformed intoδ-MnO2, and a small amount of Mn3O4 was found, and the size of the product would be reduced. The starting materials could not be reacted with each other at the low ratio, and they gradually reacted with increasing the ratio. They would be all transformed into the product when the ratio reaches 1:20. The crystal size of the product increases with increasing of the ratio of reactants. K0.33MnO1.62·0.4H2O can only be synthesized by high pressure, and the crystal size of product synthesized by high pressure was significantly larger than that synthesized under the room pressure.
     We successfully synthesizedδ-MnO2 by high pressure flux, and characterized its structure and properties. Compared with the conventional synthetic methods, the single crystal ofδ-MnO2 synthesized by high pressure flux has a larger size. The corresponding X-ray diffraction results show that the crystallinity ofδ-MnO2 is good, and it is with monoclinic, space group C2/m, and the distance between the layers is about 0.72 nm. Its scanning electron microscopy shows that,δ-MnO2 was homogeneous single crystal with circular sheet, the thickness was about 2-3μm, the maximum diameter was 30-40μm. The TG curve shows that it has good thermal stability, and can be stable up to 800℃. By means of the infrared spectroscopy, we preliminarily analyzed the local structure information ofδ-MoO2.
引文
[1]姚培慧.中国锰矿志[M].冶金工业出版社,1995:12-20.
    [2]Qi Feng, Hirofumi Kanoh and Kenta Ooi. Manganese oxide porous crystals [J]. J.Mater.Chem.1999,9319-333.
    [3]郑洪河.锂离子电池电解质[M].化学工业出版社,2007.
    [4]Wu N L. Nanocrystalline oxide supercapacitors[J]. Materials Chemistry and Physics,2002,75:6-11.
    [5]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(1)[J].电池,2004,6,(34):411-414.
    [6]程林.锰、钒氧化物正极材料的制备及应用于锂电池和锂离子电池的电化学性能[D].福建师范大学,2007.
    [7]M Michael Thackeray. Manganese oxides for lithium batteries [J]. Prog.Solids.Chem,1997,25:1-71.
    [8]宋文顺.化学电源工艺学[M].中国轻工业出版社,1998.
    [9]Thackeray M M. Manganese oxides for lithium batteries [J]. Progress in Solid State Chemistry,1997,25 (1-2):1-71.
    [10]Muraoka Y, Chiba H, Atou T, Kikuchi M, Hiraga K, Syono Y, Sugiyama S, Yamamoto S, Grenier J C. Preparation of α-MnO2 with an open tunnel[J]. Journal of Solid Stale Chemistry,1999,144(1):136-142.
    [11](a)Rossoow M H, Liles D C, Thackeray M M, David W I F, Hull S. a-manganese dioxide for lithium batteries. A structural and electrochemical study[J]. Materials Research Bulletin,1992,27(2):221-230. (b)Thackeray M M, Rossouw M H, de Kock A, de la Harpe A P, Gummow R J, Pearce K, Liles D C. Versatility of MnO2 for lithium battery applications[J]. Journal of Power Sources,1993,43(1-3 pt 1)289-300.
    [12]Dai J, Li S F Y, Siow K S, Gao Z. Synthesis and characterization of the hollandite-type MnO2 as a cathode material in lithium batteries[J]. Electrochimica Acta,2000,45(14)2211-2217.
    [13]Johnson C S, Dees D W, Mansuetto M F, Thackeray M M, Vissers D R, Argyriou D, Loong C K, Christensen L. Structural and electrochemical studies of a-manganese dioxide(α-MnO2)[J]. Journal of Power Sources,1997,68(2 pt 2):570-577.
    [14]Thackeray M M, David W I F, Bruce.P Q Goodenough J.B. Lithium insertion into manganese spinels[J]. Materials Research Bulletin,1983,18(4):461-472.
    [15]Murphy D W, Di Salvo F J, Carides J N, Waszczak J V. Topochemical reactions of rutile related structures with lithium[J]. Materials Research Bulletin, 1978,13(12):1395-1402.
    [16]Thackeray M M, DeKock A, DePicciotto LA, Pistoia G Synthesis and characterization of γ-MnO2 from LiMn2O4[J]. Journal of Power Sources,1989,26(3-4 pt2):355-363.
    [17]Ching S, Petrovay D J, Jorgensen M L, Suib S L. Sol-gel synthesis of layered birnessite-type manganese oxides[J]. Inorganic Chemistry,1997,36(5):883-890.
    [18](a)Cornell R M, Giovanoli R. Transformation of hausmannite into birnessite in alkaline media[J]. Clays an Clay Minerals,1988,36(3):249-257. (b)Silvester E, Manceau A, Drits V A. Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite.2.Results from chemical studies and EXAFS spectroscopy[J]. American Mineralogist,1997,82(9-10):962-978.
    [19](a)Chen R, WhittinghamM S. Cathodic behavior of alkali manganese oxides from permanganate[J]. Journal of the Electrochemical Society,1997,144(4):64-67. (b)LerouxF, Guyomard D, Piffard Y.2D Rancieite-type manganic acid and its alkali-exchanged derivatives Part Ⅱ -electrochemical behavior[J]. Solid State Ionics,1995,80(3-4):307-316. (c)Bach S, Pereira-Ramos J P, Baffier N. Rechargeable 3V Li cell using hydrated lamellar manganese oxide[J]. Journal of the Electrochemical Society,1996,143(11):3429-3434.
    [20]Chabre Y, Pannetier J. In Proton intercalation in fromramsdellite to groutite through groutellite, structural and electrochemical properties of the proton/y-MnO2 system[J]. Progress in Solid State Chemistry,1995,23(1):1-130.
    [21]Van Arsdale G D and Maier C B. Transactions of the Electrochemical Society,1918,33:109.
    [22]李秋珍.从氯化物电解液制备电解二氧化锰[J].中国锰业,1994,12(4):45-51.
    [23]Takahashi K. Dry cell and battery industry and powder technology with emphasis on powdered manganese dioxide[J]. Electrochimica Acra,1981,26(10):1467-1476.
    [24]彭宏熙,韩学亮.活化二氧化锰制造方法的进展[J].电池,1993,23(4):183-187.
    [25]Lavela P, Sanchez L, Tirado J L, Bach S, Pereira-Ramos J P. Nickel-stabilized composite manganese oxides as lithium insertion electrodes [J]. Journal of Power Sources,1999,84(1):75-79.
    [26]Jantscher W, Binder L, Fiedler D A, Andreaus R, Kordesch K. Synthesis, characterization and application of doped electrolytic manganese dioxides[J]. Journal of Power Sources,1999,79(1):9-18.
    [27](a)Binder L, Jantscher W, Hofer F, Kothleitner G. Production and characterisation of electrolytically doped manganese dioxide[J]. Journal of Power Sources,1998,70(1):1-7. (b)Nartey V K, Binder L, Huber A. Production and characterisation of titanium doped electrolytic manganese dioxide for use in rechargeable alkaline zinc/manganese dioxide batteries[J]. Journal of Power Sources,2000,87(1-2):205-211.
    [28]Sharma M M, Krishnan B, Zachariah S, Shah C U. Study to enhance the electrochemical activity of manganese dioxide by doping technique[J]. Journal of Power Sources,1999,79(1):69-74.
    [29]童庆松,甘晖,连锦明,张其听.掺秘电解二氧化锰可充性研究[J].电池,1997,27(1):14-17.
    [30](a)Castledine C G, Conway B E. Effects of electrochemically incorporated bismuth on the discharge and recharge of electrodeposited manganese dioxide films in 9M aqueous KOH[J]. Journal of Applied Electrochemistry,1995,25(8):707-715. (b)夏熙,李文清.二氧化锰的可充性探讨(下)[J].电池,1992,22(5):218-222. (c)Bach S, Pereira-Ramos J P, Cachet C, Bode M, Yu L T. Effect of Bi-doping on the electrochemical behavior of layered MnO2 as lithium intercalation compound. Electrochimica Acta,1995,40(6):785-789.
    [31]Kim J K, Manthiram A. A manganese oxyiodide cathode for rechargeable lithium batteries[J].Nature,1997,390(6657):265-267.
    [32]Stephanie L, Brock Niangao, Duan Zheng, Rong. A Review of Porous Manganese Oxide Materials[J]. Chem.Mater,1998,10(10)2619-2628.
    [33]Q Feng, L Liu and K Yanagisawa. Effects of synthesis parameters on the formation of birnessite-type manganese oxides[J]. Journal of Materials Science Letters,2000,19:567-1570.
    [34]Lihui Liu, QiFeng, K Yanagisawa and Yi Wang. Characterization of birnessite-type sodium manganese oxides prepared by hydrothermal reaction process[J]. Journal of Materials Science Letters,2000,19:2047-2050.
    [35]Ogata S, Komabaa R, Baddour-Hadjean, J-P, et al. Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery[J]. Electrochimica Acta,2008,53:3084-3093.
    [36]Laurence Athoue, Francuois Moser, Romain Dugas, et al. Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte[J]. J.Phys.Chem.C,2008,112:7270-7277.
    [37]黄慧民,温立哲,邓淑华.水热法制备氧化锆微粉的进展[J].无机盐工业,2003,35(2):16-18.
    [38]吴会军,刘笑笑,朱冬生等.水热反应法制备纳米粉体的研究进展[J].现代化工,2003,23(增刊):37-40.
    [39]Yanagisawa K, Ioku K, Yamasaki N, Feng Q. Hydrothermal single crystal growth of calcite in ammonium acetate soulution[J]. Journal of Crystal Growth,1996,163(3)285.
    [40]V Subramanian, Hongwei Zhu, Bingqing Wei. Nanostructured MnO2 Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material[J]. Journal of Power Sources,2006,159:361-364.
    [41]Laurie I Hill, Alain Verbaere, Dominique Guyomard. MnO2(α-,β-,γ-)compounds prepared by hydrothermal-electrochemical synthesis:characterization, morphology, and lithium insertion behavior[J]. Journal of Power Sources,2003,119-121226-231.
    [42]V Subramanian, Hongwei Zhu, Bingqing Wei, et al. Nanostructured MnO2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material[J]. Journal of Power Sources,2006,159:361-364.
    [43]Jikang Yuan, Wei-Na Li, Sinue Gomez and Steven L Suib. Shape-controlled synthesis of manganese oxide octahedral molecular sieve three-dimensional nanostructures[J]. J.Am.Chem.Soc,2005,127(42):14184-14185.
    [44]Yuan Z Y, Zhang Z L, Du G H, et al. A simple method to synthesis single-crystalline manganese oxide nanowires[J]. Chemical Physics Letters,2003,378(3-4)349-353.
    [45]Huang Xingkang, LuDongp ing, Yue Hongjun, et al. Controllable synthesis of α-and β-MnO2:cationic effect on hydrothermal crystallization[J]. Nanotechnology,2008,19(22):1-7.
    [46]V Subramanian, Hongwei Zhu, Bingqing Wei. Nanostructured MnO2 Hydro thermal synthesis and electrochemical properties as a supercapacitor electrode material[J]. Journal of Power Sources,2006,159:361-364.
    [47]Kinga A Malinger, Yun-Shuang Ding, Shanthakumar Sithambaram, et al. Microwave frequency effects on synthesis of cryptomelane-type manganese oxide and catalytic activity of cryptomelane precursor[J]. Journal of Catalysis,2006,239290-298.
    [48]WangX, LiY. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods[J]. Chem Eur J,2003,9(1):300-306.
    [49]Shen X F, Ding Y S, Hanson J C, Aindow M, Suib S L. In situ synthesis of mixed-valent manganese oxide nanocrystals:An in situs synchrotron X-ray diffraction study[J]. J.Am.Chem.Soc,2006,128:4570-4571.
    [50]HtlczkoA. Template-based synthesis of nanomaterials[J]. APPI.Phys A,2000,70:365-376.
    [51]Fangyi Cheng, Zhanliang Tao, Jing Liang and Jun Chen. Temp late-directed materials for rechargeable lithium-ion batteries[J]. Chem.Mater,2008,20(3):667-681.
    [52]WangX Y, WangX Y, Huang W Q et al. Sol-gel template synthesis of highly ordered MnO2 nanowire arrays[J]. Journal of Power Sources,2005,140(1):21-215.
    [53]Jia-Yan Luo, Jing-Jun ZhangAnd Yong-Yao, et al. Highly electrochemical reaction of lithium in the ordered mesoporosus β-MnO2[J]. Chem.Mater,2006,18(23)5618-5623.
    [54]Hao Tang, Mei Yun Xi, Xi Ming Huang, et aL Rheological phase reaction synthesis of lithium intercalation materialsfor rechargeable battery[J]. Journal of Materials Science Letters,2002,21:999-1001.
    [55]陈慧兰.高等无机化学[M].北京:高等教育出版社,2005.
    [56]张宝宏,张娜.纳米Mn02超级电容器的研究[J].物理化学学报,2003,19(3):286-288.
    [57]李娟,李清文,夏熙等.纳米二氧化锰粉末的固相合成及其电化学性能研究[J].应用科学学报,1999,17(2):245-249.
    [58]黄剑锋溶胶-凝胶原理与技术[M].化学工业出版社,2005.
    [59]Stanton Ching, Eric J Welch, StevenM Hughes, et al. Nonaqueous sol-gel syntheses of microporous manganese oxides[J]. Chem.Mater.2004,14:1292-1299.
    [60]S Bach, M Henry, N Baffler, J Livage. Sol-gel synthesis of manganese oxides[J]. Journal of Solid State Chemistry,1990,88:325-333.
    [61]Jeffrey W Long, Rhonda M Stroud, Debra R Rolison. Controlling the pore-solid architecture of mesoporous, high surface area manganese oxides with the birnessite structure[J]. Journal of Non-Crystalline Solids,2001,285:288-294.
    [62]Jun John Xu, Jingsi Yang. Nanostructured amorphous manganese oxide cryogel as a high-rate lithium intercalation host[J]. Electrochemistry Communications,2003,5:230-235.
    [63]张治安,杨邦朝,邓梅根,胡永达.超级电容器氧化锰电极材料的研究进展[J].无机材料学报,2005,20(3):529-536.
    [64]张治安,杨邦朝,胡永达,汪斌华.超级电容器氧化锰电极电容特性研究[J].材料热处理学报,2005,26(2):10-13.
    [65]张晶.高性能锂-二氧化锰电池正极的研究[D].天津大学化工学院,2007.
    [66]J-M Taraseon, M Armand. Issues and challenges facing recharge able lithium batteries [J]. Macmillan Magzines Ltd,2001,414(15):359-367.
    [67]M Armand and J-M Tarascon. Building better batteries[J]. nature,2008,451 (7): 652-657.
    [68]苏文辉,刘宏建,李莉萍等.高温高压极端条件下的稀土固体物理学研究.吉林大学自然科学学报,1992,特刊,物理:188-201.
    [69]苏文辉,许大鹏,刘宏建等.凝聚态物理学中若干前沿问题的高压研究.吉林大学自然科学学报,1992,特刊,物理:170-187.
    [70]Bundy F P, Hall H T, Strong H M and Wentorf Jr R H. Man-made diamond. Nature,1955,176:51-55.
    [71]Wentorf Jr R H. Cubic form of boron nitride. J Chem Phys,1957,26:956-956.
    [72]苏文辉,董维义.固体物理的高压研究方法.见:王华馥,吴自勤主编.固体物理实验方法.北京:高等教育出版社,1990,400-436.
    [73]吉林大学固体物理教研室编.人造金刚石.北京:科学出版社,1975.
    [74]Spain L and Poauwe J. High Pressure Technology. New York:Dekker,1977.
    [75]Jayaraman A. Diamond anvil cell and high-pressure physical investigations. Rev of Modern Physics,1983,55:6-108.
    [76]经福谦等著.实验物态方程导引.北京:科学出版社,1986.
    [77]H F McMurdie. Trans Electrochem Soc,1944,86:313-326.
    [78]W F Cole, A D Wadsley, A Walkley. Trans Electrochem Soc,1947,92:133-158.
    [79]A Gorgeu. Ann Chim Phys,1862,66:153-161.
    [80]P Dubois. Ann Chim Phys,1936,5:411-482.
    [81]W Feitknecht, W Marti. Uber manganite und Kunstlichen Braunstein. Helv Chim Acta,1945,28:149-156.
    [82]O Glemser, G Gattow, H Meisick. Uber Manganoxyde. Ⅶ. Darstellung und Eigenschaften von Braunsteinen. I (Die δ-Gruppe der Braunsteine). Z Anorg Allg Chem,1961,309:1-19.
    [83]W Buser, P Graf, W Feitknecht. Beitrag zur Kenntnis der Mangan(Ⅱ)-manganite und des δ-MnO2. Helv Chim Acta,1954,37:2322-2333.
    [84]R Giovanoli, E Stahli, W Feitknecht. Chimia,1969,23:264-266.
    [85]L H P Jones, A A Milne. Mineral Mag,1956,31:283.
    [86]M Fleischer, W E Richmond. The manganese oxide minerals, a preliminary report. Econ Geol,1943,38269-286.
    [87]R B Finkelman, H T Evans, J J Matzko. Mineral Mug,1974,39:549.
    [88]S Park, D Nahon, YTardy, P Vieillard. Estimated solubility products and fields of stability for cryptomelane, nsutite, birnessite, and lithiophorite based on natural lateritic weathering sequences. Am Mineral,1989,74:466.
    [89]R G Burns. The uptake of cobalt into ferromanganese nodules, soils, and synthetic manganese (Ⅳ) oxides. Geochim Cosmochirn Acta,1976,40:95-102.
    [90]D A Crerar, H L Barnes. Deposition of deep-sea manganese nodules. Geochim Cosrnochiru Acta,1974,38:279-300.
    [91]E D Glover. Characterization of a marine birnessite. Am Mineral,1977,62:278.
    [92]F V Chukhrov, A I Gorshkov, V V Beresovskaya, A V Sivtsov. Contributions to the mineralogy of authigenic manganese phases from marine manganese deposits. M ineralum Deposita,1979,14:249-261.
    [93]R Giovanoli, E Stahli. Chimia(Aamu),1970,24:49-61.
    [94]R Giovanoli, E Stahli, W Feitknecht. Uber Oxidhydroxide des vierwertigen Mangans mit Schichtengitter.1. Mitteilung. Natriummangan (Ⅱ,Ⅲ)manganat(Ⅳ). Helv Chim Acta,1970,53:209-220.
    [95]R Giovanoli, E Stahli, W Feitknecht. Uber Oxidhydroxide des vierwertigen Mangans mit Schichtengitter 2. Mitteilung:Mangan (Ⅲ)-manganat(Ⅳ). Helv Chim Acta,1970,53:453-464.
    [96]R Chen, P Zavalij, M S Wittingham. Hydrothermal synthesis and characterization of KxMnO2·yH2O. Chem Mater,1996,8:1275-1280.
    [97]P Stouff, J Boulegue. Synthetic 10-A and 7-A phyllomanganates:Their structures as determined by EXAFS. Am Mineral,1988,73:1162.
    [98]S W Donne, Doctoral Thesis. University of Newcastle, Australia,1996.
    [99]J E Post, D R Veblen. Crystal-structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method. Am Mineral,1990,75:477-489.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700