基于扩频技术的时域音频水印的研究与改进
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着网络技术和多媒体压缩技术的发展,数字多媒体信号(文本、音频、视频和图像信号)可以轻易地被复制、传送和修改。这就使得加强信息安全和保护知识产权成了需要迫切解决的问题,数字水印技术就是其中的一种解决方案。
     数字音频水印技术通过轻微地改变原始数据以在音频信号中嵌入版权等方面的附加信息即水印。本文只讨论用于版权保护的,利用扩频技术在时域嵌入二进制图像数据的音频水印技术。该类水印的主要缺点是:嵌入率较低以及对同步(例如变时间和变调处理)等某些攻击的鲁棒性较差。本文在不对嵌入算法作大改动的前提下,主要在检测(提取)算法中作改进,以提高水印的鲁棒性。改进主要包括三个方面:采用自适应的判决阈值、利用后处理技术抵抗变时间攻击,以及采用基于高通滤波的白化处理抵抗变调攻击。
     传统的检测技术是将相关运算的结果与一个固定的阈值作比较以判断水印信息是“0”还是“1”,该阈值根据实验或经验确定。本文则提出了一种自适应选择阈值的方案,该方案对所有帧的相关结果进行统计分析,找出两个主分布区的分界点,以此作为该音频的最优阈值。实验结果表明,采用这种方式得到的阈值随着音频信号的不同以及攻击手段的不同而不同,尤其是攻击手段对阈值的影响最为明显。自适应阈值的引入不但提高了水印对一般攻击的健壮性,比如高阶低通滤波、重采样、重量化和MPEG压缩,也使得抗击变调攻击成为了可能。
     变时间不变调音效处理是通过有规律地复制或删除信号小片段以改变音频信号的长度。虽然水印同步遭到破坏,但局部数据段没有改变,所以相关检测仍然可以进行,只是音频数据量的改变会导致提取出的信息比特数量的改变,组合出的二进制图像也就可能因变形而无法辨认。本文提出一种简单易行的称作“后处理”的抗变时间攻击的措施,那就是通过内插和抽选两种手段的结合,实现对提取出的信息比特数量的缩放,使其恢复攻击前的尺寸。至于缩放比例的确定,则采取穷举搜索的方式,直到提取出的水印错误率最小,而搜索又分成粗搜索和细搜索两个步骤以提高搜索效率。实验结果表明,该方法对运算量和存储空间的要求不高,对抗击变时间攻击非常有效,当变时间的比例在0.3到2.0的范围内时,水印提取的比特错误率低于16%。
     变调不变时间音效处理是变时间处理和重采样处理的结合。由于重采样采用了对音频信号的均匀抽选和内插处理,所以不存在未被破坏的局部数据段,从理论上讲,无法通过相关检测提取出水印。但是本文根据大量的实验发现,相关运算前的最优线性预测误差滤波器是一个非线性相位的高通滤波器,只要将之替换成线性相位有限脉冲响应高通滤波器,再结合自适应的阈值方案,仍然能够成功地提取出被变调攻击的水印信息。实验结果表明,该方法对抗击变调攻击非常有效,当变调攻击的比例在0.7到2.3的范围内时,水印提取的比特错误率低于15%。考虑到高通滤波处理降低了水印对低通滤波类攻击的鲁棒性,所以最终的检测器是两种检测器(分别采用最优预测误差滤波器和线性相位高通滤波器)的综合,即对两种相关值取最大再作比较判决。另外,两种检测手段的结合使水印对其它攻击的鲁棒性也得到了进一步的提高。
     总之,本文提出的水印检测算法对几乎所有攻击都具有鲁棒性,再加之算法复杂度低,因此具有很好的实用价值。
Recent developments on networks and multimedia compression techniques allow digital media to be copied, transmitted and edited conveniently. This makes enhancing the information security and preserving the intellectual property become urgent problems. One of the possible solutions is digital watermarking.
     Digital audio watermarking embeds additional information namely watermark such as copyright into the audio signal by making small modifications to the original data. This paper focuses on the audio watermarking for copyright protection which embeds the binary image data into the time domain of the audio signal based on the spread-spectrum technique. The main shortcomings of this watermarking are the low embedding rate and the lack of robustness to synchronization attacks (such as time-scale modification and pitch-scale modification). This paper presents some improvements in the detection (extraction) algorithm to increase the robustness without big altering to the embedding algorithm. The improvements involve: adaptive decision threshold, post-processing for resisting time-scale modification and whitening based on high pass filtering for resisting pitch-scale modification.
     The traditional detection techniques extract the information bits by comparing the correlation values against a fixed threshold, which is selected by experiments or experience. This paper proposes a scheme for adaptively selecting the threshold. By analyzing the distribution of the correlation values of all frames, the dividing point between the two distribution regions is chosen for the optimum threshold of this audio. The experiment results show that the optimum threshold varies with host audios and attacks, especially the latter. The adaptive threshold scheme not only makes the watermark more resistant to normal attacks, such as high order filtering, re-sampling, re-quantization and MPEG compression, but also makes it possibly robust against pitch-scale modification.
     Time-scale modification changes the duration of one audio signal by regularly duplicating or discarding small pieces of the original signal. Although the synchronization of watermark is damaged, the local data segments are not changed. So the correlation detection can still be carried out, except that the number of the extracted information bits is changed because of the changing of numbers of the audio samples, and the binary image represented by these information bits can not be identified because of warping. In this paper a simple and practical scheme called post-processing is propose to provide the resistance to time-scale modification. This scheme scales the extracted information bits to their original size by decimating and inserting. The scaling scale is the one corresponding to the minimum detection error found by exhaustively searching. The searching is implemented by a coarse searching and a fine searching to increase the efficiency. The experiment results show that this scheme has low requirement to computation and memory and is very efficient to time-scale modification. The detection error rate is lower than 16% when the time-scale modification scale is between 0.3 and 2.0.
     The pitch-scale modification is implemented by first time-scale modification and then re-sampling. Because of the equal spaced decimating and interpolation, there isn’t any unchanged data segment. In theory, the correlation detection can’t extract the watermark. But by a large number of experiments, we found that the optimum linear prediction error filter before the correlation is a non-linear phase high-pass filter and that the watermark under pitch-scale modification can be extracted successfully by substituting a linear phase high-pass finite impulse response filter for this optimum linear prediction error filter and by making use of the adaptive threshold. The experiment results show that this method is very efficient to pitch-scale modification. The detection error rate is lower than 15% when the pitch-scale modification scale is between 0.7 and 2.3. Considering that the high-pass filtering reduces the robustness to attacks like low-pass filtering, the final detector is the combination of the two detectors (adopting optimum prediction error filter and adopting linear phase high-pass filter respectively), that is to say, maximum of the two kinds of correlation values is taken for comparing. On the other hand, the robustness to other attacks is further improved by combing these two detection schemes.
     In short, the watermark detection algorithm proposed in this paper is very practical because of its robustness to almost all attacks and low computation complexity.
引文
[1]Mitchell D. Swanson, Mei Kobayashi, and Ahmed H. Tewfik,“Multimedia data-embedding and watermarking technologies,”Proceedings of IEEE,Jun.1998,vol.86, no.6, pp.1064-1087.
    [2]李伟,袁一群,李晓强,薛向阳,陆佩忠,“数字音频水印技术综述,”通信学报,2005年2月,第26卷第2期,100-111页。
    [3]杨忠,李万社,刘艳,窦艳妮,“数字水印技术综述,”安康师专学报,2004年12月,第l6卷,第6期,80-84页。
    [4]杨列森,“数字版权保护新技术——数字水印,”现代电视技术,2005年5月,第5期,132-136页。
    [5]张原,吴灏,李梅林,“流媒体加密技术,”郑州轻工业学院学报(自然科学版),2003年12月,第18卷,第4期,13-16页。
    [6]常江,“数字多媒体信息隐藏技术的算法综述及其在数字水印中的应用,”太原师范学院学报(自然科学版),2003年9月,第2卷,第3期,25-28页。
    [7] Venkatraman.S, Ajith Abraham, and Marcin Paprzycki,“Significance of steganography on data security,”Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04),2004, Vol.2, pp.347–351.
    [8]尹浩、林闯、邱锋、丁嵘,“数字水印技术综述,”计算机研究与发展,2005年,第42卷,第7期,1093-1099页。
    [9]孙锐,孙洪,姚天任,“多媒体水印技术的研究进展与应用,”系统工程与电子技术,2003年,第25卷,第6期,772-776页。
    [10] Frank Hartung, and Martin Kutter,“Multimedia watermarking techniques”, Proceedings of IEEE, July 1999, VOL.87, NO.7, pp.1079-1107.
    [11]王让定,柴佩琪,“一种易损性音频数字水印技术,”计算机工程与应用,2003年,第39卷,第30期,38-40页。
    [12]侯振华,陈生潭,“脆弱性数字水印研究,”计算机应用,2003年12月,第23卷,106-108页。
    [13] Chia-Hsiung Liu, and O.T.-C.Chen,“Fragile speech watermarking scheme with recovering speech contents,”The 2004 47th JEJZE International Midwest Symposium on Circuits and Systems (MWSCAS '04), July 2004, vol.2,pp.II-165 - II-168.
    [14] Chuhong Fei, Deepa Kundur, and Raymond H. Kwong,“Analysis and design of secure watermark-based authentication systems”, IEEE Transactions on Information Forensics and Security, March 2006, vol.1, no.1, pp.43-55.
    [15] Chiou-Ting Hsu and Ja-Ling Wu,“Hidden Digital Watermarks in Images”, IEEE Transactions on image processing, Jan.1999, vol.8, no.1, pp.58-68.
    [16]J. R. Smith, B.O. Comisky,“Modulation and information hiding in images”, Proceedings of the First International Information Hiding Workshop, May 1996, vol.1174, pp.207-226.
    [17] Chien-Chang Chen, Kang-Chih Fan, and Sheng-Wen Wang,“A wavelet-based public key image authentication watermarking,”Proceedings of the IEEE 37th Annual 2003 International Carnahan Conference on Security Technology, Oct. 2003, pp.321–324.
    [18] Hae Yong Kim, Amir Afif,“Secure authentication watermarking for binary images,”Proceedings of the 2003 XVI Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI’03), Oct.2003, pp.199–206.
    [19] van Schyndel, R.G.; Tirkel, A.Z.; Osborne, C.F.,“A digital watermark,”Proceedings of the IEEE 1994 International Conference on Image Processing (ICIP’94), Nov. 1994, vol.2, pp.86–90.
    [20] Ingemar J. Cox, Joe Kilian, F. Thomson Leighton, and Talal Shamoon,“Secure spread spectrum watermarking for multimedia,”IEEE Transactions on Image Processing, Dec.1997, vol. 6, no. 12, pp.1673-1687.
    [21] Chia H. Yeh, Chung J. Kuo,“Digital watermarking through quasi m-arrays,”IEEE Workshop on Signal Processing Systems 1999( SiPS’99) , Oct. 1999, pp.456-461.
    [22] Gui Xie, Hong Shen,“Toward improved wavelet-based watermarking using the pixel-wise masking model,”IEEE International Conference on Image Processing 2005(ICIP 2005), Sept. 2005, vol.1, pp.689-692.
    [23] Xiaoqiang Li, Xiangyang Xue,“Optimized model embedding invisible robust watermark,”Proceedings of the 7th International Conference on Signal Processing 2004(ICSP'04), Aug./Sept. 2004, vol.3, pp.2290–2293.
    [24] Mohsen Ashourian, Reza Enteshary,“A new masking method for spatial domain watermarking of three-dimensional triangle meshes,”TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region, Oct. 2003, vol.1, pp. 428-431.
    [25] Chao Wu, Wei-Ping Zhu, and M.N.S. Swamy,“A watermark embedding scheme in wavelet transform domain”, IEEE TENCON 2004 Region 10 Conference, Oct. 2003, vol. A, pp.279-282, Nov. 2004.
    [26] Yu-Ping Hu, De-Zhi Han,“Wavelet-based readable watermarking algorithm using adaptive quantization,”Proceedings of 2004 International Conference on MachineLearning and Cybernetics, Aug. 2004, vol.7,pp. 4076-4080.
    [27] Taskovski, D., Bogdanova, S., and Bogdanov, M.,“Blind watermarking via low frequency component modification,”2003. 4th EURASIP Conference focused on Video/Image Processing and Multimedia Communications, July 2003, vol.2, pp.701–706.
    [28] Wenjun Zeng, Shawmin Lei,“Digital watermarking in a perceptually normalized domain,”1999. Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems and Computers, Oct. 1999, vol.2, pp.1518–1522.
    [29] T. P. Chen, T. Chen,“A framework for optimal blind watermark detection,”Proc. of ACM Multimedia 2001 Workshop on Multimedia and Security, Oct. 2001, pp.151–154.
    [30] F. Hartung, B. Girod,“Digital Watermarking of MPEG-2 Coded Video in the Bitstream Domain,”Proceedings of 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’97), Apr. 1997, vol.4, pp.2621-2624.
    [31] Jack Lacy, Schuyler R. Quackenbush, Amy R. Reibman, David Shur, and James H. Snyder,“On combining watermarking with perceptual coding,”Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, May 1998, 1998 (ICASSP’98), vol.6, pp.3725– 3728.
    [32]季智,戴旭初,“数字水印攻击技术及其对策分析,”测控技术,2005年,第24卷,第5期,14-17页。
    [33] Rangding Wang, Peiqi Chai,“A new adaptive audio watermarking algorithm for copyright protection,”Proceedings of 2003 International Conference on Natural Language Processing and Knowledge Engineering, Oct. 2003, pp.281-286.
    [34] Paraskevi Bassia, Ioannis Pitas, and Nikos Nikolaidis,“Robust Audio Watermarking in the Time Domain,”IEEE Transactions on Multimedia, June 2001, vol. 3, no. 2, pp.232-241.
    [35]侯丽萍,李清玲,吴海燕,“音频数字水印技术及算法研究,”电脑知识与技术,2007年,第12期,531-536页。
    [36]周宏,陈健,“数字音频水印,”电声技术,2002年7月,第7期,10-14页。
    [37]周新法,施化吉,李星毅,徐慧,“数字音频水印技术,”电声技术,2004年9月,第9期,62-67页。
    [38]吴绍权,“数字音频水印技术研究,”[博士学位论文],中山大学,2005年5月。
    [39]姜甜,窦维蓓,“音频质量客观评价方法的综合与实现,”电声技术,2005年,第7期,41-44页。
    [40]刘颖,张萍,丁庆生,“音频编解码算法的客观测试,”现代电子技术,2006年,第29卷,第10期,126-128页。
    [41]丰树谦,李体红,“基于数字水印算法的性能测试研究,”软件导刊,2007年8月,第8期,138-139页。
    [42] Mitchell D. Swanson, Bin Zhu, Ahmed H. Tewfik, and Laurence Boney,“Robust audio watermarking using perceptual masking”, Signal Processing, 1998 , vol.66, no.3, pp.337-355.
    [43] ISO/IEC MPEG,“Coding of moving pictures and associated audio for digital storage media at up to 1.5 Mbps,”ISO/IEC 11172-2 (MPEG-1), 1992.
    [44] Nedeljko Cvejic, Tapio Sepp?nen,“Increasing the capacity of LSB-based audio steganography,”2002 IEEE Workshop on Multimedia Signal Processing, Dec. 2002, pp.336-338.
    [45] Nedeljko Cvejic, Tapio Sepp?nen,“Increasing robustness of LSB audio steganography using a novel embedding method,”Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04) , 2004, vol.2, pp. 533-537.
    [46] Nedeljko Cvejic, Tapio Sepp?nen,“Reduced distortion bit-modification for LSB audio steganography”, Proceedings of 2004 7th International Conference on Signal Processing (ICSP '04), Aug./Sept. 2004, vol.3, pp.2318-2321.
    [47]张卫,高政,“StirMark基准测试程序在数字水印方案评价中的应用,”电视技术,2004年,第8期,75-77页。
    [48] C. Neubauer,J. Herre,“Advanced audio watermarking and its applications,”109th AES Convention, Audio Engineering Society preprint 5176, Sept. 2000.
    [49] P. Chen, T. Chen.“A framework for optimal blind watermark detection,”Proceedings of the 2001 workshop on Multimedia and security: new challenges, 2001, pp. 11–14.
    [50] ITU-R,“Recommendation BS.1116 \methods for the subjective assessment of small impairments in audio systems including multichannel sound systems,”Technical Report, ITU, Nov. 1993.
    [51]李力利,“基于定点DSP的mp3音频编码算法研究及实现,”电子技术应用,2003年10月,第29卷,第10期,51-53页。
    [52]陈健,李力利,陈亚骏,“MUSICAM算法仿真及DSP实现,”上海交通大学学报,1997年1月,第31卷,第1期,62-65页。
    [53] Tal Mizrahi, Eran Borenstein, George Leifman, Yuval Cassuto, Michael Lustig, Shay Mizrachi, and Nimrod Peleg ,“Real-time implementation for digital watermarking in audio signals using perceptual masking,”The 3rd European DSP Education and Research Conference, ESIEE, Sept. 2000.
    [54] Cvejic, N.,Keskinarkaus, A.,Seppanen, T.,“Audio watermarking using m-sequences and temporal masking,”2001 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Oct. 2001, pp.227–230.
    [55]王让定,徐达文,陈金儿,“基于频率掩蔽效应的自适应音频数字水印技术,”计算机工程与应用,2004年,第40卷,第15期,31-33页。
    [56]茹国宝,杨锐,孙洪,杨勇,“基于RLS自适应算法的音频数字水印检测技术,”武汉大学学报(理学版),2003年2月,第49卷,第1期,127-131页。
    [57] Boney, L., Tewfik, A.H., Hamdy, K.N.,“Digital watermarks for audio signals,”1996., Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems, June 1996, pp. 473–480.
    [58]戴承蓉,“基于扩频技术的数字音频水印系统的设计,”[硕士学位论文],上海交通大学,2005年9月。
    [59]王让定,柴佩琪,“基于听觉模型的自适应音频数字水印盲检算法,”同济大学学报(自然科学版),2004年11月,第32卷,第11期,1516-1520页。
    [60] Charalampos hftsidis, Anastasios Tefas, Nikolaos Nikolaidis, and Ioannis Pitas,“Robust multibit audio watermarking in the temporal domain,”Proceedings of the 2003 International Symposium on Circuits and Systems, 2003 (ISCAS '03) , May 2003, vol.2, pp.II-944-947.
    [61] Jong Won Seok, Jin Woo Hong,“Audio watermarking for copyright protection of digital audio data,”Electronics Letters, Jan. 2001, vol.37,no. 1,pp.60–61.
    [62]J . Seok, J. Hong, and J. Kim.“A Novel Audio Watermarking Algorithm for Copyright Protection of Digital Audio,”ETRI Journal, June 2002, vo1.24, no.3, pp.181-189.
    [63] Shuifa Sun, Sam Kwong,“A self-synchronization blind audio watermarking algorithm,”Proceedings of 2005 International Symposium on Intelligent Signal Processing and Communication Systems, Dec. 2005, pp.133-136.
    [64]白红哲,王亮,孙晓岩,“盲音频数字水印算法,”哈尔滨理工大学学报,2005年6月,第10卷,第3期,118-120页。
    [65]徐达文,王让定,“基于线性预测的小波域音频数字水印盲检算法,”计算机工程与应用,2004年,第40卷,第34期,78-80页。
    [66] X. He, A.I. Illiev, M.S. Scordilis,“A high capacity watermarking technique for stereo audio,”Proceedings of the 2004 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’04), May 2004, vol.5, pp. V-393-396.
    [67]王卓,赵千川,“基于能量量化的音频水印算法,”计算机工程与应用,2004年,第40卷,第26期,48-51页。
    [68] Wen-Nung Lie and Li-Chun Chang,“Robust and high-quality time-domain audio watermarking subject to psychoacoustic masking,”IEEE International Symposium on Circuits and Systems, May 2001, vol. 2, pp.II-45–48.
    [69] Wen-Nung Lie, Li-Chun Chang,“Robust and high-quality time-domain audio watermarking based on low-frequency amplitude modification,”IEEE Transactions on Multimedia, Feb. 2006, vol. 8, no.1,pp.46–59.
    [70] Chen, B., Wornell, G.W.,“Quantization index modulation: a class of provably good methods for digital watermarking and information embedding,”IEEE Transactions on Information Theory, May 2001, vol. 47,no. 4,pp.1423–1443.
    [71]马田,张新鹏,王朔中,“数字音频信号中的频域扰动调制水印嵌入,”信号处理,2002年6月,第18卷,第3期,202-207页。
    [72] Yi-Wen Liu,Smith, J.O.,“Watermarking sinusoidal audio representations by quantization index modulation in multiple frequencies”, Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, May 2004, 2004. (ICASSP '04), vol.5, pp.V-373-376.
    [73] A.Z.Tirkel, G.A.Rankin, R. M. van Schyndel, W. J. Ho, N. R. A. Mee, and C. F. Osborne,“Electronic watermark,”Digital Image Computing, Technology and Applications (DICTA’93), 1993, pp. 666- 673.
    [74] Hong Wang, Ling Lu, Dashun Que, and Junbo Huang,“Adaptive audio digital watermark algorithm based on m-sequence modulation,”Proceedings of 2004 7th International Conference on Signal Processing (ICSP '04), Aug./Sept. 2004, vol.3, pp. 2401-2404.
    [75] Tio, C.M.M., McLoughlin, I.V., and Adi, R.W.,“Perceptual audio data concealment and watermarking scheme using direct frequency domain substitution,”IEE Proceedings of Vision, Image and Signal Processing, Dec. 2002, vol. 149,no. 6,pp.335– 340.
    [76] Garcia, A.R.,“Digital waltermarking of audio signals using a psychoacoustic auditory model and spread spectrum theory,”107th AES-convention, preprint 5073,Sept. 1999.
    [77]李云剑,陈亮,张雄伟,“基于心理声学模型的自适应音频数字水印算法,”中山大学学报(自然科学版),2004年11月,第43卷,增刊2,204-208页。
    [78]杨红颖,王向阳,赵红,“用于音乐作品版权保护的数字音频水印算法,”微电子学与计算机,2004年,第21卷,第8期,13-15页。
    [79] Wei Li, Xiangyang Xue, and Peizhong Lu,“Localized audio watermarking technique robust against time-scale modification,”IEEE Transactions on Multimedia, Feb. 2006, vol. 8, no. 1, pp.60– 69.
    [80]梁娟,朱忠军,“基于心理声学模型的自适应音频数字水印算法,”现代电子技术,2004年,第27卷,第20期,18-21页。
    [81] Jiwu Huang, Yong Wang, and Yun Q.Shi,“A blind audio watermarking algorithm with self-synchronization,”IEEE International Symposium on Circuits and Systems 2002(ISCAS 2002), May 2002, vol.3, pp.III-627– III-630.
    [82] Foo Say Wei, Xue Feng, and Li Mengyuan,“A blind audio watermarking scheme using peak point extraction,”IEEE International Symposium on Circuits and Systems, 2005 (ISCAS 2005), May 2005, vol. 5, pp.4409– 4412.
    [83] Mat Hans, Ronald W. Schafer,“Lossless compression of digital audio,”IEEE Signal Processing Magazine, July 2001, vol.18, no.4, pp.21-32.
    [84]刘伟,王朔中,张新鹏,“一种基于部分MP3编码原理的音频水印,”中山大学学报(自然科学版),2004年11月,第43卷,增刊2,26-28页。
    [85] S. Ratanasanya, S.Poomdaeng, S. Tachphetpiboon, and T.Amornraksa,“New psychoacoustic models for wavelet based audio watermarking,”IEEE International Symposium on Communications and Information Technology, 2005. (ISCIT 2005), Oct. 2005, vol.1, pp.602–605.
    [86] Xiaomei Quan, Hongbin Zhang,“Audio watermarking for copyright protection based on psychoacoustic model and adaptive wavelet packet decomposition,”Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, Oct. 2004, pp.282–285.
    [87] N. Cvejic, T. Seppanen,“A novel scheme for merging digital audio watermarking and authentication,”2004 IEEE 6th Workshop on Multimedia Signal Processing, Sept./Oct. 2004, pp.151–154.
    [88] Changsheng Xu, Yongdong Wu, Namunu C. Maddage and Qi Tian“Content-based Digital Watermarking for All Audio Formats,”2002 International Computer Symposium (2002 ICS), Workshop on multimedia technologies,2002.
    [89] Shinya Saito, Toshihiro furukawa, Katsumi Konishi,“A digital watermarking for audio data using band division based on QMF bank,”Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, May 2002, 2002. (ICASSP'02). vol. 4, pp. IV-3473-3476.
    [90]Wen-Chih Wu, OScal T.-C. Chen,“Analysis-by-synthesis echo hiding scheme using frequency hopping,”2007 IEEE International Conference on Multimedia and Expo (ICME’07), July 2007, pp.1766–1769.
    [91] Lintian Qiao, Klara Nahrstedty,“Non-invertible watermarking methods for MPEG nncoded audio,”SPIE Proceedings on Security and Watermarking of Multimedia Contents, 1999, pp. 194-202.
    [92]University of Cambridge, Computer Laboratory, MP3Stego[OL], http://www.cl.cam.ac.uk/~app2/steganography/MP3Stego/index.html, 2008
    [93]梁敬弘,王道顺,黄连生,戴一奇,“对MP3Stego的攻击研究,”计算机辅助设计与图形学学报,2003年8月,第15卷,第8期,954-960页。
    [94]谢完成,“一种MP3音乐强健数字水印的实现方法,”计算机应用,2003年12月,第23卷,第12期,114-117页。
    [95] Ching-Te Wang,Tung-Shou Chen, and Wen-Hung Chao,“A new audio watermarking based on modified discrete cosine transform of MPEG audio layer III,”Proceedings of the 2004 IEEE International Conference on Networking, Sensing and Control, March 2004, vol. 2, pp. 984-989.
    [96] A. Gurijala, J.R. Deller, Jr.,“Robust algorithm for watermark recovery from cropped speech,”Proceedings of 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '01), May 2001, vol. 3, pp.1357-1360.
    [97]刘九媞,“数字音频水印同步攻击问题研究,”黑龙江大学硕士学位论文,2008年5月。
    [98] Alaryani, H., Youssef, A.,“A novel audio watermarking technique based on low frequency components,”Proceedings of the Seventh IEEE International Symposium on Multimedia (ISM’05), Dec. 2005, pp.1-6.
    [99] D. Kirovski, H. Malvar,“Robust spread-spectrum audio watermarking,”2001 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2001), May 2001, vo1.3, pp.1345-1348.
    [100] Kirovski D., Attias H.,“Audio watermark robustness to desynchronization via beat detection,”Proceedings of the International Conference on Information Hiding, 2002, pp. 160-176.
    [101] John G. Proakis,“Digital communications(4th edition),”Mc Graw Hill, 2001.
    [102] Wei Li,Xiangyang Xue,“Audio watermarking based on music content analysis: robust against time scale modification,”2003,Second International Workshop on Digital Watermarking(IWDW 2003), Oct. 2003,pp.289-300.
    [103]MPEG,“MPEG–2 advanced audio coding (AAC),”International Standard IS13818–7, ISO/IEC JTC1/SC29 WG11, 1997.
    [104]“关于语音编码的主观评价方法,”http://www.txrzx.com/content_index.asp? d_classid=1&id=212,2008年12月。
    [105] Davis Pan,“A tutorial on MPEG/audio compression,”IEEE Multimedia, 1995, vol.2, no.2, pp. 60-74.
    [106] D. K. Koukopoulos, Y.C. Stamatiou,“A compressed-domain watermarking algorithm for Mpeg audio layer 3,”http://woodworm.cs.ume.edu/iprice/cp /koukopoulos/
    [107]MPEG,”Psychoacoustics,”http://www.mpeg.org/~tristan/MPEG/MPEG-content. html, 1997.
    [108] Michael Arnold,“Subjective and objective quality evaluation of watermarked audio tracks,”Proceedings of the Second International Conference on WEB Delivering of Music (WEDELMUSIC’02), Dec. 2002, pp. 161-167.
    [109] Hongseok Kim,“Stochastic model based audio watermark and whitening filter for improved detection,”Proceedings of 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'00), June 2000, vol.6, pp.1971-1974.
    [110] Darko Kirovski, Henrique Malvar,“Spread-spectrum audio Watermarking: requirements, applications, and limitations,”2001 IEEE Fourth Workshop on Multimedia Signal Processing, Oct. 2001, pp.219-224.
    [111] Kaliappan Gopalan,“Robust watermarking of music signals by cepstrum modification,”IEEE International Symposium on Circuits and Systems, 2005 (ISCAS 2005), May 2005, pp.4413-4416.
    [112] Hafiz Malik, Ashfaq Khokhar, and Rashid Ansari,“Robust audio watermarking using frequency selective spread spectrum theory,”Proceedings Of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004. (ICASSP '04), May 2004, vol.5,pp.V-385-388.
    [113] A. V. Oppemheim, R. W. Schafer, and J. R. Buck,“Discrete-time signal processing (2nd edition),”Prentice Hall, 1999.
    [114] Jean Luroche,“Autocorrelation method for high-quality time/pitch-scaling,”Final Program and Paper Summaries of 1993 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Oct. 1993, pp.131– 134.
    [115]皇甫堪,陈健文,楼生强,“现代数字信号处理,”电子工业出版社,2003年。
    [116]W.Tan, S. Yang, Y. Chen, J. Zhou,“Research on DFT Domain Digital Audio Watermarking Algorithm Based on Quantization,”Education Technology and Computer Science, 2009, First International Workshop on (ETCS '09) , Mar. 2009, vol. 3, pp.736– 739.
    [117] B. Lei, I.Y. Soon,“Audio Watermarking for DRM Based on Chaotic Map,”Computer Engineering and Technology, 2009, International Conference on, Jan.2009, vol.1,pp.55–59.
    [118] H. Malik, r. Ansari, A. Khokhar,“Robust audio watermarking using frequency-selective spread spectrum,”Information Security, IET, Dec. 2008, vol. 2, Issue 4, pp.129– 150.
    [119]排序算法汇总,http://www.iwanna.cn/archives/2009/05/03/929/,2009年。
    [120] S.Xiang, H.J.Kim, and J.Huang,“Audio watermarking robust against time-scale modification and MP3 compression,”Signal Processing, Oct.2008, vol. 88, Issue 10, pp. 2372-2387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700