基于抗灰迹KTP晶体的单一及复合非线性频率转换研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷酸钛氧钾(KTiOPO4,简称KTP)晶体具有非线性光学系数大,热导率高,失配度小,激光抗损伤阈值高,不潮解及化学机械性能稳定等特点,目前广泛应用于中小功率Nd3+激光的倍频。然而当将其用于大功率1064nm激光倍频以及532nm泵浦的OPO时,都会观察到“灰迹效应”(gray tracking effect)。在形成灰迹的区域,晶体对可见光及近红外波段吸收显著增加,导致非线性频率转换效率显著下降,严重的还会导致晶体发热,造成永久性的损伤。为解决这一问题,人们通过使用特殊的助熔剂和热处理技术并更好地控制晶体生长条件,生长出了抗灰迹KTP晶体(Gray Track Resistance KTP,简称GTR-KTP)。实验结果表明,GTR-KTP较之普通KTP (common KTP,简称CKTP)在吸收损耗控制及抗损伤阈值等方面均有大幅度提高。
     本文以全固态激光器为载体,从理论及实验上系统研究了GTR-KTP晶体参与的腔内非线性频率转换过程,包括大功率倍频、OPO、SRS及复合频率转换过程。研究表明,由于GTR-KTP较CKTP在可见光及近红外波段的吸收大大减少,其参与的非线性频率转化性能大为改善,如输出功率、转换效率、温度特性及输出光束质量方面等;文中建立了相应的速率方程组对实验工作进行指导;鉴于GTR-KTP优良的二阶及三阶非线性特性,本文还进一步对其参与的并联型复合频率转换进行了有益的探索,拓展了晶体的应用范围。具体内容如下:
     1.建立了考虑腔内非线性频率转换过程的速率方程组,包括OPO、一阶及二阶SRS过程。为了验证理论模型,以KTA晶体为频率转换介质,实验研究了其参与的IOPO及腔内一阶SRS过程,并将实验结果与理论计算数据进行了比较。结果表明,所建立的速率方程模型可以较好地描述相应的实验过程,这对GTR-KTP参与的腔内非线性频率转换具有一定的理论指导意义。(第二章)
     2.对晶体进行了抗灰迹性能测试,与CKTP相比,GTR-KTP抗灰迹性能显著改进;比较了GTR-KTP与CKTP在大功率腔内倍频的性能差异。当采用GTR-KTP时,在10kHz重复频率和180W LD泵浦功率下,获得了最大平均功率为40.6W的绿光输出,这比相同实验条件下CKTP的绿光输出功率提高了近50%;研究腔内倍频温度特性时,发现GTR-KTP的温度带宽大大优于CKTP,并且观察到腔内、腔外倍频时晶体的温度调谐曲线有所差异;考虑到晶体对基波及二次谐波吸收不同会导致温度特性的差异,提出了一种定性比较KTP晶体抗灰迹能力的方法,实验结果与预期较为吻合;在以上研究基础上,利用GTR-KTP晶体,试制了一台可长期稳定运转的、输出功率为20W的准连续532nm激光器。(第三章)
     3.在理论上研究了shared cavity及coupled cavity两种OPO结构下的F-P透过率谱,发现shared cavity结构的透过率带宽远大于coupled cavity结构,相关的实验结果也表明shared cavity OPO输出的信号光线宽确实大于coupled cavity结构的。这为shared cavity OPO可以大幅改善输出信号光功率稳定性提供了合理的理论解释。(第四章)
     4.考虑到GTR-KTP晶体在近红外波段的吸收也大大小于CKTP,我们比较了二者参与的IOPO运转特性。以LD端面泵浦声光调Q Nd:YAG 1064nm激光器作为激励源并采用coupled cavity结构,在重复频率为15kHz和LD功率为11.4W时,GTR-KTP IOPO输出的1572nm信号光最大平均功率1.2W,相应的光光转换效率10.5%,这较之相同条件下CKTP IOPO的转换效率提高了25%;进一步研究了以LD端面抽运Nd:YAG/Cr4+:YAG键合晶体被动调Q激光泵浦GTR-KTP的shared cavity OPO输出特性。在LD功率为8.4W时,1572nm最大平均输出功率为900mW,而相同条件下CKTP信号光的最大输出功率只有640mW。利用第二章中的IOPO速率方程组,从理论上进一步模拟了该Nd:YAG/Cr4+:YAG激光泵浦GTR-KTP IOPO的输出特性。结果表明,理论与实验可以较好的吻合。(第四章)
     5.首先测量了GTR-KTP自发拉曼散射光谱,并与相同规格KTA晶体的拉曼光谱做了比较,得到了GTR-KTP的相对拉曼增益系数;利用LD端面泵浦声光调Q Nd:YVO4 1064nm激光器作为激励源,实现了GTR-KTP腔内二阶SRS激光器的高效运转。在重复频率为20kHz及LD功率为9.5W时,1129nm最大平均功率为860mW,相应的光光转换效率及斜效率分别为9.1%和11.6%。与相同谐振腔参数下的CKTP SRS做比较发现,GTR-KTP SRS的转换效率提高了近20%。结合第二章中给出的腔内多阶SRS速率方程组,对该Nd:YVO4/GTR-KTP二阶拉曼激光器进行了理论模拟;进一利用LD端面泵浦Nd:YAG/Cr4+:YAG键合晶体作为激励源,研究了被动调Q下的GTR-KTP腔内拉曼激光器的运转特性。当LD功率为8.1W时,1129nm最大输出功率为420mW,相应的光光转换及斜效率分别为5.2%和11.4%,相应的脉冲宽度及重复频率分别为2.2ns和5.9kHz。(第五章)
     6.实验研究了GTR-KTP参与的并联型复合频率转换过程。将非临界相位匹配的GTR-KTP及KTA放入一LD端面泵浦Nd:YAG/Cr4+:YAG激光器中,采用shared cavity OPO结构及优化的晶体参数,实现了1534nm及1572nm的双波长同步输出。在LD泵浦功率为7W时,两信号光的平均输出功率均为230mW,相应的脉冲宽度和重复频率均为3.9ns及5.5kHz;分别采用LD端面泵浦Nd:YAG声光调Q及被动调Q激光器作为激励源,在一块GTR-KTP晶体上同时实现了OPO及SRS两个过程,获得了相应的拉曼光及信号光输出。主动调Q情况下,在重复频率15kHz及LD功率为10W时,1129nm及1572nm的平均输出功率分别为150mW和180mW,相应的脉冲宽度分别为22ns及3ns。被动调Q情况下,通过更换适合的腔镜,实现了复合SRS+OPO的高效运转。在LD泵浦功率为8.6W时,一阶拉曼光1096nm和信号光1572nm的平均输出功率分别为1.1W和0.36W,相应的脉冲宽度分别为2.8ns和1.1ns,重复频率均为11.2 kHz。(第六章)
     论文的主要创新工作包括:
     1.系统研究了GTR-KTP与CKTP在大功率1064nm倍频中性能的异同,发现GTR-KTP在输出功率、温度特性及光束质量方面较CKTP均大为提高及改盖
     2.提出了一种定性比较KTP晶体抗灰迹能力的方法。
     3.首次对shared cavity OPO可以大幅改善输出信号光功率稳定性给出了合理的理论解释。
     4.以shared cavity结构实现了LD端面抽运Nd:YAG/Cr4+:YAG键合晶体被动调Q激光泵浦GTR-KTP IOPO。在LD功率为8.4W时,1572nm最大平均输出功率为900mW,光光转换效率为10.7%,此为shared cavity OPO下得到的最高效率。
     5.首次测量了GTR-KTP自发拉曼散射光谱,并得到了GTR-KTP相对与KTA的拉曼增益系数。研究了GTR-KTP参与的SRS转换特性,在LD功率为9.5W时,1129nm最大平均功率为860mW,相应的光光转换效率及斜效率分别为9.1%和11.6%。
     6.对并联型复合频率转换进行了有益的探索。首次实现了基于GTR-KTP及KTA的复合OPO转换,获得了1534nm和1572nm信号光的同步输出;首次以GTR-KTP为转换介质实现了高效的OPO+SRS转换,在LD泵浦功率为8.6W时,一阶拉曼光1096nm和OPO信号光1572nm的平均输出功率分别为1.1W和0.36W。
Potassium titanyl phosphate (KTiOPO4, or KTP) has large second-order susceptibility, large angular (temperature) bandwidths, large thermal conductivity, high damage threshold, resistance to the deliquescence and stable chemical and mechanical characteristic, which make it extensively used as the nonlinear crystal for frequency doubling of medium-low power Nd3+ laser. However, laser-induced damage in KTP, termed gray tracking, is always observed in 1064nm second harmonic generation (SHG) and optical parametric oscillation (OPO) pumped at 532nm. This damage will dramatically increase the absorption of KTP in the visible and infrared band, resulting in sharp decline in frequency conversion efficiency. What is more serious is that the permanent damage will be produced when KTP is overheated. Optimizing the crystal growth conditions and adopting special fluxes as well as heat treatment techniques have been proven effective in improving the resistance of KTP to gray tracking. The gray-tracking resistance KTP (GTR-KTP) has been introduced accordingly. It has been demonstrated that GTR-KTP has improved absorption loss and damage threshold in comparison with the common KTP (CKTP).
     In this dissertation, by using the all-solid-state lasers, we have theoretically and experimentally studied the intracavity nonlinear frequency conversions based on the GTR-KTP, including high power SHG, OPO, stimulated Raman scattering (SRS) and mixed frequency conversion processes. Compared with CKTP, GTR-KTP has greatly decreased absorption at the visible and infrared wavelengths. This is favorable to improve the performance of nonlinear frequency conversions, such as average output power, conversion efficiency, temperature characteristics and output beam quality. Meanwhile, the corresponding rate equations have been established to simulate the experimental processes. In addition, the mixed frequency conversion processes incorporating with GTR-KTP have also been investigated. The main content of this dissertation includes:
     1. By introducing the nonlinear frequency conversion losses, the rate equations of intracavity OPO and Raman laser have been given, respectively. To evaluate the established theoretical models, the intracavity OPO (IOPO) and SRS experiments based on KTA crystals have been performed. It was found that the corresponding experimental results were in good agreement with theoretical results, which confirms the applicability of the theoretical model. (Chapter 2)
     2. The gray-tracking test has been carried out. The results indicated that GTR-KTP had good resistance to the gray tracking in comparison with CKTP. A comparative study of a frequency-doubling 532nm laser based on GTR-KTP and CKTP was also presented. Under the laser diode (LD) pump power of 180W and repetition frequency of 10 kHz, the maximum average output power at 532nm was 40.6W for GTR-KTP, which was increased by 50% compared with that obtained in CKTP. With the intracavity SHG configuration, GTR-KTP was proved to have larger temperature bandwidth than that of CKTP. Moreover, the intracavity SHG temperature tuning curve were found to be different from that obtained with extracavity SHG configuration for the two crystals. Considering the great difference between the two kinds of KTP in absorption at 1064 and 532nm, a qualitative evaluation method for the KTP's resistance to gray tracking was presented. In addition, a 20W all-solid-state GTR-KTP green laser with long-time stability was made. (Chapter 3)
     3. By theoretically calculating the spectral transmissions induced by the etalon effect, it has been found that the shared cavity OPO had much wider transmission bandwidth than that of coupled OPO. The corresponding experimental results indicated that the line-width for the shared OPO was apparently wider than that of the coupled OPO. Therefore, the mentioned theoretical analysis can offer an explanation for the improved power stability of shared cavity OPO. (Chapter 4)
     4. Due to the fact that GTR-KTP has a lower absorption coefficient at infrared wavelengths than that of CKTP, the IOPO performance incorporating the two crystals has been studied. The GTR-KTP IOPO excitated by a diode-end pumped acousto-optic (AO) Q-switched Nd:YAG laser was investigated. Under the incident LD power of 11.4W and repetition frequency of 15 kHz, the maximum signal average output power was 1.2W. This corresponded to the optical conversion efficiency of 10.5%, increased by 25% compared with that obtained in CKTP IOPO. In addition, an efficient GTR-KTP IOPO with the shared cavity configuration and excited by a diode-end pumped composite Nd:YAG/Cr4+:YAG laser was also demonstrated. Under the incident LD power of 8.4W, the maximum average output power of 900mW at 1572 nm was obtained. A theoretical model for this compact GTR-KTP IOPO was also presented. Theoretical analysis on the pulse characteristics of the signal was performed, which showed a good agreement with that obtained experimentally. (Chapter 4)
     5. The X(ZZ)X spontaneous Raman spectrum of GTR-KTP has been measured, with the Raman gain coefficients relative to KTA given accordingly. A GTR-KTP second Stokes Raman laser intracavity driven by a diode-pumped AO Q-switched Nd:YVO4 laser was demonstrated. With an incident pump power of 9.5W, the GTR-KTP intracavity Raman laser, operating at the repetition rate of 20 kHz, produced the maximum average output power of 860mW at 1129 nm, corresponding to the optical conversion and slope efficiency of 9.1% and 11.6%, respectively. When the GTR-KTP was substituted with CKTP, a lower average output power of 720mW was obtained under the same pump condition and cavity setup as the GTR-KTP Raman laser. A theoretical model for this GTR-KTP SRS laser was also presented. In addition, the GTR-KTP Raman laser intracavity excited by a diode-end pumped composite Nd:YAG/Cr4+:YAG laser was also demonstrated. Under the incident LD power of 8.1 W, the maximum average output power of 420mW at 1129nm was obtained, with the optical conversion and slope efficiency being 5.2% and 11.4%, respectively. The corresponding Stokes pulse width and repetition rate were respectively 2.2 ns and 5.9 kHz. (Chapter 5)
     6. The mixed frequency conversion processes based on GTR-KTP have been studied experimentally. The synchronized dual-wavelength emissions at 1534 and 1572nm was realized by the mixed OPO conversion in GTR-KTP and KTA crystals. Both the two crystals were inserted into the diode-pumped Nd:YAG/Cr4+:YAG fundamental resonator. At an incident LD pump power of 7 W, the maximum output powers of the two wavelengths were all 230mW, with the corresponding pulse width and repetition rate measured to be 3.9 ns and 5.5 kHz, respectively. When the AO and passively Q-switched Nd:YAG lasers were respectively used as the excitation source, the simultaneous SRS and OPO conversions could be realized in one GTR-KTP crystal. For the AO Q-switching, under the incident LD power of 10W and repetition frequency of 15 kHz, the maximum average output powers of 1129 and 1572nm were150 and 180mW, respectively. The corresponding pulse widths were 22 and 3ns, respectively. For the passively Q-switching, under an incident diode laser power of 8.6 W, the maximum average output powers at 1096 nm and 1572 nm were 1.1 W and 0.36 W, respectively. The corresponding minimum pulse widths at 1096 nm and 1572 nm were 2.8 and 1.1 ns, respectively. (Chapter 6)
     The main innovations of this dissertation are as follows:
     1. A comprehensive study of high power SHG conversion based on GTR-KTP and CKTP was presented. It was found that GTR-KTP had advantage over CKTP in the output power, temperature characteristic and output beam quality.
     2. A qualitative evaluation method for the KTP's resistance to gray tracking is presented.
     3. The theoretical analysis on the improved power stability of shared cavity OPO configuration was first demonstrated.
     4. With the shared cavity OPO configuration, an efficient eye-safe GTR-KTP IOPO excited by a diode-end pumped composite Nd:YAG/Cr4+:YAG laser was demonstrated. Under the incident LD power of 8.4 W, the maximum average output power of 900mW at 1572 nm was obtained, corresponding to a diode-to-signal conversion efficiency of 10.7%. This was the highest conversion efficiency obtained with the shared cavity configuration.
     5. The X(ZZ)X spontaneous Raman spectrum of GTR-KTP has been measured, with the Raman gain coefficients relative to KTA given accordingly. The intracavity SRS conversion based on the GTR-KTP was studied. With an incident pump power of 9.5W, the intracavity GTR-KTP Raman laser produced the maximum average output power of 860mW at 1129 nm, corresponding to the optical conversion and slope efficiency of 9.1% and 11.6%, respectively.
     6. Some useful exploring in the mixed frequency conversions has been made. The synchronized dual-wavelength emissions at 1534 and 1572nm was realized by the mixed OPO conversion in GTR-KTP and KTA crystals. In addition, the simultaneous SRS and OPO conversions have been successfully realized in one GTR-KTP crystal. At an incident diode laser power of 8.6W, the maximum average output powers at 1096nm and 1572nm were 1.1 W and 0.36 W, respectively.
引文
[1]T. H. Maiman, "Stimulated optical radiation in ruby," Nature,187, 493-494(1960).
    [2]P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, "Generation of Optical Harmonics." Phys. Rev. Lett.7,118-119 (1961).
    [3]J. A. Giordmaine, "Mixing of Light Beams in Crystals," Phys. Rev. Lett.8,19-20 (1962).
    [4]P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, "Effects of Dispersion and Focusing on the Production of Optical Harmonics," Phys. Rev. Lett.8,21-22(1962).
    [5]赵圣之,非线性光学,山东大学出版,2007.
    [6]WU Yi-Cheng, CHANG Feng, FU Pei-Zhen, CHEN Chuang-Tian, WANG Gui-Ling, GENG Ai-Cong, BO Yong, CUI Da-Fu,, XU Zu-Yan, "High-Average-Power Third Harmonic Generation at 355nm with CSB3O5 Crystal," Chin.Phys.Lett.,22,1426-1428(2005).
    [7]M. Nishioka, S. Fukumoto, F. Kawamura, M. Yoshimura, Y. Mori, and T. Sasaki, "Improvement of laser-induced damage tolerance in CsLiB6O10 for high-power UV laser source," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America,2003), paper CTuF2.
    [8]CHEN Chuang-Tian, LU Jun-Hua, WANG Gui-Ling, XU Zu-Yan, WANG Ji-Yang, ZHANG Cheng-Qian, LIU Yao-Gang, "Deep Ultraviolet Harmonic Generation with KBe2BO3F2 Crystal," Chin.Phys.Lett., Vol.18,1081(2001).
    [9]Magnus W. Haakestad, Gunnar Arisholm, Espen Lippert, Stephane Nicolas, Gunnar Rustad, and Knut Stenersen, "High-pulse-energy mid-infrared laser source based on optical parametric amplification in ZnGeP2," Opt. Express,16, 14263-14273 (2008).
    [10]R. Masse, J. C. Grenier, "Growth of Potassium Titanyl Phosphate (KTP) from High Temperature Solution," Bull. Soc. Franc. Mineral. Crist.,94, 437-439(1971).
    [11]Par I. Tordjman, E. Masse, J. C. Guitel, "Structure cristalline du monophosphate KTiPO5," Zeitschrift fur Kristallographie,139,103-115(1974).
    [12]F. C. Zumsteg, J. O. Bierlein, and T. E. Gier, "KxRb1-xTiOPO4:A new nonlinear optical material," J. Appl. Phys., Vol.47, No.11,4980-4985 (1976).
    [13]J. O. Bierlein and T. E. Gier, U. S. Patent No.3,949323 (1976).
    [14]R. A. Laudise, R. J. Cava and A. J. Caporaso, "Phase relations, solubility and growth of potassium titanyl phosphate, KTP," Journal of Crystal Growth,74, 275-280(1986).
    [15]Jia Shou-quan, Jiang Pei-zhi, Niu Hong-da, Li De-zhen and Fan Xian-he, "The solubility of KTiOPO4 (KTP) in KF aqueous solution under high temperature and high pressure," Journal of Crystal Growth,79,970-973(1986).
    [16]黄凌雄,霍汉德,张戈,张昌龙,黄呈辉,周卫宁,魏勇,“KTP晶体的水热法生长及其光学性能的测量,”人工晶体学报,Vol.36,256-259(2007).
    [17]张克从,龚亚京,王希敏,“掺质KTP型晶体生长与性能研究,”人工晶体学报,Vol.28,314-322(1999).
    [18]王希敏,陈立舫,张克从,“不同溶剂对KTP晶体生长及其性能的影响,”人工晶体学报,Vol.23,140-145(1994).
    [19]刘向阳,蒋民华“磷酸盐助熔剂中KTP晶体生长的物理化学过程,”硅酸盐学报,Vol.16,163-171(1988).
    [20]魏景谦,王继扬,刘耀岗,邵宗书,王长青,管庆才,蒋民华,“掺铌KTP晶体的生长和性质研究,”人工晶体学报,Vol.24,291-296(1995).
    [21]黄朝恩,沈德忠,"KTiOPO4晶体的熔盐法生长及性能测试,”人工晶体,141(1985).
    [22]沈德忠,陈建荣,“KTP晶体与器件的研究进展及市场展望,”新材料产业,66-71(2007).
    [23]J. D. Bierlein and C. B. Arweiler, "Electro-optic and dielectric properties of KTiOPO4,"Appl. Phys. Lett., Vol.49, No.15,917-919(1986).
    [24]李世忱,倪文俊,杨天新,王冬梅,黄超,随展,李明中,‘'KTP(KTiPO4)晶体电光开关研究,”光电子·激光, Vol.10,91-94(1999).
    [25]Takunori Taira and Takao Kobayashi, "Intracavity frequency doubling and Q switching in diode-laser-pumped Nd:YVO4 lasers," Appl. Opt.,34, 4298-4301(1995).
    [26]J. Q. YAO, X.W. Sun, H. S. Kwok, "Analysis of simulataneous Q-Switching and frequency doubling in KTP," J. Modern Optics,44,997-1004(1997).
    [27]张克从,王希敏,非线性光学晶体材料科学,科学出版社,1996.
    [28]John D. Bierlein and Herman Vanherzeele, "Potassium titanyl phosphate: properties and new applications," J. Opt. Soc. Am. B,6,622-633(1989).
    [29]Tso Yee Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, Robert L. Byer, and R. S. Feigelson, "Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4," Appl. Opt.26,2390-2394 (1987).
    [30]Fakhruddin Ahmed, "Laser damage threshold of KTiOPO4," Appl. Opt.28, 119-122(1989).
    [31]J. C. Jacco, D. R. Rockafellow, and E. A. Teppo, "Bulk-darkening threshold of flux-grown KTiOPO4," Opt. Lett.16,1307-1309 (1991).
    [32]W. R. Bosenberg and D. FL Guyer, "Single-frequency optical parametric oscillator," Appl. Phys. Lett.,61,387-389(1992).
    [33]Xiaodong Mu and Yujie J. Ding, "Investigation of damage mechanisms of KTiOPO4 crystals by use of a continuous-wave argon laser," Appl. Opt.,39, 3099-3103(2000).
    [34]Jacek K. Tyminski, "Photorefractive damage in KTP used as second-harmonic generator," J. Appl. Phys.,70,5570-5576(1991).
    [35]Thomas A. Driscoll, Hanna J. Hoffman, Richard E. Stone, and Patrick E. Perkins, "Efficient second-harmonic generation in KTP crystals," J. Opt. Soc. Am. B,3, 683-686(1986).
    [36]R. Blachman, P. F. Bordui, M. M. Fejer, "Laser-induced photochromic damage in potassium titanyl phosphate," Appl. Phys. Lett.,64,1318-1320(1994).
    [37]Mark G. Roelofs, "Identification of Ti3+in potassium titanyl phosphate and its possible role in laser damage," J. Appl. Phys.,65,4976-4982(1989).
    [38]G. M. Loiacono, D. N. Loiacono, T. McGee and M. Babb, "Laser damage formation in KTiOPQ, and KTiQAsO, crystals:Grey tracks," J. Appl. Phys.,72, 2705-2712(1992).
    [39]L. E. Halliburton and M. P. Scripsick, "Mechanisms and point defects esponsible for the formation of gray tracks in KTP," SPIE,2379,235-244(1995).
    [40]M. P. Scripsick, D. N. LoIacono, J. Rottenberg S. H. Goellner, L. E. Halliburton and F. K. Hopkins, "Defects responsible for gray tracks in flux-grown KTiOPO4," Appl. Phys. Lett.,66,3428-3430(1995).
    [41]B. Boulanger, M. M. Fejer, R. Blachman and P. F. Bordui, "Study of KTiOPO4 gray-tracking at 1064,532, and 355 nm," Appl. Phys. Lett.,65,2401-2403(1994).
    [42]J. P. Feve, B. Boulanger, G. Marnier and H. Albrecht, "Repetition rate dependence of gray-tracking in KTiOPO4 during secondharmonic generation at 532 nm," Appl. Phys. Lett.,70,277-279(1997).
    [43]N. B. Angert.V. M. Garmash, N. I. Pavlova, and A. V. Tarasov, "Influence of color centers on the optical properties of KTP crystals and on the efficiency of the laser radiation frequency conversion in these crystals," Sov. J. Quantum Electron. 21,426-428(1991).
    [44]K. T. Stevens, L. E. Halliburton, M. Roth, N. Angert, M. Tseitlin, "Identification of a Pb-related Ti3+center in flux-grown KTiOPO4," J. Appl. Phys.,88, 6239-6244(2000).
    [45]X.B. Hu, H. Liu, J.Y. Wang, H.J. Zhang, H.D. Jiang, S.S. Jiang, Q. Li, Y.L. Tian, Y.Y. Huang, W.X. Huang, W. He, "Comparative Study of KTiOPO4 crystals," Optical Materials,23,369-372 (2003).
    [46]http://www.raicol.com/product_details.asp
    [47]苏榕冰,陈昱,陈黎娜,陈金凤,曾文荣,庄健,“抗“灰迹"KTP晶体光学性能研究,”人工晶体学报,Vol.37,104-108(2008)。
    [48]苏榕冰,黄凌雄,张戈,陈黎娜,陈金凤,庄健,陈昱,曾文荣,“高抗灰迹KTP晶体的折射率测量与比较,”人工晶体学报,Vol.38,21-25(2009)。
    [49]Hiromitsu Kiriyam, Shinichi Matsuoka, Yoichiro Maruyama, Takashi Arisawa, "High efficiency second-harmonic generation in four-pass quadrature frequency conversion scheme," Opt. Commu.174,499-502(2000).
    [50]Hiromitsu Kiriyama Koichi Yamakawa, Toru Nagai Nobuto Kageyama, Hirofumi Miyajima, and Hirofumi Kan Hidetsugu Yoshida and Masahiro Nakatsuka, "360-W average power operation with a single-stage diode-pumped Nd:YAG amplifier at a 1-kHz repetition rate," Opt. Lett.,28,1671-1673 (2003).
    [51]Haowei Chen, Xiuyan Chen, Xiu Li, Yao Hou, Siyuan Wang, Zhaoyu Ren, Jintao Bai, "High average power Q-switched green beam generation by intracavity frequency doubling of diode-side-pumped Nd:YAG/HGTR-KTP laser," Optics & Laser Technology,41,1-4(2009).
    [52]Zhaoyu Ren, Zhimeng Huang, Sen Jia, Yan Ge, Jintao Bai, "532 nm laser based on V-type doubly resonant intra-cavity frequency-doubling," Opt. Commun., 282,263-266(2009).
    [53]张玉萍,李喜福,贾克军,张会云,王鹏,姚建铨,“高效高功率侧面抽运GTR-KTP腔内倍频连续绿光激光器,”光学学报,Vol.29(s2),258-261(2009)。
    [54]Y. Q. Zheng, H. Y. Zhu, L. X. Huang, H. B. Chen, Y. M. Duan, R. B. Su, C. H. Huang, Y. Wei, J. Zhuang and G. Zhang, "Efficient 532 nm laser using high gray-tracking resistance KTP crystal," Laser Physics,20,756-760(2010).
    [1]Haitao Huang, Jingliang He, Chunhua Zuo, Baitao Zhang, Xiaolong Dong, Shuang Zhao and Yun Wang, "Highly efficient and compact laser-diode end-pumped Q-switched Nd:YVO4/KTP red laser," Opt.Commun.281, 803-807(2008).
    [2]Hai-Tao Huang, Bai-Tao Zhang, Jing-Liang He, Jian-Fei Yang, Xiao-Long Dong, Jin-Long Xu, Chun-Hua Zuo and Shuang Zhao, "An efficient and compact laser-diode end-pumped intracavity frequency-tripled Nd:YVO4 355nm laser," Opt.Commun.282,2586-2589(2009).
    [3]Bai-Tao Zhang, Hai-Tao Huang, Jian-Fei Yang, Jing-Liang He, Chun-Hua Zuo, Jin-Long Xu, Xiu-Qin Yang, and Shuang Zhao, "Generation of 7.8W at 355nm from an efficient and compact intracavity frequency-tripled Nd:YAG laser," Optics Communications,283,2369-2372(2010).
    [4]JOHN J. DEGNAN, "Theory of the Optimally Coupled Q-Switched Laser," IEEE J. Quantum Electron.,25,214-220(1989).
    [5]JOHN J. DEGNAN," Optimization of Passively Q-Switched Lasers," IEEE J. Quantum Electron.,31,1890-1901(1995).
    [6]Guohua Xiao and Michael Bass, "A Generalized Model for Passively Q-Switched Lasers Including Excited State Absorption in the Saturable Absorber," IEEE J. Quantum Electron.,33,41-44(1997).
    [7]Xingyu Zhang, Shengzhi Zhao, and Qingpu Wang, B. Ozygus and H. Weber, "Modeling of passively Q-switched lasers," J. Opt. Soc. Am. B,17, 1166-1175(2000).
    [8]YF.Chen,S.W.Tsai, "Simultaneous Q-switching and mode-locking in diode-pumped Nd:YVO4-Cr4+:YAG laser", IEEE J.Quantum Electron.37, 580-586(2001).
    [9]Dechun Li, Shengzhi Zhao, Guiqiu Li, and Kejian Yang, "Optimization of Doubly Q-switched Lasers With Both an Acoustic-Optic Modulator and a Cr4+-Doped Saturable Absorber," IEEE J.Quantum Electron.42,500-508(2006).
    [10]Kejian Yang, Shengzhi Zhao, Guiqiu Li, and Hongming Zhao, "A New Model of Laser-Diode End-Pumped Actively Q-Switched Intracavity Frequency Doubling Laser," IEEE J. Quantum Eletron.,40,1252-1257(2004).
    [11]M.K. Oshman and S. E.Harris, "Theory of optical parametric oscillation internal to the laser cavity," IEEE J.Quantum Electron., QE-4,491-502(1968).
    [12]J. Falk, J. M. Yarborough, and E. O. Ammann, "Internal optical parametric oscillation," IEEE J. Quantum Electron., QE-7,359-369(1971).
    [13]G. Xiao, M. Bass, M. Acharekar, "Passively Q-Switched Solid-State Lasers with Intracavity Optical Parametric Oscillators," IEEE J. Quantum Electron.34, 2241-2245(1998).
    [14]Jing Wang, Shengzhi Zhao, Kejian Yang, Lei Dong, Guiqiu Li, Dechun Li, Ming Li, Jing An, and Wenchao Qiao, "Pulse compression and threshold decrease in high- repetition-rate doubly Q-switched intracavity optical parametric oscillator," J. Opt. Soc. Am. B,24,2521-2525 (2007).
    [15]Haitao Huang, Jingliang He, Baitao Zhang, Jinlong Xu, Jianfei Yang, Haixia Wang and Shuang Zhao, "An eye-safe KTiAsO4 ntracavity optical parametric oscillator driven by a diode pumped composite Nd:YAG/Cr+:YAG laser," Optics Laser Technology,42,1193-1197(2010).
    [16]Amit Kazzaz, Shlomo Ruschin, Itamar Shoshan and Gad Ravnitsky, "Stimulated Raman scattering in methane-experimental optimization and numerical model," IEEE J. Quantum Electron.30,3017-3024(1994).
    [17]S. Pearce, C.L.M. Ireland a, P.E. Dyer, "Solid-state Raman laser generating<1 ns, multi-kilohertz pulses at 1096 nm," Opt. Commun.,260,680-686(2006).
    [18]J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, "Characterization of a continuous-wave Raman laser in H2," J. Opt. Soc. Am. B,16,1305-1312 (1999).
    [19]W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, "Diode-pumped, self-stimulating, paasvely Q-switched Nd3+:PbWO4 Raman laser," Opt.Commun., 194,401-407(2001).
    [20]A.A. Demidovich, P.A. Apanasevich, L.E. Batay, A.S. Grabtchikov,A.N. Kuzmin, V.A. Lisinetskii, V.A. Orlovich, O.V. Kuzmin, V.L.Hait, W. Kiefer, M.B. Danailov, "Sub-nanosecond microchip laser with intracavity Raman conversion,"Appl. Phys. B,76,509-514 (2003).
    [21]Walter Koechner, "Solid-State Laser Engineering," Sixth Revised and Updated Edition, With 447 Illustrations and 45 Tables, Springer,1999, pp.665.
    [22]Tasoltan T. Basiev, Alexander A. Sobol, Petr G. Zverev, Vyacheslav V. Osiko, and Richard C. Powell, "Comparative Spontaneous Raman Spectroscopy of Crystals for Raman Lasers," Appl. Opt.38,594-598 (1999).
    [23]D. von der Linde, M. Maier, and W. Kaiser, "Quantitative Investigations of the Stimulated Raman Effect Using Subnanosecond Light Pulses," Phys. Rev.178, 11-17(1969).
    [24]Pavel Cerny and Helena Jelinkova, "Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal," Opt. Lett.,27,360-362 (2002)
    [25]Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. chang, H. Wang, S. S. Zhang, S. Z. Fan, W. J. Sun, G. F. Jin, X. T. Tao, S. J. Zhang, and H. J. Zhang, "A KTiOAsO4 Raman laser," Appl. Phys. B,94,585-588(2009).
    [26]Zhaojun Liu, Qingpu Wang, Xingyu Zhang, Sasa Zhang, Jun Chang, Zhenhua Cong, Wenjia Sun, Guofan Jin, Xutang Tao, Youxuan Sun, and Shaojun Zhang, "A diode side-pumped KTiOAsO4 Raman laser," Opt. Express 17,6968-6974 (2009).
    [1]Kevin I.Martin, W.Andrew Clarkson, and David C.Hanna, "Stable, high-power, single frequency generation at 532nm from a diode-bar-pumped Nd:YAG ring laser with intracavity LBO frequency doubler," Appl. Opt.,36,4149-4152(1997).
    [2]N. Pavel, T. Taira, Y. Tamaoki, and H. Kan, "Continuous-wave high-power intracavity frequency-doubled Nd:GdVO4-LBO green laser," in Nonlinear Optics: Materials, Fundamentals and Applications, Technical Digcst (CD) (Optical Society of America,2004), paper WD6.
    [3]BI Yong, SUN Zhi-Pei, LI Rui-Ning, ZHANG Ying, YAO Ai-Yun, LIN Xue-Chun, XU Zu-Yan and WANG Fang, "Efficient Dual-LBO Second-Harmonic Generation by Using a Polarization Modulation Configuration," Chin.Phys.Lett.,20,1755-1758(2003).
    [4]Xian-Kun Cheng, Qian-Jin Cui, Yong Zhou, Zhi-Min Wang, Jia-Lin Xu, Yong Bo, Qin-Jun Peng, Da-Fu Cui and Zu-Yan Xu, "High power and high beam quality CW green beam generated by diode-side-pumped intracavity frequency doubled Nd:YAG laser," Opt.Commun.,282,4288-4291(2009).
    [5]Susumu Konno, Shuichi Fujikawa and Koji Yasui, "80W cw TEMoo 1064nm beam generation by use of a laser-diode-side-pumped Nd:YAG rod laser," Appl.Phys.Lett.,70,2650-2651(1997).
    [6]Sungman Lee, Mijeong Yun, Byung Heon Cha, Cheol Joong Kim, Sungsoo Suk, and Hyun Su Kim, "Stability Analysis of a Diode-Pumped, Thermal Birefringence-Compensated Two-Rod Nd:YAG Laser with 770-W Output Power," Appl. Opt.41,5625-5631 (2002).
    [7]胡春华,毕勇,孙志培,李瑞宁,许祖彦,方高瞻,马骁宇,“连续波500 W全固态Nd:YAG激光器研究,”中国激光,Vol.32,13-15(2005)。
    [8]Ge Zhang, Haiyong Zhu, Chenghui Huang, Jing Chen, Yong Wei, and Lingxiong Huang, "Diode-side-pumped Nd:YAG laser at 1338 nm," Opt. Lett.,34, 1495-1497 (2009).
    [9]Xiao-Long Dong, Bai-Tao Zhang, Jing-Liang He, Hai-Tao Huang, Ke-Jian Yang, Jin-Long Xu, Chun-Hua Zuo, Shuang Zhao, Gang Qiu, Zeng-.Kai Liu, "High-power 1.5 and 3.4μm intracavity KTA OPO driven by a diode-side-pumped Q-switched Nd:YAG laser," Opt. Communiction,282, 1668-1670(2009).
    [10]Bai-Tao Zhang, Hai-Tao Huang, Jian-Fei Yang, Jing-Liang He, Chun-Hua Zuo, Jin-Long Xu, Xiu-Qin Yang, and Shuang Zhao, "Generation of 7.8W at 355nm from an efficient and compact intracavity frequency-tripled Nd:YAG laser," Optics Communications,283,2369-2372(2010).
    [11]Zhu Haiyong, Huang Chenghui, Zhang Ge, Wei Yong, Huang Lingxiong, Chen Jing, Chen Weidong, Chen Zhenqiang, "High-power CW diode-side-pumped 1341 nm Nd:YAP laser," Opt.Commun.,270 296-300(2007).
    [12]张玉萍,高功率全固态绿光激光器的研究,天津大学博士学位论文,2006。
    [13]H.-T. Huang, G. Qiu, B.-T. Zhang, J.-L. He, J.-F. Yang, and J.-L. Xu, "Comparative study on the intracavity frequency-doubling 532 nm laser based on gray-tracking-resistant KTP and conventional KTP," Appl. Opt.48,6371-6375 (2009).
    [14]From SNLO (Select Non-Linear Optics) program.
    [15]Zhi M. Liao, Stephen A. Payne, Jay Dawson, Alex Drobshoff, Chris Ebbers, Dee Pennington, and Luke Taylor, "Thermally induced dephasing in periodically poled KTP frequency-doubling crystals," J. Opt. Soc. Am. B,21,2191-2196 (2004).
    [16]F. J. Kontur, I. Dajani, Yalin Lu, and R. J. Knize, "Frequency-doubling of a CW fiber laser using PPKTP, PPMgSLT, and PPMgLN," Opt. Express,15, 12882-12889 (2007).
    [1]Y. Yashkir and H. M. van Driel, "Passively Q-switched 1.57-μm intracavity optical parametric oscillator," Appl. Opt.,38,2554-2559 (1999).
    [2]R. Dabu, C. Fenic, and A. Stratan, "Intracavity pumped nanosecond optical parametric oscillator emitting in the eye-safe range," Appl. Opt.,40,4334-4340 (2001).
    [3]W. Zendzian, J. K. Jabczynski, and J. Kwiatkowski, "Intracavity optical parametric oscillator at 1572-nm wavelength pumped by passively Q-switched diode-pumped Nd:YAG laser," Appl. Phys. B,76,355-358 (2003).
    [4]Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, "High repetition-rate eye-safe optical parametric oscillator intracavity pumped by a diode-pumped Q-switched Nd:YVO4 laser," Appl. Phys. B,76,263-266 (2003).
    [5]Y. F. Chen, S. W. Chen, Y. C. Chen, Y. P. Lan, and S. W. Tsai, "Compact efficient intracavity optical parametric oscillator with a passively Q-switched Nd:YVO4/Cr4+:YAG laser in a hemispherical cavity," Appl. Phys. B,77,493-495 (2003).
    [6]Yan Zhong, Xiuwei Fan, Haitao Huang, Hongliang Chai, Shudi Pan and Jingliang He, "An Efficient Intracavity-pumped KTP Optical Parametric Oscillator at 1572 nm," Chin. Opt. Lett.,4,646-648(2006).
    [7]Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H.Zhang, "Efficient acoustic-optically Q-switched intracavity Nd:YAG/KTiOAsO4 parametric oscillator,"Appl. Phys. B,92,37-41 (2008).
    [8]J. Miao, J. Peng, B. Wang, H. Tan, and H. Bian, "Compact low threshold Cr:YAG passively Q-switched intracavity optical parametric oscillator," Opt. Commun.,281,2265-2270 (2008).
    [9]Xiao-Long Dong, Bai-Tao Zhang, Jing-Liang He, Hai-Tao Huang, Ke-Jian Yang, Jin-Long Xu, Chun-Hua Zuo, Shuang Zhao, Gang Qiu, Zeng-.Kai Liu, "High-power 1.5 and 3.4μm intracavity KTA OPO driven by a diode-side-pumped Q-switched Nd:YAG laser," Opt. Communiction,282, 1668-1670(2009).
    [10]Y.-Z. Li, H.-T. Huang, J.-L. He, B.-T. Zhang and J.-L. Xu, "High Peak Power Eye-Safe Intracavity Optical Parametric Oscillator Pumped by a Diode-Pumped Passively Q-Switched Nd:GGG Laser," Laser Physics,20,1302-1306(2010).
    [11]Y. F. Chen and L. Y. Tsai, "Comparison between shared cavity and coupled cavityresonators for passively Q-switched Nd:GdVO4 intracavity optical parametric oscillators," Appl. Phys. B,82,403-406(2006).
    [12]Y. F. Chen, K. W. Su, Y. T. Chang, and W. C. Yen, "Compact efficient eye-safe intracavity optical parametric oscillator with a shared cavity cavity configuration," Appl. Opt.46,3597-3601 (2007).
    [13]Y P. Huang, H. L. Chang, Y J. Huang, Y. T. Chang, K. W. Su, W. C. Yen, and Y. F. Chen, "Subnanosecond mJ eye-safe laser with an intracavity optical parametric oscillator in a shared cavity resonator," Opt. Express 17,1551-1556 (2009).
    [14]H.T. Huang, J.L. He, H.W. Yang, S.D. Liu, F.Q. Liu, X.Q.Yang, J.L. Xu, J.F. Yang,and B.T. Zhang, "An investigation on the improved performance of the shared cavity cavity optical parametric oscillators," Optics Communications,284, 616-618(2011).
    [15]Y. T. Chang, Y. P. Huang, K. W. Su, and Y F. Chen, "Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions," Opt. Express 16, 21155-21160(2008).
    [16]H.T. Huang, J.L. He, X.L. Dong, C.H. Zuo, B.T. Zhang, G. Qiu and Z.K. Liu, "High-repetition-rate eye-safe intracavity KTA OPO driven by a diode-end-pumped Q-switched Nd:YVO4 laser," Applied Physics B,90, 43-45(2008).
    [17]Chun-Hua Zuo, Jing-Liang He, Hai-Tao Huang, Bai-Tao Zhang, Zhi-Tai Jia, Chun-Ming Dong, Xu-Tang Tao, "Efficient passively Q-switched operation of a diode-pumped Nd:GGG laser with a Cr4+:YAG saturable absorber," Optics & Laser Technology,41,17-20(2009).
    [18]Hai-Tao Huang, Bai-Tao Zhang, Jing-Liang He, Jian-Fei Yang, Jin-Long Xu, Xiu-Qin Yang, Chun-Hua Zuo, and Shuang Zhao, "Diode-pumped passively Q-switched Nd:Gd0.5Y0.5VO4 laser at 1.34μm with V3+:YAG as the saturable absorber," Opt. Express,17,6946-6951 (2009).
    [19]H.T. Huang, J.L. He, C.H. Zuo, H.J. Zhang, J.Y. Wang, Y. Liu and H.T. Wang, "Co2+:LMA crystal as saturable absorber for a diode-pumped passively Q-switched Nd:YVO4 laser at 1342nm,"Applied Physics B,89,319-321(2007).
    [20]H.-T. Huang, B.-T. Zhang, J.-L. He, J.-F. Yang J.-L. Xu, X.-Q. Yang, S. Zhao, "Diode-pumped passively Q-switching mode-locked Nd:Gd0.5Y0.5VO4/V3+:YAG laser at 1.34μm," Laser Physics Letters,6,775-778(2009).
    [21]Hai-Tao Huang, Shuai-Yi Zhang, Jing-Liang He, Jian-Qiu Xu, Bin Zhao, "Diode-pumped passively Q-switched Nd:Lu0.5Y0.5VO4 laser at 1.34μm with Co2+:LaMgAl11O19 as the saturable absorber," IEEE Photonics Technology Letters.,23,112-114(2011).
    [22]B.T. Zhang, H.T. Huang, J.L. He, J.F. Yang, J.L. Xu, C.H. Zuo, S. Zhao, "Diode-end-pumped passively Q-switched 1.34μm Nd:Gd0.5Y0.5VO4 laser with Co2+:LMA saturable absorber," Optical Materials,31,1697-1700(2009).
    [23]Jin-Long Xu, Hai-Tao Huang, Jing-Liang He, Jian-Fei Yang, Bai-Tao Zhang, Chun-Hua Zuo, Xiu-Qin Yang, Shuang Zhao, "The characteristics of passively Q-switched and mode-locked 1.06μm Nd:GdVO4 laser with V:YAG saturable absorber," Optical Materials,32,522-525 (2010).
    [24]J.-L.Xu, J.-L. He, H.-T. Huang, J.-F. Yang, B.-T. Zhang and C.-Y. Tu, "Performance of diode pumped Yb:Y2Ca3B4O12 laser with V3+:YAG as saturable absorber for passively Q-switched mode-locking operation," Laser Phys. Lett.,7, 198-202(2010).
    [25]R. Feldman, Y. Shimony and Z. Burshtein, "Passive Q-switching in Nd:YAG/Cr4+:YAG monolithic microchip laser," Optical Materials,24, 393-399(2003).
    [26]Jieguang Miao, Baoshan Wang, Jiying Peng, Huiming Tan, Huikun Bian, "Efficient diode-pumped passively Q-switched laser with Nd:YAG/Cr:YAG composite crystal," Optics & Laser Technology,40,137-141(2008).
    [27]H.-X. Wang, X.-Q. Yang, S. Zhao, B.-T. Zhang, H.-T. Huang, J.-F. Yang, J.-L. Xu and J.-L. He, "2 ns-pulse, compact and reliable microchip lasers by Nd:YAG/Cr4+:YAG composite crystal" Laser Physics,19,1824-1827(2009).
    [28]H.-T. Huang, J.-L. He, J.-F. Yang, B.-T. Zhang, J.-L. Xu and S.-D. Liu, "Efficient GTR-KTP IOPO driven by a diode-pumped Nd:YAG/Cr4+:YAG laser with the shared cavity cavity configuration," Applied Physics B,100,471-476(2010).
    [1]G. A. Massey, T. M. Loehr, L. J. Willis, and J. C. Johnson, "Raman and electrooptic properties of potassium titanate phosphate," Appl. Opt.,19, 4136-4137(1980).
    [2]Xu Liwen, Chang Dawei, Niu Hongda and Jia Shouquan, "Observation of raman scattering and fluorescent spectra of KTiOPO4(KTP) crystal," Chin. Phys. Lett.,6, 225-228(1989).
    [3]I. Savatinova, S. Tonchev, T. Popov, E. Liarokapis, and C. C. Ziling, "Raman study of Cs:KTiOPO4 waveguides," J. Phys. D,27,1384-1389 (1994).
    [4]B. MOHAILIADaOnUd G. E. KUGEL, "Raman Scattering from Polar Modes in KTiOPO4 Single Crystals," Phys. Stat. Sol. (B),195,97-111(1996).
    [5]D. D. Tuschel, G. R. Paz-Pujalt, and W. P. Risk, "Chemical bonding and atomic structure of Rb+exchanged KTiOPO4 waveguides probed by micro-Raman spectroscopy," Appl. Phys. Lett.,66,1035-1037(1995).
    [6]Valdas Pasiskevicius,Carlota Canalias and Fredrik Laurell, "Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,"Appl.Phy.Lett., 88,041110(2006).
    [7]李丽霞,王继扬,魏景谦,江守礼,刘耀岗,“掺杂对磷酸钛氧钾单晶拉曼光谱的影响,”人工晶体学报,Vol.27,No.4,335-338(1998)。
    [8]Y. F. Chen, "Stimulated Raman scattering in a potassium titanyl phosphate crystal: simultaneous self-sum frequency mixing and self-frequency doubling," Opt. Lett., 30,400-402 (2005).
    [9]Y. T. Chang, Y. P. Huang, K. W Su, and Y. F. Chen, "Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission," Opt. Express,16,8286-8291 (2008).
    [10]Tasoltan T. Basiev, Alexander A. Sobol, Petr G. Zverev, Vyacheslav V. Osiko, and Richard C. Powell, "Comparative Spontaneous Raman Spectroscopy of Crystals for Raman Lasers," Appl. Opt.,38,594-598 (1999).
    [11]K. H. Fung and I. N. Tang, "Relative Raman Scattering Cross-Section Measurements with Suspended Particles," Appl. Spectrosc.,45,734-737 (1991).
    [12]F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, "The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5," Appl. Phys. Lett., 32,34-36(1978).
    [13]Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. chang, H. Wang, S. S. Zhang, S. Z. Fan, W. J. Sun, G. F. Jin, X. T. Tao, S. J. Zhang, and H. J. Zhang, "A KTiOAsO4 Raman laser," Appl. Phys. B,94,585-588(2009).
    [14]Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. chang, H. Wang, S. Z. Fan, W. J. Sun, X. T. Tao, S. J. Zhang, and H. J. Zhang, "1120 nm second-Stokes generation in KTiOAsO4," Laser Phys. Lett.,6,121-124 (2009).
    [15]Zhaojun Liu, Qingpu Wang, Xingyu Zhang, Sasa Zhang, Jun Chang, Shuzhen Fan, Wenjia Sun, Guofan Jin, Xutang Tao, Youxuan Sun, Shaojun Zhang, and Zejin Liu, "Self-frequency-doubled KTiOAsO4 Raman laser emitting at 573 nm," Opt. Lett.34,2183-2185 (2009).
    [16]Zhaojun Liu, Qingpu Wang, Xingyu Zhang, Sasa Zhang, Jun Chang, Zhenhua Cong, Wenjia Sun, Guofan Jin, Xutang Tao, Youxuan Sun, and Shaojun Zhang, "A diode side-pumped KTiOAsO4 Raman laser," Opt. Express 17,6968-6974 (2009).
    [17]H.T. Huang, J.L. He and Y Wang, "Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser," Applied Physics B, DOI,10.1007/s00340-010-4239-8.
    [18]A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, "Multimode pumped continuous-wave solid-state Raman laser," Opt. Lett.29,2524-2526 (2004).
    [19]Li Fan, Ya-Xian Fan, Yu-Qiang Li, Huaijin Zhang, Qin Wang, Jin Wang, and Hui-Tian Wang, "High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal," Opt. Lett.,34,1687-1689 (2009).
    [20]L. Fan,Y.X. Fan,Y.H. Duan, Q.Wang, H.T. Wang, G.H. Jia, C.Y Tu, "Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser," Appl. Phys. B,94,553-557 (2009).
    [21]Y. F. Chen, "Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser," Opt.Lett.,29,1251-1253(2004).
    [22]Peter Dekker, Helen M. Pask, David J. Spence, and James A. Piper, "Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm," Opt. Express,15,7038-7046 (2007)
    [1]Z. D. Gao, S. N. Zhu, Shih-Yu Tu and A. H. Kung, "Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite," Appl. Phys. Lett.89,181101-181103(2006).
    [2]LEE Dicky, MOULTON Peter F., "A compact OPO-based RGB source,' Proceedings of SPIE,4294,60-66(2001).
    [3]Y. T. Chang, Y. P. Huang, K. W Su, and Y. F. Chen, "Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission," Opt. Express,16,8286-8291 (2008).
    [4]Haisheng Rong, Shengbo Xu, Oded Cohen, Omri Raday, Mindy Lee, Vanessa Sih and Mario Paniccia, "A cascaded silicon Raman laser," Nature Photonics,2,170-174(2008).
    [5]Y. F. Chen, "Stimulated Raman scattering in a potassium titanyl phosphate simultaneous self-sum frequency mixing and self-frequency doubling," crystal: Opt. Lett.30,400-402 (2005).
    [6]Haiyong Zhu, Yanmin Duan, Ge Zhang, Chenghui Huang, Yong Wei, Weidong Chen, Yidong Huang, and Ning Ye, "Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd:YVO4 composite," Opt. Lett. 34,2763-2765 (2009).
    [7]Jing-Liang He, Jun. Liao, Hui Liu, Hui-Tian Wang, S. N. Zhu, Y. Y. Zhu and N. B. Ming. Simultaneous cw red, yellow and green light simultaneous generation,'traffic signal lights', by frequency doubling and sum frequency mixing in aperiodically poled LiTaO3. Appl. Phys. Lett.83,14-16 (2003).
    [8]Jun. Liao, Jing-Liang He, Hui Liu, Hui-Tian Wang, S. N. Zhu, Y. Y. Zhu and N. B. Ming. Simultaneous generation of red, green and blue quasi-continuous wave based on multi-QPM interaction from a single aperiodically poled LiTaO3. Appl. Phys. Lett.82,3109-1311 (2003).
    [9]H. T. Huang, J. L. He, B. T. Zhang, K. J. Yang, C. H. Zuo, J. L. Xu, X. L. Dong and S. Zhao, "Intermittent oscillation of 1064 nm and 1342 nm obtained in a diode-pumped doubly passively Q-switched Nd:YVO4 laser," Applied Physics B,96,815-820(2009).
    [10]J. L. He, J. Du, J. Sun, S. Liu, Y.X. Fan, H. T. Wang, L. H. Zhang and Y. Hang. High Efficiency single-and dual-wavelength Nd:GdVO4 lasers pumped by a fiber-couple diode. Appl. Phys. B,79,301-304 (2004).
    [11]Hai-Tao Huang, Jing-Liang He, Bai-Tao Zhang, Jian-Fei Yang, Jin-Long Xu, Chun-Hua Zuo, and Xu-Tang Tao, "V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser," Opt. Express, 18,3352-3357(2010).
    [12]Haohai Yu, Kui Wu, Bin Yao, Huaijin Zhang, Zhengping Wang, Jiyang Wang, Xingyu Zhang, and Minhua Jiang, "Efficient triwavelength laser with a Nd:YGG garnet crystal," Opt. Lett.35,1801-1803 (2010).
    [13]Walter Koechner, Solid State Laser Engineering, Sixth Revised and updated Edition, Springer, pp.640,2006.
    [14]Hai-Tao Huang, Jing-Liang He, Shan-De Liu, Feng-Qin Liu, Xiu-Qin Yang, Hong-Wei Yang, Ying Yang and He Yang, "Synchronized generation of 1534nm and 1572nm by the mixed optical parameter oscillation," Laser Phys. Lett. DOI 10.1002/lapl.201110004.
    [15]H.T. Huang, J.L. He, S.D. Liu, J.F. Yang,,B.T. Zhang, F.Q. Liu, "Efficient generation of 1096nm and 1572nm by simultaneous stimulated Raman scattering and optical parametric oscillation in one KTiOPO4 crystal," Applied Physics B, DOI,10.1007/s00340-010-4250-0.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700