人肿瘤坏死因子α联合溴隐亭逆转肝细胞肝癌多药耐药性体内外实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝癌(Hepatocellular carcinoma,HCC)是人体最常见的恶性肿瘤之一。以手术为主的个体化综合治疗已成为目前肝癌治疗的规范化治疗方案。化疗作为肝癌一项重要的辅助治疗手段在临床仍占据重要的地位,但多药耐药现象的产生却是制约着化疗效果的重要因素之一。
     近年来,寻找更加有效的基因治疗手段和高效、低毒的药物治疗肝癌的耐药问题仍是学者们研究的热点课题之一。因为任何单一的手段逆转肝癌的多药耐药现象面对复杂的耐药机制均不能达到理想的治疗效果,联合两种有效的方法更有可能达到显著增强化疗药物毒效的目的。研究发现利用基因工程技术将细胞因子基因转染肿瘤细胞,可克服其全身应用的副反应,且细胞因子释放到肿瘤周围可增加其刺激机体免疫机能的抗肿瘤作用,并且可改变肿瘤细胞对其它治疗方法如化疗的敏感性。人肿瘤坏死因子(hTNF-α)是迄今为止所发现的抗肿瘤活性最强的细胞因子之一。另有学者发现溴隐亭有抑制ATP酶的活性从而抑制P-gp的药物外泵功能。溴隐亭是一种D_2多巴胺受体拮抗剂,临床上主要用于治疗巴金森氏综合征和肢端肥大症,由于其毒副作用少而易于被患者接受。本实验即是联合人肿瘤坏死因子(hTNF-α)和溴隐亭对肝癌耐药性的治疗进行了系统的体内外实验研究,共分以下四部分。
     第一部分真核表达载体pBK-hTNFα的构建及其在人肝癌耐药细胞株HepG_2/ADM中的稳定表达
     目的:构建可在真核细胞内表达人肿瘤坏死因子alpha(hTNF-α)基因的真核表达载体。经脂质体转染人肝癌耐药细胞株HepG_2/ADM,建立稳定表达hTNF-α基因的细胞模型,为基因治疗奠定基础。
     方法:应用RT—PCR的方法从分离的正常人外周血单核细胞(经脂多糖,LPS刺激)中,扩增出hTNF-αcDNA,连接至载体pMD18-T vector中,经酶切鉴定与序列测定证实;以亚克隆法构建于真核表达载体pBK—CMV的相应酶切位点,转化至大肠杆菌DH5α,最后将表达的pBK-hTNFα重组蛋白行SDS-PAGE电泳,并作考马斯亮蓝染色分析,Westernblot鉴定;经脂质体Lipofectamine2000转染HepG_2/ADM细胞后,经G418筛选,通过ELISA、RT-PCR方法检测其在体外转染肝癌耐药细胞HepG_2/ADM后hTNFα基因和蛋白的表达。
     结果:自正常人外周血单核细胞中克隆的hTNF-αcDNA成功连接到pMD18-T vector,用BamHⅠ和HindⅢ双酶切、经序列测定证实,与Genbank的序列完全一致;pBK-hTNFα的克隆表达重组蛋白经Westernblot证实此蛋白为hTNFα。克隆基因正确插入载体pBK-CMV中。pBK-hTNFα经脂质体介导转染肝癌耐药细胞后,ELISA、RT-PCR方法检测到其在转染的细胞中稳定表达。
     结论:通过DNA重组技术成功地构建了可在体外稳定表达hTNF-αcDNA全长的真核表达载体pBK-hTNFα。
     第二部分人肿瘤坏死因子α联合溴隐亭对肝癌耐药细胞株化疗敏感性的研究
     目的:研究溴隐亭(Bromocriptine,BCT)联合人TNF-α基因(human tumor necrosis factor-α,hTNFα)处理人肝癌耐药细胞株HepG_2/ADM对化疗敏感性的影响。
     方法:首先脂质体法将hTNFα基因转染耐药细胞HepG_2/ADM,ELISA法检测转染细胞后上清液hTNFα的含量及RT-PCR方法检测转染细胞hTNFα基因表达情况;实验共分4组:空白对照组HepG_2(A)、耐药组HepG_2/ADM(B)、转染hTNFα基因组(C)及联合BCT和hTNFα组(D);分别用流式细胞仪检测各组罗丹明123的细胞内潴留率变化、MTT法检测C、D两组细胞耐药指数的变化以及用免疫组化、Westernblot和PT-PCR方法测定各组PKC-α、P-gp蛋白、MDR1mRNA的表达变化,流式细胞仪检测Bcl-2蛋白表达,同时流式细胞仪检测各组肿瘤细胞化疗后凋亡的变化。
     结果:检测转染hTNFα基因耐药细胞组上清液hTNFα有明显表达,且扩增出hTNFα基因条带,说明转染成功。MTT测定C、D两组之间耐药逆转率有显著统计学意义(P<0.01),罗丹明123潴留率实验发现C、D两组均有明显增强其潴留的作用且两组之间差异显著(P<0.01);P-gp蛋白和MDR1基因表达显示C、D两组之间MDR1基因和P-gp蛋白的表达无统计学差异(P>0.05),但C与B组之间比较有显著统计学意义(P<0.01);PKC-α蛋白表达在D组明显下调(P<0.01);B组细胞Bcl-2蛋白表达明显增强,C、D组细胞Bcl-2蛋白表达明显下调,与A组比较均有统计学意义(P<0.01),但C、D组细胞Bcl-2蛋白表达无统计学意义(P>0.05)。流式测定细胞凋亡率C组与D组比较有显著统计学意义(P<0.01),D组与A组比较差异无显著性(P>0.05)。
     结论:溴隐亭和hTNFα通过不同的机制逆转肿瘤的多药耐药性,两者联合明显加强抗肿瘤药物对细胞的毒力。
     第三部分B超引导下裸鼠原位肝细胞癌多药耐药模型的建立
     目的:B超引导下建立裸鼠原位肝癌多药耐药模型。
     方法:含10%胎牛血清的1640培养基培养人肝癌细胞系HepG_2和多药耐药细胞系HepG_2/ADM(盐酸多柔比星,Adriamycin),分别在B超引导下将HepG_2和HepG_2/ADM两种细胞经皮种植于裸鼠的肝包膜下建立原位肝癌模型(分别为对照组15只、耐药组15只)。用B超、剖腹探查检测两组肝脏肿瘤生长情况。利用长链PCR技术对耐药细胞系HepG_2/ADM和相应种植瘤组织MDRi基因全长进行扩增并测序,再分别用RT-PCR、免疫组化、Westernblot方法检测两组肿瘤耐药基因MDR1mRNA和P-gp蛋白的表达。
     结果:原位肝脏种植肿瘤成瘤率均为100%(30/30),耐药诱导成功率为100%(15/15);用长链PCR技术对耐药细胞系HepG_2/ADM和相应种植瘤组织进行MDR1基因扩增,均能扩增出全长为3.8Kbp基因条带,双向DNA测序结果均与Genebank报道一致。耐药组MDR1mRNA和P-gp蛋白(Westernblot)的表达均明显高于对照组(t_1=3.72,t_2=2.98,P<0.01)。免疫组化结果示耐药组P-gp蛋白表达为(42.6±1.7)%远高于对照组(2.6±0.1)%,两者有极显著差异(t=6.43,P<0.01)。同时对耐药细胞系HepG_2/ADM种植瘤第2周及第8周时肿瘤组织应用蛋白印迹技术进行P-gp蛋白测定显示其表达无统计学意义(t=1.27,P>0.05),说明在短期内进行多药耐药研究的可靠性。
     结论:成功在B超引导下建立肝癌多药耐药动物模型为研究肝癌多药耐药逆转提供动物平台。
     第四部分人肿瘤坏死因子-α联合溴隐亭对人肝癌裸鼠耐药模型耐药性逆转的研究
     目的:研究人肿瘤坏死因子α(hTNFα)基因(Human tumor necrosiS factor-α,hTNFα)联合溴隐亭(Bromocriptine,BCT)对人肝癌裸鼠耐药模型耐药性逆转的作用。
     方法:将人肝癌细胞系HepG_2、耐药细胞系HepG_2/ADM和耐药细胞转染hTNFα基因后再分别原位种植裸鼠肝脏[分别称对照组(HepG_2组,A)、耐药组(ADM组,B)、转染组],建立原位人肝癌耐药模型。其中转染组再分两组[一组单纯转hTNFα基因组称(hTNF组,C),另一组加口服溴隐亭称联合治疗组(BCT组,D)];每组同时设对照组(注射生理盐水)和化疗组(联合小剂量持续化疗),B超观察种植瘤的大小变化,病理观察组织学结构及裸鼠生长状况和化疗药物的敏感性。采用免疫组化和逆转录—聚合酶链反应(RT-PCR)检测各种植瘤的相关耐药基因MDR1和LRP在mRNA水平、蛋白水平的变化,原位凋亡检测法(TUNEL法)检测化疗后肿瘤组织凋亡指数情况。SPECT检测种植瘤裸鼠在服用溴隐事前后各组分别注射~(99m)Tc-methoxyisobutyl isonitrile(MIBI)在肝脏肿瘤部位的潴留情况。
     结果:原位种植成功率100%,种植瘤组织学特点符合人肝癌特征;转染组种植组肿瘤生长速度最慢,与其它两组比较有显著差异(P<0.05)。采用相同的化疗方案治疗14天后发现BCT组质量抑瘤率(67%)最明显,大于HepG_2组质量抑瘤率(54%),与其他两组均有显著差异(P<0.01)。RT-PCR结果只有单纯转染hTNF组和联合治疗组(BCT组)扩增出hTNFα基因条带(725bp),四组均有MDR1和LRPmRNA表达,组间差异显著(P<0.05);免疫组化显示hTNFα和BCT组肿瘤组织MDR1蛋白表达与ADM组比较有显著差异(P<0.01),凋亡指数(TUNEL法)比ADM组均明显增高(P<0.05),且hTNFα和BCT两组之间亦有显著性差异(P<0.05),但与HepG_2组之间比较均无差异(P>0.05)。SPECT检测发现转染hTNFα基因组和联合口服溴隐亭后肝肿瘤组织对~(99m)Tc-MIBI的潴留率较耐药组明显提高(P<0.01)。
     结论:TNFα基因能下调MDR1和LRPmRNA及蛋白表达,联合溴隐亭能加强对化疗药物的敏感性,降低耐药肝癌细胞的致瘤性。
Human hepatocellular carcinoma (HCC) is one of the most common malignancy tumors. General given by individual treatment but giving priority to operation had been become the standard therapy project for HCC. Chemotherapy, as a critical adjuvant treatment method, still hold the important status in clinical therapy, but the MDR phenomena was one of the major factors which are restrict the chemotherapy effect.
    In recent years, to find an effective gene therapy method and high effective but low virulence drugs for HCC treatment was still the hot topic for the scholars. Any single method for reversing HCC multidrug resistance couldnot obtain the ideal treatment effect because of the complicated mechanism to MDR, and combining two effective means were more likely to win enhancing the susceptibility of HCC cells to cytotoxic drugs. However, cytokines administered by the conventional intravenous method can cause severe side effects. Transduction of cytokine genes into tumor cells constitutes an alternative approach for production and release of the cytokine proteins in the local tumor microenvironment, which may reduce problems of toxicity associated with systemic administration but enhance the susceptibility of the tumor cells to the cytotoxic drugs. Human tumor necrosis factor-a was one of the most powerful anti-cancer cytokines up to now. Some scholars also found that BCT, described as a dopaminergic receptor agonist, could inhibit the P-gp ATPase activity and modulates P-glycoprotein function. BCT is used in clinics to treat hyperprolactinemia and Parkinson's disease and accepted by patients because of its little side-effect. Therefore systemic study on reversing HCC multidrug resistance combining with human tumor necrosis factor-a and bromocriptine would be carried through in this experiment which concludes four parts: Part 1 Construction of a recombinant eukaryotic vector
    expressing human tumor necrosis factor alpha and
    expressing stably in cell line HepG_2/ADM
    [Objective] To construct a eukaryotic expression vector expressing human tumor necrosis factor alpha(hTNF-α) and expressing stably in cell line HepG_2/ADM.
    [Methods) The full length gene of hTNFα cDNA was identified and cloned(cDNA) from human monocyte stimulated by LPS using reverse transcription polymerase chain reaction(RT-PCR). The cDNA was incorporated into the pMD18-T plasmid and then inserted into a dual expression vector pBK-CMV and called pBK-hTNF-α. Furthermore, pBK-hTNF-α vector was used to infect E.coli DH5α. The expression of the recombinant hTNFα protein(rhTNFα) by E.coli DH5α was analyzed using SDS-PAGE and westernblot test. After gene sequence of hTNFα was confirmed by cleavage of restriction enzymes and DNA sequence analyzed, expression of hTNFα mRNA and protein of hTNF-α transfected into drug resistant cell line HepG_2/ADM were detected by RT-PCR and ELISA.
    [Results] The sequence of hTNFα cDNA cloned from human monocyte was completely correct,compared with the sequence in Genbank. Digestion with BamH I and Hind III confirmed that hTNFα cDNA was inserted correctly into pBK-CMV eukaryotic expression vector. The genetically engineered E.coli DH5α did express hTNF-α confirmed by westernblot and the drug resistant cell line of HepG_2/ADM was transfected with an eukaryotic expression plasmid containing hTNFα gene by Lipofectamine2000, and then expressed hTNFα cDNA steadily. [ Conclusion ] The pBK-hTNFα, a eukaryotic expression plasmid for the full length gene of hTNFα cDNA was constructed successfully by DNA recombinant technique and expressed steadily in vitro . Part 2 Tumor necrosis factor-α and bromocription induce
    apoptosis and sensitize resistant hepatic cancer
    cells to chemotherapy
    [Objective] To investigate the effect of bromocriptine(BCT) combining with human tumor necrosis factor a(hTNFα) inducing apoptosis in resistant hepatic cancer cells.
    [Methods] Firstly, to isolate and identification of hTNFα expressing cells, and to use liposome carrying hTNFα gene to transfect HepG_2 /ADM cell line and establish a cell model expressing the hTNFα protein stably. The hTNFα secreting cell clone HepG_2 /ADM/ TNF-α was obtained by G418 selection, and the integrating and secreting of hTNFα were analyzed by RT-PCR and ELISA method. All experiments were divided into four groups and named blank control group(A)、 drug resistant group HepG_2/adriamycin(ADM)(B) 、 hepatocarcinoma cell line transfected with hTNFα gene HepG_2/ADM/TNF (C ) and group BCT(D) respectively. Among these groups, group BCT was that group C treated with bromocriptine simultaneously. MTT assay was tested to detect the sensitivity to ADM for every groups' cells, and Rhodaminel23(Rhl23) applied to test the function of P-gp by Flow Cytometric Analysis(FCM). MDR associated genes and proteins(MDRmRNA, P-gp) and PKC-α protein were detected by immunohistochemistry (IHC)、 Westernblot and reverse transcriptase polymerase chain reaction (RT-PCR) methods respectively, and Bcl-2 protein expression and apoptosis rate of hepatocarcinoma cells was detected by FCM.
    [Results] The cell line transfected with hTNFα gene were established successfully by RT-PCR. The levels of hTNFα secreted by HepG_2 /ADM/ TNF-α and HepG_2 /ADM cell line were (789.68±34.43) pg/ml、 (34.48±13.62) pg/ml respectively, there was significant difference between them. At the same time, there were significant difference between group C and group D in aspect of the rate of reversing resistance and the intracellular Rho 123 accumulation (P<0.01) . MDR1mRNA and P-gp protein expression in group C and D were low similar to that in group A, but no difference could be found among them(P<0.05). As we found that PKC-a protein expression was downregulated in group D but Bcl-2 protein expression was downregulated in group C, and there were significant difference compared to other groups. The apoptosis rate of hepatocarcinoma cells was much higher in group D than that in group C(P<0.05) with FCM, but similar to that in group A(P>0.05).
    [Conclusion] Synergistic effect of between bromocription and tumor necrosis factor-α on reversing hepatocellular carcinoma multidrug resistance could be obtained and enhancing the susceptibility of HepG_2/ADM cells to cytotoxic drugs Part 3 Establishing multidrug resistant model in nude mice
    via orthotopic implantation of human multidrug resistant
    hepatocellular carcinoma cells directed by B ultrosound
    [Objective] To establish multidrug resistant model in nude mice via orthotopic implantation of human multidrug resistant hepatocellular carcinoma cells directed by B ultrosound.
    [Methods] Human hepatocellular carcinoma cells HepG_2 and multidrug resistant human hepatocellular carcinoma cells HepG_2/ADM were maintained in 1640 containing 10% heat-inactivated fetal bovine serum (FBS) at 37 °C in a humid atmosphere of 5% CO2 and an orthotopic mdr1 hepatoma was obtained by injecting the cell lines HepG_2 and HepG_2/ADM subserosally into the mice liver directed by B ultrasound(control group 15 cases, multidrug resistant groups 15 cases). Ultrasonography and laparotomy were used to detect the tumor growth, and integrity mdrl gene from multidrug resistant human hepatocellular carcinoma cells HepG_2/ADM and corresponding implantated tumor tissues were amplificated by long PCR technique and sequenced. Furthermore, the MDR1mRNA and P-gp protein expression were evaluated by means of reverse transcription and the polymerase chain reaction(RT-PCR)、 Westernblot 、 Immunohistochemistry (IHC) methods respectively.
    [Results] The successful rate of tumor implantation and multidrug resistant induced is 100%(30/30)、 100% (15/15)respectively. MDR1 integrity gene 3.8kbp band can be detected from both HepG_2/ADM cells line and corresponding implantated tumor tissues by long RT-PCR technique, and the MDR1gene sequence is in coincidence to that reported in genebank. The expression of MDRlmRNA and P-gp protein in multidrug resistant groups were significantly higher than that in control groups by RT-PCR and Westernblot methods respectively. There were notable difference between multidrug resistant groups and controls which P-gp protein expression were(42.6±1.7)%and(2.6±0.1)%respectively by immunohistochemistry. Furthermore, P-gp protein expression from implanted tumors after HepG_2/ADM cells implanted 2 and 8 weeks were detected respectively and no difference were found.
    [Conclusion] Multidrug resistant model in nude mice via orthotopic implantation of multidrug resistant human hepatocellular carcinoma cells could be successfully established directed by B ultrasound, and provided good plateau for studying the reversal strategy of PHC multidrug resistant phenomenon. Part 4 Study on reversing HCC multidrug resistance by combination therapy with tumor necrosis factor a and bromocriptme in nude mice mdr model of liver neoplasm.
    [Objective] To investigate the reverse effect on HCC multidrug resistance(MDR) by combination with tumor necrosis factor a and bromocriptine in nude mice mdr model of liver neoplasm.
    [Methods] Human hepatocarcinoma cell line HepG_2、 drug resistant hepatocarcinoma cell HepG_2/ADM and hepatocarcinoma transfected into human tumor necrosis factor a gene cell HepG_2/ADM/TNF were injeceted into the liver of nude mice via orthotopic implantation respectively and MDR model of liver neoplasm in vivo was established[named group HepG_2(A)、 ADM(B)、 TNF(C)、 BCT(D) respectively]. BCT group was group TNF which treated together with bromocriptine using gastric canal.Each group was divided into control and chemotherapy group and size 、 weight of the tumors were measured ,tumor histological characters by HE and growth of the nude mice were observed and its chemosensitivity were tested.MDR associated genes and proteins(MRP、 LRP) of implantated tumors were detected by immunohistochemistry (IHC) and RT-PCR technique, and the apoptosis rates of hepatocarcinoma cell were measured with TUNEL assay.
    [Results] The nude mice model of every cell line were all inoculated successfully. The tumor growth rates and weights were different significantly among every groups(P<0.05), with the lowest group by hTNF α transfected cell line compared to the other two groups. After the same chemotherapy though abdominal cavity tumor growth inhibitory rate was highest in D group (67%) compared with B and C group respectively (P<0.01),and similar to HepG_2 group (54%) .MDR1 and LRPmRNA could all be detected in all groups, but TNFmRNA be detected only in C and D groups. Furthermore, MDR1 protein expression of tumors in C and D groups were lower than that in group B and were similar to group A, but difference could be detected between the group C and D. Additionally the apoptosis rates of hepatocarcinoma cell were much highest in group D than that of other groups(P<0.05) with TUNEL assay.
    [Conclusion] TNF-α gene can down-regulate the MDR associated genes and
    proteins expression for example MDR1 、 LRP, and lower its tumorgenesis. Moreover, enhancing the susceptibility of HepG_2/ADM cells to cytotoxic drugs combination therapy with bromocriptine,
引文
1 Pastorakova A, Hlubinova K, Bodo J, et al. Tumor targeted gene therapy with plasmid expressing human tumor necrosis factor alpha in vitro and in vivo. Neoplasma. 2005;52:344-51.
    
    2 Lu F, Chen ZM, Liu QH, et al. A novel human tumor necrosis factor alpha mutantshowed potent antitumor activity and reduced toxicity in vivo. Acta Pharmacol Sin. 2001;22:619-23.
    
    3 Yin Y, Allen PD, Jia L, et al. Constitutive levels of cAMP-dependent protein kinase activity detennine sensitivity of human multidrug-resistant leukaemic cell lines to growth inhibition and apoptosis by forskolin and tumour necrosis factor alpha. Br J Haematol. 2000 ;108:565-573.
    
    4 Hoekstra HJ, van Ginkel RJ. Hyperthermic isolated limb perfusion in the management of extremity sarcoma. Curr OPin Oncol. 2003;15:300-303.
    
    5 Giamarellos-Bourboulis EJ, Bolanos N, et al. Immunomodulatory intervention in sepsis by multidrug-resistant pseudomonas aeruginosa with thalidomide: an experimental study. BMC Infect Dis. 2005;5:51.
    
    6 Walther W, Stein U. Influence of cytokines on mdr1 expression in human colon carcinoma cell lines increased cytoxiocity of MDR relevant drugs.J Cancer Res Clin Oncol 1994;120:471-478.
    
    7 Stein U, Walther W, Shoemaker RH. Modulation of mdrl expression by cytokines in human colon carcinoma cell: an approch for reversal of multidrug resistance .British Journal of Cancer 1996;74:1384-1391.
    
    8 Walther W, Stein U, Pfeil D. Gene transfer of human TNF into glioblastoma cells permit modulation of mdrl expression and potentiation of chemosensitivity Int J.Cancer 1995;61;832-839.
    
    9 Stein U, Walther W, Robert H. Reversal of multidrug resistance by transduction of cytokine genes into human colon carcinoma cells. J Natl Cancer Inst 1996;88:1383-1392.
    10 王其,陈孝平,张万广,等.人肝癌HepG2多药耐药细胞系的部分生物学性状研究.中华实验外科杂志.2004;5:538—540.
    11 黄家强,卜夏,史须,等.人TNF—α分泌型、膜型和膜稳定型重组体的构建、表达及杀瘤效应研究,高技术通讯.1998;12:15-20.
    12 杨高云,李芳,蒋明,等.真核表达质粒pBK-IL-lra的构建及表达,中国医学科学院学报.2000;22:332—335.
    13 Wu CM, Huang TH, Xie QD, et al. Construction of PETNF-p16 plasmid and its expression properties in EC9706 cell line induced by X-ray irradiation. World J Gastroenterol. 2004; 10:2927-2930.
    1 Nobuaki Shiraki, Keiko Okamura, Jin Tokunaga, et al. Bromocriptine reverses P-glycoprotein-mediated multidrug resistance in tumor cells.2002;93:209-215.
    2 Orlowski S, Vakente D, Garrigos M, et al. Bromocriptine modulates P-glycoprotein function. Biochem. Biophys. Res. Commun. 1998;244: 481-488.
    3 Samini M, Fakhrian R, Mohagheghi M, et al. Comparison of the effect of levodopa and bromocriptine on naloxone-precipitated morphine withdrawal symptoms in mice. Hum psychopharmacol. 2000; 15: 95-101.
    4 王其,陈孝平,张万广,等.人肝癌 HepG2 多药耐药细胞系的部分生物学性状研究.中华实验外科杂志.2004,5:538—540
    5 黄家强,卜夏,史须,等.人TNF—α分泌型、膜型和膜稳定型重组体的构建、表达及杀瘤效应研究.高技术通讯.1998;12:15-20.
    6 Covelli A. Modulation of multidrug resistance in hematological malignancies.Ann Oncol. 1999; 10:53—59.
    7 Lee J, Fenton BM, Koch CJ, et al. Interleukine 2 expression by tumorcell alters both the immune response and tumor microenviroment. CancerRes. 1998;58:1478—1485.
    8 Stein U, Walther W, Shoemaker RH, et al. Reversal of multidrug resistance by transduction of cytokine genes into human colon carcinoma cells. J Natl Cancer Inst.1996;88:1383—1392.
    9 Shiraki N, Okamura K, Tokunaga J, et al. Bromocriptine reverses P-plycoprotein-mediated multidrug resistance in tumor cells. JPn J Cancer Res. 2002;93:209-215.
    10 Stein U, Walther W, Laurencot CM, et al. Tumor necrosis factor-alpha and expression of the multidrug resistance-associated genes LRP and MRP. J Natl Cancer Inst. 1997;89:807-813.
    11 Walther W, Stein U, Pfeil D. Gene transfer of human TNF alpha into glioblastoma cells permits modulation of mdrl expression and potentiation of chemosensitivity. Int J Cancer.1995;61:832-839.
    
    12 Walther W, Stein U, Fichtner I, et al. Mdrl promoter-driven tumor necrosis factor-alpha expression for a chemotherapy-controllable combined in vivo gene therapy and chemotherapy of tumors. Cancer Gene Therp. 2000;7:893-900.
    
    13 Samini M, Fakhrian R, Mohagheghi M,et al.Comparison of the effect of levodopa and bromocriptine on naloxone-precipitated morphine withdrawal symptoms in mice. Hum psychopharmacol. 2000; 15:95-101.
    
    14 Wu C, Li X, Tian M. Effect of pEgr-TNFalpha gene radiotherapy on mice melanoma. Melanoma Res. 2005;15:185-90.
    
    15 Yuan YW, Sun AM, Li CG. Correlation of multidrug resistance with up-regulation of protein kinase C expression in KBV200 cells. Di Yi Jun Yi Da Xue Xue Bao. 2005;25:1341-1343.
    
    16 Brugger D, Brischwein K, Liu C, et al. Induction of drug resistance and protein kinase C genes in A2780 ovarian cancer cells after incubation with antineoplastic agents at sublethal concentrations. Anticancer Res. 2002;22:4229-4232.
    
    17 Han Y, Han ZY, Zhou XM, et al. Expression and function of classical protein kinase C isoenzymes in gastric cancer cell line and its drug-resistant sublines. World J Gastroenterol. 2002;8:441-445.
    
    18 Gill PK, Gescher A, Gant TW. Regulation of MDR1 promoter activity in human breast carcinoma cells by protein kinase C isozymes alpha and theta. Eur JBiochem. 2001;268:4151-4157.
    
    19 Hong L, Piao Y, Han Y,et al. Zinc ribbon domain-containing 1 (ZNRD1) mediates multidrug resistance of leukemia cells through regulation of P-glycoprotein and Bcl-2. Mol Cancer Ther. 2005;4:1936-1942.
    
    20 Guo C, Ding J, Yao L,et al. Tumor suppressor gene Runx3 sensitizes gastric cancer cells to chemotherapeutic drugs by downregulating Bcl-2, MDR-1 and MRP-1.Int J Cancer. 2005; 116:155-160.
    
    21 Karwatsky J, Lincoln MC, Georges E. A mechanism for P-glycoprotein-mediated apoptosis as revealed by verapamil hypersensitivity. Biochemistry. 2003;42:12163-73.
    
    22 LoPes de Menezes DE, Hu Y, Mayer LD. Combined treatment of Bcl-2 antisense oligodeoxynucleotides (G3139), P-glycoprotein inhibitor (PSC833), and sterically stabilized liposomal doxorubicin suppresses growth of drug-resistant growth of drug-resistant breast cancer in severely combined immunodeficient mice. J Exp Ther Oncol. 2003;3:72-82.
    
    23 Del Bufalo D, Biroccio A, Trisciuoglio D,et al. Bcl-2 has differing effects on the sensitivity of breast cancer cells depending on the antineoplastic drug used. Eur J Cancer. 2002;38:2455-2462.
    
    24 Kasimir-Bauer S, Beelen D, Flasshove M,et al. Impact of the expression of P glycoprotein, the multidrug resistance-related protein, bcl-2, mutant P53, and heat shock protein 27 on response to induction therapy and long-term survival in patients with de novo acute myeloid leukemia. Exp Hematol. 2002;30:1302-1308.
    
    25 Radetzki S, Kohne CH, von Haefen C,et al. The apoptosis promoting Bcl-2 homolegues Bak and Nbk/Bik overcome drug resistance in Mdr-1-negative and Mdr-1-overexpressing breast cancer cell lines. Oncogene. 2002;21:227-238.
    
    26 Stavrovskaya AA. Cellular mechanisms of multidrug resistance of tumor cells.Biochemistry (Mosc). 2000;65:95-106.
    
    27 Fu D, Shi Z, Wang Y. Bcl-2 plays a key role instead of mdr1 in the resistance to hexadecylphosphocholine in human epidermoid tumor cell line KB. Cancer Lett. 1999;142:147-153.
    1 汤钊猷.肝癌外科治疗的进展.世界华人消化杂志.2003;11:249-254.
    2 Tang NH, Chen YL, Wang XQ, et al. Cooperative inhibitory effects of antisense oligonucleotide of cell adhesion molecules and cimetidine on cancer cell adhesion.World J Gastroenterol. 2004; 10:62-66.
    3 Chen WX, Min PQ, Song B, et al. Single-level dynamic spiral CT of hepatocellular carcinoma: correlation between imaging features and density of tumor microvessels. World J Gastroenterol. 2004; 10:67-72.
    4 Wang T, Wang Y, Wu MC, et al. Activating mechanism of transcriptor NF-kappaB regulated by hepatitis B virus X protein in hepatocellular carcinoma.World J Gastroenterol.2004;10:356-360.
    5 Hsieh CB, Chang HM, Chen TW, et al. Comparison of transcatheter arterial chemoembolization, laparoscopic radiofrequency ablation, and conservative treatment for decompensated cirrhotic patients with hepatocellular carcinoma.World J Gastroenterol. 2004; 10:505-508.
    6 Zhang SH, Cong WM, Shi JQ, et al. Genomic instability of murine hepatocellular carcinomas with low and high metastatic capacities. World J Gastroenterol. 2004; 10:521-524.
    7 Huang MS, Lin Q, Jiang ZB, et al. Comparison of long-term effects between intra-arterially delivered ethanol and Gelfoam for the treatment of severe arterioportal shunt in patients with hepatocellular carcinoma. World J Gastroenterol. 2004; 10:825-829.
    8 Ruzzenente A, Manzoni Gd, Molfetta M, et al. Rapid progression of hepatocellular carcinoma after Radiofrequency Ablation.World J Gastroenterol. 2004; 10:1137-1140.
    9 Zhao JG, Feng GS, Kong XQ, et al. Assessment of hepatocellular carcinoma vascularity before and after transcatheter arterial chemoembolization by using first pass perfusion weighted MR imaging. World J Gastroenterol. 2004;10:1152-1156.
    10 Qin LX, Ma ZC, Wu ZQ, et al. Diagnosis and surgical treatments of hepatocellular carcinoma with tumor thrombosis in bile duct: Experience of 34 patients.World J Gastroenterol. 2004; 10:1397-1401.
    11 Lu JP, Wang J, Wang T, et al. Microvessel density of malignant and benign hepatic lesions and MRI evaluation.World J Gastroenterol. 2004; 10:1730-1734.
    12 Li X, Fu GF, Fan YR, et al. Potent inhibition of angiogenesis and liver tumor growth by administration of an aerosol containing a transferrin-liposomeendostatin complex.World J Gastroenterol. 2003 ;9:262-266.
    13 Chen XP, He SQ, Wang HP, et al. Expression of TNF-related apoptosis-inducing ligand receptors and antitumor tumor effects of TNF-related apoptosis-inducing ligand in human hepatocellular carcinoma.World J Gastroenterol 2003;9:2433-2440.
    14 Li X, Feng GS, Zheng CS, et al. Influence oftransarterial chemoembolization on angiogenesis and expression of vascular endothelial growth factor and basic fibroblast growth factor in rat with Walker-256 transplanted hepatoma: An experimental study.World J Gastroenterol. 2003;9:2445-2449.
    15 Liu HS, Pan CE, Yang W, et al. Antitumor and immunomodulatory activity of resveratrol on experimentally implanted tumor of H22 in Balb/c mice.World J Gastroenterol.2003 ;9:1474-1476.
    16 陈孝平,裘法祖,吴在德.原发性肝癌要按个体化采用以手术为主的综合治疗.中华外科杂志;2003;41:161-162.
    17 Grude P, Conti F, Mennecier D, et al. MDR1 gene expression in hepatocellular carcinoma and the peritumoral liver of patients with and without cirrhosis. Cancer Lett. 2002;186:107-113.
    18 Chan JY, Chu AC, Fung KP. Inhibition of P-glycoprotein expression and reversal of drug resistance of human hepatoma HepG2 cells by multidrug resistance gene (mdr1) antisense RNA. Life Sci. 2000;67:2117-2124.
    19 Luo HY, Yang JY, Liu ZM, et al. Reversal of multidrug resistance gene MDR1 and MRP of drug-resistant human hepatocellular carcinoma cells SMMC-7721/ADM with antisense phosphorothioate oligonucleotides. Zhonghua Gan Zang Bing Za Zhi. 2004; 12:85-87.
    
    20 Zhai BJ, Shao ZY, Wu F, et al. Reversal of multidrug resistance of human hepatocarcinoma HepG2/Adm cells by high intensity focused ultrasound. Ai Zheng. 2003;22:1284-1288.
    
    21 Huesker M, Folmer Y, Schneider M, et al. Reversal of drug resistance of hepatocellular carcinoma cells by adenoviral delivery of anti-MDR1 ribozymes. Hepatology. 2002;36:874-884.
    
    22 Wang H, Chen XP, Qiu FZ. Overcoming multi-drug resistance by anti-MDR1 ribozyme.World J Gastroenterol 2003;9:1444-1449.
    
    23 Chang CS, Yang SS, Yeh HZ, et al. Tc-99m MIBI liver imaging for hepatocellular carcinoma: correlation with P-glycoprotein-multidrug-resistance gene expression. Hepatogastroenterology. 2004;51:211-214.
    
    24 Wang II, Chen XP, Qiu FZ. Correlation of expression of multidrug resistance protein and messenger RNA with 99mTc-methoxyisobutyl isonitrile (MIBI) imaging in patients with hepatocellular carcinoma.World J Gastroenterol. 2004;10:1281-1285.
    
    25 Gouaze V, Yu JY, Bleicher RJ, et al. Overexpression of glucosylceramide synthase and P-glycoprotein in cancer cells selected for resistance to naturalproduct chemotheraPy. Mol Cancer Ther. 2004;3:633-639.
    
    26 Marzolini C, Paus E, Buclin T, et al. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther. 2004;75:13-33.
    
    27 Chang CS, Huang WT, Yang SS, et al. Effect of P-glycoprotein and multidrug resistance associated protein gene expression on Tc-99m MIBI imaging in Hepatocellular carcinoma. Nucl Med Biol. 2003;30:111-117.
    
    28 Jon Cohen. 'Long PCR' leaps into larger DNA sequence. Science. 1994 263: 1564-1565.
    29 Barnes MW. PCR amplification of up to 35kb DNA with high fidelity and high yield from λ bacterioPhage templates. Proc Natl Acad Sci USA. 1994 91:2216-2220.
    30 彭志红,杨建民,唐波,等.KAI1基因对MHCC97-H细胞裸鼠成瘤及转移的影响.世界华人消化杂志;2004;12:778-781.
    31 郭建巍,秦力维,蔡美英.肝癌DC疫苗活化的CTL对人肝癌裸鼠皮下移植瘤的抑制作用.世界华人消化杂志.2003;11:419-421.
    32 林晓东,林礼务,何以敉,等.复方中药99-克星超声介入治疗肝癌裸鼠移植瘤凋亡与增生.世界华人消化杂志.2003;11:1353-1356.
    33 Katz MH, Bouvet M, Takimoto S, et al. Selective antimetastatic activity of cytosine analog CS-682 in a red fluorescent protein orthotopic model of pancreatic cancer. Cancer Res. 2003;63:5521-5525.
    34 Celinski SA, Fisher WE, Amaya F, et al. Somatostatin receptor gene transfer inhibits established pancreatic cancer xenografts. J Surg Res. 2003; 115:41-47.
    35 Frydman B, Blokhin AV, Brummel S, et al. Cyclopropane-containing polyamine analogues are efficient growth inhibitors of a human prostate tumor xenograft in nude mice. J Med Chem. 2003;46:4586-4600.
    36 郜永顺,陈孝平,张志伟,等.裸鼠肝內种植入肝癌组织的肿瘤特征.世界华人消化杂志.2004;12:563-566.
    37 Yao X, Hu JF, Daniels M, et al. A novel orthotopic tumor model to study growth factors and oncogenes in Hepatocarcinogenesis. Clin Cancer Res,2003; 9:2719-2726.
    38 Shoji T, Konno H, Tanaka T, et al. OrthotoPic implantation of a colon cancer xenograft induces high expression of cyclooxygenase-2. Cancer Lett. 2003;195:235-241.
    39 Lin LW, Lin XD, He YM, et al. Experimental study on ultrasound-guided intratumoral injection of "Star-99" in treatment of hepatocellular carcinoma of nude mice. World J Gastroenterol. 2003;9:701-705.
    1 Germann UA, Pastan I, Gottesman MM. P-glycoproteins: mediators of multidrug resistance. Semin Cell Biol.1993;4:63-76.
    
    2 Marzolini C, Paus E, Buclin T, et al. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther.2004; 75:13-33.
    
    3 Chan JY, Chu AC, Fung KP. Inhibition of P-glycoprotein expression and reversal of drug resistance of human hepatoma HepG2 cells by multidrug resistance gene (mdr1) antisense RNA. Life Sci. 2000;67:2117-2124 .
    
    4 Huesker M, Folmer Y, Schneider M, et al. Reversal of drug resistance of hepatocellular carcinoma cells by adenoviral delivery of anti-MDR1 ribozymes. Hepatology.2002;36:874-884.
    
    5 Wang II, Chen XP, Qiu FZ. Overcoming multi-drug resistance by anti-MDR1 ribozyme. World J Gastroenterol.2003;9:1444-1449.
    
    6 Grude P, Conti F, Mennecier D, et al. MDR1 gene expression in hepatocellular carcinoma and the peritumoral liver of patients with and without cirrhosis. Cancer Lett.2002;186:107-113.
    
    7 Orlowski S, Valente D, Garrigos M, et al. Bromocriptine modulates P-glycoprotein function. Biochem BioPhys Res Commun.1998;244:481-488.
    
    8 Shiraki N, Okamura K, Tokunaga J, e al. Bromocriptine reverses P-glycoprotein-mediated multidrug resistance in tumor cells. JPn J Cancer Res. 2002;93:209-215.
    
    9 Stein U, Walther W, Laurencot CM, et al. Tumor necrosis factor-alpha and expression of the multidrug resistance-associated genes LRP and MRP. J Natl Cancer Inst. 1997;89:807-813.
    
    10 Walther W, Stein U, Pfeil D. Gene transfer of human TNF alpha into glioblastoma cells permits modulation of mdrl expression and potentiation of chemosensitivity. Int J Cancer. 1995;61:832-839.
    11 Hirsch-Ernst KI, Ziemann C, Foth H, et al. Induction of mdr1b mRNA and P-glycoprotein expression by tumor necrosis factor alpha in primary rathepatocyte cultures. J Cell Physiol,1998;176:506-515.
    
    12 Gilboa E, Lyerly HK, Vieweg J, et al. Immunotherapy of cancer using cytokine gene-modified tumor vaccines. Semin Cancer Biol.1994;5:409-417.
    
    13 Uckert W, Walther W. Retrovirus-mediated gene transfer in cancer therapy. Pharmacol Ther.1994;63:323-447.
    
    14 Walther W, Stein U. Influence of cytokines on mdr1 expression in human colon carcinoma cell lines: increased cytotoxicity of MDR relevant drugs. J Cancer Res Clin Oncol.1994;120:471-478.
    
    15 Mitchell MS. Combining chemotherapy with biological response modifiers intreatmeat of cancer. J Natl Cancer Inst.1988;80:1445-1450.
    
    16 Huesker M, Folmer Y, Schneider M. Reversal of drug resistance of hepatocellular carcinoma cells by adenoviral delivery of anti-MDR1 ribozymes Hepatology. 2002;36:874-884.
    
    17 Madureira AM, SPengler G, Molnar A, et al. Effect of cycloartanes on reversal of multidrug resistance and apoptosis induction on mouse lymphoma cells. Anticancer Res ,2004;24:859-864.
    
    18 Woehlecke H, Osada H, Herrmann A, et al. Reversal of breast cancer resistance protein-mediated drug resistance by tryprostatin A. Int J Cancer.2003 ; 107:721-728.
    
    19 Schuetzer-Muehlbauer M, Willinger B, Egner R, et al. Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast. Int J Antimicrob Agents.2003;22:291-300.
    
    20 Schlesinger I, Ravin PD. Dopamine agonists induce episodes of irresistible daytime sleepiness. Eur Neurol.2003;49:30-33.
    
    21 Deleu D, Northway MG, Hanssens Y. An evidence-based review of Dopamine receptor agonists in the treatment of Parkinson's disease. Saudi Med J. 2002;23:1165-1175.
    22 Lee JS, Song CH, Lim JH, et al The production of tumour necrosis factor-alpha is decreased in peripheral blood mononuclear cells from multidrug-resistant tuberculosis patients following stimulation with the 30-kDa antigen of Mycobacterium tuberculosis. Clin Exp Immunol. 2003;132:443-449.
    
    23 Corti A. Strategies for improving the anti-neoplastic activity of TNF by tumor targeting. Methods Mol Med.2004;98:247-264.
    
    24 Kim HR, Park HJ, Park JH, et al. Characteristics of the killing mechanism of human natural killer cells against hepatocellular carcinoma cell lines HepG2 and Hep3B. Cancer Immunol Immunother.2004;53:461-470 .
    
    25 Stein U, Walther W, Shoemaker RH. Reversal of multidrug resistance by transduction of cytokine genes into human colon carcinoma cells. J Natl Cancer Inst. 1996;88:1383-1392.
    
    26 Walther W, Stein U, Fichtner I, et al. Mdrl promoter-driven tumor necrosis factor-alpha expression for a chemotherapy-controllable combined in vivo gene therapy and chemotherapy of tumors. Cancer Gene Ther.2000;7:893-900.
    
    27 Samini M, Fakhrian R, Mohagheghi M, et al.Comparison of the effect of levodopa and bromocriptine on naloxone-precipitated morphine withdrawal symptoms in mice. Hum Psychopharmacol.2000;15:95-101.
    
    28 Teodori E, Dei S, ScaPecchi S, et al. The medicinal chemistry of multidrug resistance (MDR) reversing drugs. Farmaco.2002;57:385-415.
    
    29 Wu JY, Fong WF, Zhang JX, et al. Reversal of multidrug resistance in cancer cells by Pyranocoumarins isolated from Radix peucedani. Eur J Pharmacol.2003;473:9-17.
    
    30 Marian T, Szabo G, Goda K, et al. In vivo and in vitro multitracer analyses of P-glycoprotein expression-related multidrug resistance. Eur J Nucl Med Mol Imaging. 2003;30:1147-1154.
    
    31 Psarros T, Zouros A, Coimbra C. Bromocriptine-responsive akinetic mutism following endoscopy for ventricular neurocysticercosis. Case report and review of the literature. J Neurosurg.2003;99:397-401.
    
    32 Yavuz D, Deyneli O, Akpinar I, et al. Endothelial function, insulin sensitivity and inflammatory markers in hyperprolactinemic pre-menopausal women. Eur J Endocrinol.2003;149:187-193.
    1 Carswell EA, Old LJ, Kassel RL,et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A.1975 ;72:3666-70.
    
    2 Calabrese LH, Zein N, VassiloPoulos DT. Safety of antitumour necrosis factor (anti-TNF) therapy in patients with chronic viral infections: Hepatitis C, Hepatitis B, and HIV infection.. Ann Rheum Dis. 2004 ;63 SuPP1 2:1118-1124.
    
    3 Vilcek J, Lee TH. Tumor necrosis factor: New insight into the molecularmechamis of its multiple action. J Biol Chem. 1991,266:7313.
    
    4 Muto Y, Aderka D. Increased tumor necrosis factor receptor number in chronic Hepatitis B virus infection. Hepatology. 1991,14:44.
    
    5 Torre D, Zeroli C, Giola M, et al. Serum levels of interleukin-1 alpha, interleukin-1 beta, interleukin-6, and tumor necrosis factor in patients with acute viral Hepatitis. Clin Infect Dis. 1994,18:194-8.
    
    6 Guilhot S, Miller T, Cornman G,et al. Apoptosis induced by tumor necrosis factor-alpha in rat hepatocyte cell lines expressing Hepatitis B virus. Am J Pathol.1996;148:801-814.
    
    7 Guidotti LG, Rochford R, Chung J, et al. Viral clearance without destruction of infected cells during acute HBV infection. Science. 1999,284:825-829.
    
    8 Valenti L, Pulixi E, Fracanzani AL, et al. TNFalpha genotype affects TNFalpha release, insulin sensitivity and the severity of liver disease in HCV chronic Hepatitis.. J Hepatol. 2005 ;43:944-950.
    
    9 Tilg H, Jalan R, Kaser A, Davies NA,et al. Anti-tumor necrosis factor-alpha monoclonal antibody therapy in severe alcoholic Hepatitis. J Hepatol. 2003 ;38:419-425.
    
    10 Sharma RP, He Q, Meredith FI, et al. Paradoxical role of tumor necrosis factor alpha in fumonisin-induced Hepatotoxicity in mice. Toxicology. 2002;180:221-232.
    
    11 O'Neil, Hunt S. Obstructive jaundice in rats results in exaggerated Hepatic production of tumor necrosis factor-alpha and systemic and tissue tumor necrosis factor-alpha levels after endotoxin. Surgery.1997;122:281-289.
    
     12 Akyurek N, Salman B, Irkorucu O, et al. The effect of platelet activating factor antagonist BN 52021 on bacterial translocation and ICAM-I expression in experimental obstructive jaundice. J Invest Surg. 2005;18:247-256.
    
    13 Zimecki M, Dawiskiba J, Zawirska B, et al. Bovine lactoferrin decreases histopathological changes in the liver and regulates cytokine production by splenocytes of obstructive jaundiced rats. Inflamm Res. 2003;52:305-310.
    
    14 Kennedy JA, Clements WD. Characterization of the Kupffer cell response to exogenous in a rodent model of obstructive jaundice. Br J Surg.1999;86:628-633.
    
    15 Lehman V. Lethal toxicity of lipopolysaccharide and tumor necrosis factor in normal and D-galactosam inetreated mice. J Exp Med.1987; 165:657-663.
    
    16 Nagakawa J. Involvement of tumor necrosis factor-alpha in the pathogenesis of activated an acrophage-mediated Hepatitis in mice. Gastroenterology. 1990;99:758-765.
    
    17 Grever JW, Macssen JG,Tiebosch T, et al. Prevention of cellular immunity in obstructive jaundice is caused by endotoxins: A study in germ free rats. Gastroenterology.1990:98:478-485.
    
    18 Deviere J, Vaerman JP, Content J, et al. IgA triggers tumor necrosis factor alpha secretion by monocytes: a study in normal subjects and patients with alcoholic cirrhosis. Hepatology. 1991,13:670.
    
    19 Colletti LM, Kunkel SL, Walz A, et al. The role of cytokine networks in the local liver injury following Hepatic ischaemin/reperfusion in the rat. Hepatology. 1996,23:506-514.
    
    20 SimPson KJ, Lukucs NW, Cdletti, et al. Cytokines and the liver. J Hepatology. 1997,27:1120-1132.
    
    21 Arii S,Adachi Y,Monden K, et al. Pathogenic role of kupffer cell activation on the reperfusion injury of cold-preserved liver. Transplantation. 1994,58:1072-1077.
    
    22 Adamson IY, Prieditis H, Vincent R. Soluble and insoluble air particle fractions induce differential production of tumor necrosis factor alpha in rat lung. Exp Lung Res. 2004 ;30:355-68.
    
    23 Leist M, Gantner F, Bohlinger I, et al. Tumor necrosis factor-induced hepatacyte apoptosis precedes liver failure in experimental murine shock models. Am J Pathol.1995,146:1220.
    
    24 Lehman V. Lethal toxicity of lipoly saccharide ang tumor necrosis factor in normal and D-GA Lactoaamine trated mice. J Exp Med. 1989,165:675.
    
    25 Kohun DE. Role of endothelin and tumor necrosis factor in the renal response to sepsis. Nephrol Dial Transplant. 1994,9:73.
    
    26 Albanis E, Friedman SL, Hepatic fibrosis. Pathogenesis and principles of therapy. Clin Liver Dis.2001;5:315-334.
    
    27 Safadi R, Friedman SL. Hepatic fibrosis: role of hepaticstellate cell activation. Med Gen Med.2002; 15:419-427.
    
    28 Knittel T, Muller L, Saile B, et al. Effect of tumor necrosis factor-alpha on proliferation, action and protein synthesis of rat hepatics tellate cells. J Hepatol. 1997,27:1067-1080.
    
    29 Saile B, Matthes N, Knittel T, et al. Transfoming growth factor beta and tumor necrosis factor alpha inhibit both apoptosis and proliferation of activated rat hepaticste cells . Hepatology.1999;30:196-202.
    
    30 Tsukamoto H. Cytokine regulation of hepatics tellate cells in liver fibrosis. Alcohol Clin Exp Res. 1999;23:911-916.
    
    31 Noiri E, Ku wata S, Nosaka, et al. Tumour necrosis factor-α mRNA expression in lipopolysaccharide stimulated rat kidney. Am J Pathol. 1994; 144 :1159.
    
    32 Bradham CA, PliPe J, Manns MP, et al. Mechanisms of the hepatictoxicity. TNFα induced liver injury. Am J Physiol.1998;275:G387-392.
    1 Bildler JL, Riehm H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies. Cancer Res. 1970; 30:1174-1184.
    
    2 Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochem Biophys Acta.1976; 455:152-162.
    
    3 Cordon-Cardo C, O'Brien J ,Boccia J, et al. Expression if multidrug resistance gene product in human normal and tumor tissue. J Histochem. 1990; 38:1277-1287.
    
    4 Nooter K. Multidrug resistance (mdr) genes in human cancer. Br J Cancer. 1991;63:663-669.
    
    5 Scheper RJ, Broxterman HJ, Scheffer GL, et al. Overexpression of a M(r) 110,000 vesicular protein in non-p-glycoprotein-mediated multidrug resistance. Cancer Res. 1993;53:1475-1479.
    
    6 Mirakhur B, Parckh HK, et al. Expression of the cisplatin resistant phenotype in a human ovrian carcinoma cell line segregates with chromosomes 11 and 16. Cancer Res.1996;56:2256-2259.
    
    7 Scheffer GL, Wijngard PL, et al. The drug resistance-related Protein LRP is the vault protein. Nat Med. 1995; 1:578-582.
    
    8 Broxtermans HJ, Schuurhuis GJ. Transport protein in drug resistance detection and prognostic significance in acute myeloid leukemia. J Int Med.1997;740:S147-151.
    
    9 Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998;95:15665-70.
    
    10 Hinohara T, Ohshima K, et al. Apoptosis and prohibition in gastric carcinoma: the association with histogical type. Hisotopathlolgy.1996; 29:123-129.
    11 Burg D, Riepsaame J, Pont C, et al. Peptide-bond modified glutathione conjugate analogs modulate GSTPi function in GSH-conjugation, drug sensitivity and JNK signaling. Biochem Pharmacol. 2006;71:268-77.
    
    12 Yakirevich E, Sabo E, Naroditsky I, et al. Multidrug resistance-related phenotype and apoptosis-related protein expression in ovarian serous carcinomas. Gynecol Oncol. 2006; 100:152-9.
    
    13 Haber SN, Ryoo H, Cox C, et al. Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. J Comp Neurol.1995;362:400-410.
    
    14 Wunderlich K, Zimmerman C, Gutmann H, et al. Vasospastic persons exhibit differential expression of ABC-transport proteins. Mol Vis. 2003; 9:756-61.
    
    15 Han T, Fernandez M, Sarkar M, et al. 2', 3'-Dideoxycytidine represses thymidine kinases 1 and 2 expression in T-lymphoid cells. Life Sci.2004;74:835-42.
    
    16 Beck WT, Grogan TM, Willman CL, et al. Methods to detect P-glycoprotein-associated multidrug resistance in patients' tumors: consensus recommendations. Cancer Res. 1996;56:3010-20.
    
    17 Hegewisch-Becker S, Hossfeld DK. The MDR Phenotype in hematologic malignancies: prognostic relevance and future perspectives. Ann Hematol. 1996;72:105-17.
    
    18 Beck JL, Hopman AH, Feitz WF, et al. Numerical aberrations of chromosomes 1 and 7 in renal cell carcinomas as detected by interphase cytogenetics. J Pathol.1995;176:123-35.
    
    19 Piwnica-worms D, Clin ML, Budding M, et al. Functional imaging of multidrug-resistant P-glycoprotain with an organtechnetium complet. Cancer Res.l993;53:977.
    
    20 Cutrone JA, YosPur LS, Khalkhali I, et al. Immunohistologic assessment of technetium-99m-MIBI uptake in benign and malignant breast lesions. J Nucl Med. 1998;39:449-53.
    21 Moretti JL, Caglar M, Boaziz C, et al. Sequential functional imaging with technetinm-99m hexakis-2-methoxyisobutylisonitrile and indium-111 dctreotide: Can nce predict the response to chemotherapy in small cell Lung cancer? Enr J Mucl Med.1995;22: 177-80.
    
    22 Kim YS, Cho SW, Lee KJ, et al. Tc-99m MIBI SPECT is useful for noninvasivelypredicting the presence of MDR1 gene-encoded P-glycoprotein in patients with hepatocellular carcinoma. Clin Nucl Med.1999;24:874-9.
    
    23 Luker GD, Fracasso PM, Dobkin J, et al. Modulation of the multidrug resistance P-glycoprotein: detection with technetium-99m-sestamibi in vivo. J Nucl Med. 1997;38:369-72.
    
    24 Lum BL, Fisher GA, et al. Clinical trials of modulation of multidrug resistance: pharmacokinetic and pharmacodynamic considerations. Cancer, 1997;76:3502-3512.
    
    25 Boesh D, Gaveriaux C, et al. In vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res. 1991 ;51:4226-4232.
    
    26 Johanners Zacherl, Gerhard Hamilton, et al. Inhibition of P-glycoprotein- mediated vinblastine transport across HCT-8 intestinal carcinoma monolayers by verapamil, cyclosporine A and SDZ PSC 833 in dependence on extracellular PH. Cancer Chem Phar. 1994;34:125-132.
    
    27 Stein U, Walther W, Shoemaker RH. Modulation of mdr1 expression by cytokines in human colon carcinoma cell:an approch for reversal of multidrug resistance .British Journal of Cancer.1996;74:1384-1391.
    
    28 Kigawa J, Sato S, Shimada M, et, al. P53 gene status and chemosensitivity in orarian cancer.Hum Cell.2001;14:165-171.
    
    29 Chan JY, Chu AC, Fung KP. Inhibition of P-glycoprotein expression and reversal of drug resistance of human hepatoma Hep G2 cells by multidrug resistance gene mdr1 antisense RNA.Life.2000;67:2117-2124.
    30 Haga S, Hinoshita E, Ikezaki K, et al. Inrovement of the multidrug resistance protein 3 in drug sensitivity and its expression in human glioma.Jpn J Cancer Res.2001 ;92:211-219.
    31 Alahari SK, Delong R, Fisher MH, et al. Novel chemically modified oligonucleotides provide protent inhibition of P-glycoprotein expression.J pharmacol Exp Thar. 1998;286:419-428.
    32 Mohri M, Nitta H, Yamashita J. Expression of multidrug resistance-associated protein(MRP) in human gliomas.Neyrooncol.2000;49:105-115.
    33 Wang FS, Kobayashi H, Liang KW, et al. Retrovirus-mediated transfer of anti-MDR1 ribozynes fully restores chemosensitivity of P-glycoproprotein expressing human lymphoma cells. Hum Gene Ther. 1999; 10:1185-1195.
    34 徐东平,王福生,7akao O,等.腺病毒介导的抗MDR1核酶基因转移联合化疗药物治疗恶性淋巴瘤的研究.中华肿瘤杂志.2002;24:529-532.
    35 Akiyama S, Chen ZS, Kitazono M, et al. Mechanisms for resistance to anticancer agents and the reversal of the resistance. Hum Cells. 1999; 12:95-102.
    36 Kitazono M, Sumizawa T, Take bayashi Y, et al. Multidrug resistance and the lung resistance-related protein in human colon carcinoma SW-620 cells. J Natl Cancer Inst. 1999;91:1647-1653.
    37 Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature.2001;411: 494-498.
    38 彭智,肖志坚,王一,等.SiRNA逆转K562/A02细胞多药耐药的研究.中华血液学杂志.2004;25:5-7.
    39 Walther W, Stein U. Influence of cytokines on mdr1 expression in human colon carcinoma cell lines increased cytoxiocity of MDR-rele vant drugs. J Cancer Res Clin OncoI. 1994; 120:471-478.
    40 Stein U, Walther W ,Shoemaker RH. Modulation of mdrl expression by cytokines in human colon carcinoma cell: an approch for reversal of multidrug resistance. British Journal of Cancer. 1996;74:1384-1391.
    41 Walther W ,Stein U,Pfeil D. Gene transfer of human TNF into glioblastoma cells permit modulation of mdr1 expression and potentiation of chemosensitivity Int. J.Cancer. 1995;61;832-839.
    
    42 Stein U ,WaIther W,Robert H. Reversal of multidrag resistance by transduction ofcytokine genes into human colon carcinoma cells.J Natl Cancer Inst.1996;88:1383-92.
    
    43 Lee J, Fenton BM,Koch Cj, et al. Interleukin 2 expression by tumor cell alters both the immune response and tumor microenviroment.Cancer Res. 1998;58: 1478-1485.
    
    44 Pearson JW, Fogler WE, et al. Reversal of drug resistance in a human colon cancer xenograft expressing MDR1 complementary DNA by in vivo administration of MRK-16 monoclonal antibody. J Natl Cancer Inst.1991; 83: 1386-1391.
    
    45 Laredo J, Huynh A, Muller C, et al. Effect of the protein kinase C inhibitor staurosporine on chemosensitivity to daunorubicin of normal and leukemic fresh myeloid cells. Blood. 1994;84:229-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700