氧化铝生产中熟料溶出二次反应与高浓度粗液制备技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铝是世界经济中最重要的基础原材料之一。随着国民经济的发展,2007年我国氧化铝产量已近2000万吨,成为仅次于钢铁产量的特大型冶炼行业。我国铝土矿大多属高铝、高硅、低铁一水硬铝石型铝土矿,铝硅比为4-7之间,因此我国氧化铝企业大多采用烧结法或拜尔-烧结联合法生产氧化铝。目前,虽然一些氧化铝生产强化技术不断涌现,但是烧结法生产氧化铝中能耗高、成本高的问题并没有得到根本解决,这严重制约了烧结法生产氧化铝企业的经济效益。提高湿法系统中氧化铝浓度,是降低烧结法生产氧化铝能耗的一条重要技术路线,其关键是熟料的高浓度溶出与固液分离过程,而这两者的难点在于熟料高浓度溶出过程二次反应的控制和适宜絮凝剂的确定。因此,对熟料高浓度溶出与溶出后浆液的快速分离工艺以及相关过程的机理进行研究,对提高烧结法氧化铝生产技术经济指标具有重要意义。为此,本文就以下一些方面进行了系统研究:
     1.熟料溶出过程相关反应的热力学
     对熟料溶出过程相关的各种反应进行了详尽的归纳,并就其热力学性质进行了系统而详细的计算和分析。明确了溶出过程中原硅酸钙(β-2CaO·SiO_2)在三种不同碱性溶液中的稳定性次序由强到弱为NaOH>>NaAl(OH)_4>Na_2CO_3;明晰了各种二次反应发生的可能性;明确了不同类型的硅酸钙在铝酸钠溶液中的稳定性次序由强到弱为:CaO·SiO_2>3CaO·2SiO_2>2CaO·SiO_2;就不同饱和系数的水化石榴石在氢氧化钠和碳酸钠溶液中的稳定性进行了热力学计算和分析,得出了NaOH难于分解水化石榴石而Na_2CO_3则易于分解水化石榴石的结论;对原硅酸钙在溶出过程中可能发生的一系列水化反应、硅酸钙水化物与铝酸钠溶液各成分之间的反应进行了系统的热力学计算,结果表明,原硅酸钙最有可能水化成2CaO·SiO_2·1.17H_2O、2CaO·SiO_2·0.5H_2O和4CaO·3SiO_2·1.5H_2O;热力学上,硅酸钙水化物不跟NaOH反应,而与Na_2CO_3和NaAl(OH)_4的反应趋势较大。这些结果为熟料溶出工艺研究提供了理论指导。
     2.熟料溶出过程二次反应的动力学
     熟料溶出过程二次反应动力学的研究结果表明,根据动力学过程的特征,将该过程分为溶出时SiO_2进入铝酸钠溶液和Al_2O_3损失的两个动力学过程;对各实验条件下的动力学数据进行处理后可获得两个过程的动力学方程分别为:通过动力学方程,可以认为熟料溶出过程,因二次反应而导致SiO_2进入铝酸钠溶液和造成Al_2O_3损失的原因主要是NaAl(OH)_4与硅酸钙作用的结果。
     3.硅酸钙在不同碱性溶液中的行为
     为了更进一步探讨二次反应的机理,对硅酸钙在不同碱性溶液中的反应行为进行了系统的研究,其结果表明:相同条件下,硅酸钙在NaOH溶液中反应最弱,在Na_2CO_3溶液中反应最强,而在铝酸钠溶液中的稳定性介于二者之间,这与热力学分析结果相吻合;在铝酸钠溶液体系中,时间的延长、温度的提高都会使得硅酸钙的分解加剧,而碳酸钠对硅酸钙分解的影响远比在纯Na_2CO_3溶液中小,这是由于NaAl(OH)_4和Na_2CO_3的交互作用所致(Na_2CO_3分解硅酸钙的能力受到削弱而NaAl(OH)_4对硅酸钙的分解作用得以加强,导致NaAl(OH)_4成为在铝酸钠溶液中促使硅酸钙分解的主要因素);由于β-2CaO·SiO_2是介稳的高温型物质,其结构具有热力学不稳定性,同时该物质中钙离子具有不规则配位,使其具有较高的活性。而当硅酸钙中CaO/SiO_2分子比下降以后,其在铝酸钠溶液中的反应活性降低,所以以3CaO·2SiO_2和CaO·SiO_2形式存在的硅酸钙要比2CaO·SiO_2稳定。
     4.熟料高浓度溶出工艺
     在理论研究的基础上,对工业熟料高浓度溶出过程进行了系统的实验研究。由实验结果得出的主要结论是,在保证溶出液Al_2O_3浓度>180 g.L~(-1)的条件下,增大液固比可使得溶出液SiO_2的浓度有所降低,但对Al_2O_3溶出率没有明显的影响;较低的溶出温度(75℃左右)和较短的溶出时间(5-10 min)有利于减小熟料高浓度溶出过程的二次反应程度,即有利于溶出液SiO_2浓度的降低和保持较高的Al_2O_3溶出率;游离Na_2O_k浓度和Na_2O_c浓度对熟料高浓度溶出过程的影响较小,而NaAl(OH)_4的影响则较大;Na_2Os浓度对熟料高浓度溶出过程SiO_2和Al_2O_3行为的影响很小;调整液中含适量SiO_2有利于熟料高浓度溶出过程提高Al_2O_3溶出率和降低SiO_2溶出率;控制适当溶出过程工艺条件,可以降低熟料高浓度溶出过程二次反应的程度。就添加剂对熟料高浓度溶出过程的影响进行的大量实验研究后,发现其中以主要官能团为-COOCa的A-1可在一定程度上抑制二次反应的进行。
     5.熟料高浓度溶出浆液的沉降分离工艺
     对工业熟料高浓度溶出后浆液沉降性能进行的详细实验结果表明,在保证溶出浆液沉降以后上清液中Al_2O_3浓度>180 g.L~(-1)的前提下,通过大量实验研究发现添加絮凝剂A-15可以实现赤泥的快速沉降,其适宜的添加量为125~250g/t干赤泥;而随着熟料粒度的减小,沉降速度变慢,赤泥压缩性变差;碳酸钠浓度对熟料高浓度溶出浆液的固液分离过程影响比较明显,随着碳酸钠浓度的提高,溶出浆液的沉降性能逐渐变差,但Na_2Oc浓度10~20g/L之间对沉降过程无显著影响;在调整液循环溶出过程中,循环次数越多,对沉降越不利,直至发生赤泥膨胀现象,熟料越细这一现象越明显;但通过絮凝剂A-3和A-15按1:7~1:9的体积比复配则可大大缓解调整液循环对浆液沉降性能的恶化作用。
Alumina is one of the most important raw materials in the world economics. With the development of national economy, the alumina industry of China has developed with high speed since 2000's in the 21~(th) century. The total output of alumina annually was nearly up to 20 megaton in year 2007. It is only inferior to the iron & steel yields in metallurgical industry. Due to the high content of silica in bauxite, sintering process and Bayer-Sintering combination process act special roles in our country's alumina production. Nowadays, some new intensifying technologies of alumina production were come forth, but the problems of high energy consumption and cost is still under solved, this greatly decreases the benefits of the alumina company by sintering process. An efficient means for reducing energy consumption is to increase Al_2O_3 concentration of wet method system, its pivotal technique involve the processes of clinker-leaching with high Al_2O_3 concentration and the separation of solid and liquid, however, the difficulties of these two processes are respectively the control of secondary reaction during clinker-leaching and the determination of suited flocculent. Therefore, it has great meanings to work over the secondary reaction mechanism, the technologies of clinker-leaching with high Al_2O_3 concentration and the sedimentation of leached slurry for increasing the technology economic index of alumina production by sintering process. In this case, the following aspects have been studied systematically in the dissertation:
     1. Thermodynamic calculation and analysis of clinker-leaching process
     Thermodynamic computation and discussion of reactions involved in the clinker-leaching process are described in detail. The stability ofβ-2CaO·SiO_2 in three alkaline liquors and different types of calcium silicate in sodium aluminate liquor have been confirmed in thermodynamic terms, results are respectively as follows: NaOH>>NaAl(OH)_4>Na_2CO_3 and CaO·SiO_2>3CaO·2SiO_2>2CaO·SiO_2. Meanwhile, the results of investigation on the reactions between hydrogarnet with different saturation coefficient and NaOH or Na_2CO_3 show that Na_2CO_3, instead of NaOH, can easily decompose hydrogarnet and hydrogarnet in NaOH solution is more stable than in Na_2CO_3 solution. Finally, the hydration ofβ-2CaO·SiO_2 and reactions between calcium silicate hydrate and three alkaline liquors have all been analyzed. Its results indicate that hydration ofβ-2CaO·SiO_2 to afford 2CaO·SiO_2·1.17H_2O, 2CaO·SiO_2·0.5H_2O and 4CaO·3SiO_2·1.5H_2O is thermodynamically most favorable. NaOH contributes less dependence on the decomposition of calcium silicate hydrate, in contrast, Na_2CO_3 and NaAl(OH)_4 remarkably influence on the decomposition of calcium silicate hydrate. All these results lay a theoretic basis for the investigation of new clinker-leaching technology.
     2. The kinetics of secondary reaction during clinker-leaching
     The kinetics of secondary reaction during clinker-leaching was researched in this part. Results demonstrate that secondary reaction process is divided into two sections according to the characteristics of dynamic process, namely, one is the process that SiO_2 dissolves into sodium aluminate solution and the other is the process about loss of Al_2O_3. After comprehensively treated, the two kinetic equations can be expressed as follows:It can be inferred from kinetic equation that reaction between calcium silicate and NaAl(OH)_4 is the main reason to result in SiO_2 entering into sodium aluminate solution and loss of Al_2O_3.
     3. Behaviors of calcium silicate in different alkaline solutions
     In this part:, the behaviors of calcium silicate in different alkaline solutions were systematically studied in order to further discover the mechanism of secondary reaction. The results illustrate that the stability sequence of calcium silicate in three alkaline solutions is NaOH>NaAl(OH)_4>Na_2CO_3, which is coincident with the thermodynamic results of this dissertation under the same leaching condition. Leaching in sodium aluminate solution, the prolongation of reacting time and elevation of reacting temperature will increase the decomposition of calcium silicate. The influence of Na_2CO_3 on the decomposition of calcium silicate in sodium aluminate solution is less than in Na_2CO_3 solution, which due to mutual action between NaAl(OH)_4 and Na_2CO_3. Attributing to decline of calcium silicate's reactive activity after decrease of CaO/SiO_2 of calcium silicate, 3CaO·2SiO_2 and CaO·SiO_2 in sodium aluminate solution are more stable than 2CaO·SiO_2.
     4. Technology of clinker-leaching with high Al_2O_3 concentration
     Based on the mentions above, particular research on the technology of clinker-leaching with high Al_2O_3 concentration has been carried out. Experimental results display that SiO_2 concentration in leached slurry climbs down with the increase of liquor-solid ratio to a certain extent under assuring the Al_2O_3 concentration>180 g.L~(-1), however, liquor-solid ratio exerts little influence on the leaching rate of Al_2O_3. Lower reacting temperature(about 75℃) and less reacting time(5-10 min) avail to reduce the extent of secondary reaction. Na_2Os, as well as Na_2O_c and free Na_2O_k concentration, have insignificant impact on the process of clinker-leaching with high Al_2O_3 concentration, but NaAl(OH)_4 has profound effect on the behaviors of SiO_2 and Al_2O_3 during clinker-leaching. Original liquor contains proper amount of SiO_2 is propitious to the elevation of leaching rate of Al_2O_3 and the reduction of leaching rate of SiO_2. Clinker-leaching with high Al_2O_3 concentration under suitable leaching conditions can make the extent of secondary reaction on the decline. It was also found that additive type A-l("-COOCa" as main functional group) can restrain secondary reaction from happening to some extent in this part.
     5. Technology of sedimentation of leached slurry with high concentration
     In the last part, the detailed investigation on sedimentation of slurry obtained after clinker leached with high Al_2O_3 concentration was completed. As seen from results, it was found that adding flocculent type A-15 can make rapid settlement of red mud come true under assuring the Al_2O_3 concentration>180 g.L~(-1), its proper additive amount is 125-250g/t dry red mud. The sedimentation rate reduces and the compressibility of red mud deteriorates with the fall of clinker size. Na_2CO_3 concentration exerts remarkable influence on the separation process of solid and liquor, sedimentation performance of leached slurry becomes bad gradually with the elevation of Na_2CO_3 concentration, but Na_2O_c concentration in the range of 10-20g/L exposes inapparent impact on this process. During circulation leaching with the use of liquor which is used to extract clinker, the increase of circulation-leaching amount make against the settlement process, especially when clinker size changes into more fine. However, the deterioration of slurry's sedimentation performance can be greatly alleviated through combining flocculent type A-3 and A-15 according to the ratio by volume of 1:7- 1:9.
引文
[1] http://www.webstock.com.cn/futuremetal goods/20070525000454.shtml
    
    [2] http://www.cs.com.cn/jrbz/13/t20050617 691575.htm
    
    [3] http://www.zhb.gov.cn/info/gw/bgth/200711/W020071128478677358279.pdf
    
    [4] http://www.chinafn.com.cn/download/download_file 10.pdf
    
    [5] http://www.66119999.com/info/detaiy3-38456.html
    
    [6] http://www.ccxi.com.cn/pdf/ccxi/pjbg/2007-zhongguolvyechang.pdf
    
    [7] http://www.shbiz.com.cn/1/1/index.php?prog=topic::print&tid=65917
    
    [8]侯炳毅.氧化铝生产方法简介[J].金属世界,2004,15(1):12-13
    
    [9]李旺兴.一水硬铝石生产高强度砂状氧化铝理论研究与工艺实践[D].长沙:中南大学博 士学位论文.2005.10
    
    [10]方启学,钮因健,黄国智.我国铝土矿资源综合分析[J].世界有色金属,2000,(2):9-12
    
    [11]陈万坤,彭关才.一水硬铝石型铝土矿的强化溶出技术[M].北京:冶金工业出版社, 1997:17-31
    
    [12]陈岱.国际铝工业对冶金级氧化铝的质量要求和发展趋势[J].轻金属,1996,(3):10-18
    
    [13]史金东,刘义伦.我国氧化铝工业可持续发展问题的思考[J].轻金属,2006,(11):3-6
    
    [14]邵志博.中国氧化铝工业的发展方向[J].世界有色金属,1999,(3):8-12
    
    [15] Guan Shuren. Measures for saving energy in alumina production[J]. Light Metals, 1990:1011-1014
    
    [16] Zheng Shangguan. Improvements of hydrometallurgical flowsheet in soda-lime sinteringprocess[J]. Light Metals, 1999: 77-83
    
    [17] Yan DO, Li H L. Discussion on heat consumption in the manufacture of alumina bysoda-lime sintering process[J]. Light Metals, 1990: 157-160
    
    [18]钮因健.对我国铝土矿资源和氧化铝工业的认识[J].轻金属,2003(3):3-7
    
    [19]管永诗,张云.我国铝土矿资源及氧化铝工业现状[J].矿产保护与利用, 1998,(6): 43-44
    
    [20]曹异生,唐健.氧化铝工业现状和前景分析[J].世界有色金属,2003,(12):11-14
    
    [21]陶英君,杨玉华.我国氧化铝发展现状与发展建议[J].轻金属,1998,(7):3-9
    
    [22]顾松青.我国的铝土矿资源和高效低耗的氧化铝生产技术[J].中国有色金属学报, 2004,14(5):94
    
    [23]申慧.世界铝土矿和氧化铝的发展趋势[J].有色金属工业,2003,(8):24-28
    
    [24]周国宝.略论发展我国氧化铝工业战略取向[J].世界有色金属,2004,(1):25
    
    [25]毕诗文.氧化铝生产工艺[M].北京:化学工业出版社,2006:222
    
    [26] Liu Guihua, Li Xiaobin, Peng Zhihong, et al. Behavior of calcium silicate in leachingprocess [J]. Transactions of Nonferrous Metals Society of China, 2003, 13(1): 213-216
    
    [27] Zhao Qingjie, Chen Qiyuan, Yang Qiaofang. The trends of Chinese alumina production withcombined process[J]. Light Metals, 2004: 127-130
    
    [28] Klimesch D S, Ray A. Hydrogarnet formation during autoclaving at 180℃C in unstirredmetakaolin-lime-quartz slurries[J]. Cement and Concrete Research, 1998, 8(28): 1109-1117
    
    [29] Bhatty M S Y, Greening N R. Interaction of Alkaline with Hydrating and Hydrated CalciumSilicates in Proceedings of the 4th Conference on the Effects in Cement and Concrete[J].Purdue University, West Lafayette, 1978: 87-111
    
    [30] Lan G Richardson, Adrian R Brough, Rik Brydson, et al. Location of Aluminum inSubstituted Calcium Silicate Hydrate(C-S-H)Gels as Determined by Si and Al NMR andEELS [J]. Am Ceram Soc, 1993, 76(9): 85-88
    
    [31] Danielle S, Klimesch, AbhiRay. DYA-TGA evaluations of the CaO-Al_2O_3-SiO_2-H_2O systemtreated hydrothermally[J]. ThermochimicaActa, 1999, 334: 115-122
    
    [32] Liu Guihua, Li Xiaobin, Peng Zhihong, etal. Stability of calcium silicate in basic solution[J]. Transactions of Nonferrous Metals Society of China, 2003, 13(5): 1235-1238
    
    [33]刘桂华,唐时健,李小斌,等.氧化铝生产中水合硅酸钙的研究进展.矿业工程[J].2005, 3(25): 54-56
    
    [34] Xiaodong Cong. Si NMR study of the structure of calcium silicate hydrate [J]. Advn Com BasMat, 1996, (3): 144-150
    
    [35] #12
    
    [36] Klimesch D S, Ray A. DTA-TG study of the CaO-SiO_2-H_2O and CaO-Al_2O_3-SiO_2-H_2Osystems under hydrothermal conditions [J]. Journal of Thermal Analysis and Calorimetry,??1999, 1(56): 24-27
    
    [37] Klimesch D S, Ray A. Effects of quartz particle size and kaolin on hydrogarnet formation during autoclaving[J]. Cement and Concrete Research, 1998, 9(28): 1317-1323
    
    [38]刘祥民,刘桂华,李小斌.水化石榴石渣湿法处理的研究[J].轻金属,1999(12):12-14
    
    [39]杨重愚.氧化铝生产工艺学[M].北京:冶金工业出版社, 1992:230-245
    
    [40]郭勤珍,王军.二次反应对熟料中氧化铝溶出率的影响[J].轻金属,2003,(12):10-12.
    
    [41]周宗科.浅析二次反应对氧化铝生产熟料溶出的影响[J].世界有色金属,2002,(9): 35-38.
    
    [42]陈红武,周宗科.烧结法熟料溶出条件对二次反应影响分析[J].轻金属,2001,(8):14-16
    
    [43]徐华军.氧化铝熟料溶出过程二次反应的研究[D].长沙:中南大学,2006.
    
    [44] Rayzman V. More complete desilication of aluminate solution is the key-factor to radical improvement of alumina refining[J]. Light Metals, 1996: 109-114
    
    [45]M.I.阿什著,王绳武摘译.表面活性剂大全[M].上海:上海科学技术文摘出版社, 1988
    
    [46]刘程,米裕民.表面活性剂性质理论与应用[M].北京:北京工业大学出版社,2003
    
    [47]汪小兰.有机化学[M].北京:高等教育出版社,1982:18-20
    
    [48]H C马里茨著.串联法生产氧化铝的新进展[M].陈恒芳,杨贵忠,骆其钧,等译.北京: 中国科学技术出版社,1991:28-42
    
    [49]李太昌.二次反应抑制剂及其添加工艺技术研究[J].有色金属(冶炼部分),2002,(1): 26-28
    
    [50]刘桂华,李小斌,彭志宏等.水合硅酸钙与碱反应机理的探讨[J].硅酸盐学报,2004, 32(6):777-780
    
    [51]杨重愚.氧化铝生产工艺学[M].北京:冶金工业出版社,1992:183-186
    
    [52] Eitel Wilhelm. Silicate Science[M]. New York: Academic Press, 1964
    
    [53]吕卫君.熟料烧结过程热力学分析[D].长沙:中南大学,2005.
    
    [54] #12
    
    [55] Xiangdong Cong. ~(29)Si and 270 NMR investigation of the structure of some crystalline calcium silicate hydrate[J]. Advn. Com. Bas. Mat, 1996, (3): 133-143
    [56] Harry F W Taylor. Proposed structure for calcium silicate hydrate gel[J]. J. Am. Ceram. Soc,1986, 69(4): 464-467
    [57] Michael Grutzeck, Barry Fanning. Silicon-29 magic angles spinning nuclear magnetic resonance study of calcium silicate hydrate[J]. J. Am. Ceram. Soc, 1989, 72(4): 665-668
    [58] Donald E Macphee. Solubility and aging of calcium silicate hydrate in alkaline solution at 25℃[J].J.Am. Ceram. Soc, 1989, 72(4): 646-654
    [59] Schneider, Cincotto, Panepucci. ~(29)Si and ~(27)Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes[J]. Cement and Concrete Research, 2001, 31(7): 993-1001
    [60] Tsunematsu, S. Inoue, K. Yamada. Improvement of acid resistance of calcium silicate hydrate by thermal treatment[J]. Cement and Concrete Research 2004, 34(4): 717-720
    [61] Zhang, XiaozhongChatig, Wenyi Ong, Cong K. Nanostructure of calcium silicate hydrate gels in cement paste[J]. Journal of the American Ceramic Society, 2000, 10 (83): 2600-2604
    [62] Suzuki, S. Sinn, E. Observation of calcium silicate hydrate by the precipitation method[J].Journal of Materials Science Letters, 1994, 13(14): 1058-1060
    [63] Chen, Jeffrey J. Thomas, Jeffrey J. Taylor, Hal F.W. Solubility and structure of calcium silicate hydra.te[J]. Cement and Concrete Research, 2004, 34 (9): 1499-1519
    [64] Larosa-Thompson, Judith L. Grutzeck, Michael W. Calcium silicate hydrate: the system CaO-SiO_2-H_2O[J]. World Cement, 1995, 26(11): 6
    [65] Brydson, R. Richardson, I.G. McComb, D.W. Parallel electron energy loss spectroscopy study of Al-substituted calcium silicate hydrate (C-S-H) phases present in hardened cement pastes[J]. Solid State Communications, 1993, 88(2): 183-187
    [66] Matsuyama, H. Young, J.F. Effects of pH on precipitation of quasi-crystalline calcium silicate hydrate in aqueous solution[J]. Advances in Cement Research, 2000, 12(1): 29-33
    [67] Grutzeck, M.W. Kwan, S. Thompson, J.L. Sorosilicate model for calcium silicate hydrate (C-S-H) [J]. Journal of Materials Science Letters, 1999, 8(3): 217-220
    [68] Cong, X. Kirkpatrick, R.J. H - ~(29)Si CPMAS NMR study of the structure of calcium silicate hydrate[J]. Advances in Cement Research, 1995, 7(27): 103-111
    [69] Le Callonnec, C. Faucon, P.; Bonville, P. Genand-Riondet, N. Superparamagnetic properties of a cement-derived synthetic Fe-substituted calcium silicate hydrate[J]. Journal of
    ??Magnetism and Magnetic Materials, 1997, 171(1-2): 119-128
    
    [70] Hirashima, Yasushi. Kori, Toshinari. Suzue, Shunji. Hydrothermal synthesis andcharacterization of calcium silicate hydrate from waste silica and lime[J]. Journal of theSociety of Materials Science, 1988, 37(421): 1228-1233
    
    [71] Chatterji, Susanta. Comment on Mesostructure of calcium silicate hydrate (C-S-H) gels inPortland cement paste: Short-range ordering, nanocrystallinity, and local compositionalorder[J]. Journal of the American Ceramic Society, 1997, 80(11): 2959-2960
    
    [72] Xu, Zhengkui. Viehland,Dwight. Reply to "Comment on Mesostructure of calcium silicatehydrate (C-S-H) gels in Portland cement paste: Short-range ordering, nanocrystallinity, andlocal compositional order" [J]. Journal of the American Ceramic Society, 1997, 80(11):2961-2962
    
    [73] Tennis, Paul D. Jennings, Hamlin M. Model for two types of calcium silicate hydrate in themicrostructure of Portland cement pastes[J]. Cement and Concrete Research, 2000, 30 (6):855-863
    
    [74] Nocun-Wczelik, Wieslawa. Effect of Na and Al on the phase composition and morphology of autoclaved calcium silicate hydrates[J]. Cement and Concrete Research, 1999, 29(11): 1759-1767
    
    [75] Md Mazibur Rahman. A model of dissolution of CaO-SiO_2-H_2O gel at Ca/Si >1[J]. Cementand concrete research, 1999, 29: 1091-1097.
    
    [76] Stephen Kwan. Sturcture and phase relations of aluminium-substituted calcium silicatehydrate[J].J.Am.Ceram. Soc, 1996, 79(4): 967-971.
    
    [77] Wieslawa Nocum-Wczelik. Effect of some inorganic admixtures on the formation andproperties of calcium of calcium silicate hydrates product in hydromthermal conditions [J].Cement and concrete research, 1997, 27(1): 83-92
    
    [78]周高云,罗家珂,宋庆福.赤泥沉降过程中絮凝剂的开发与应用研究现状[J].国外金属 矿选矿,1999,(11):21-25
    
    [79]张玉敏,刘桂华.赤泥分离中的絮凝剂[J].轻金属,2002,(4):10-14
    
    [80]卢红梅,钟宏,张雷,等.赤泥沉降过程中絮凝剂的现状与发展前景[J].轻金属,2000, (9): 23-25
    
    [81]吴琼珍,杨世杰,汤世泰等.平果铝土矿拜耳法赤泥沉降分离絮凝剂的研究[J].轻金属,??1996,(7):7-13
    
    [82]李时毅.铝土矿赤泥分离专用絮凝剂的研究[J].甘肃冶金,2003,25(12月增刊):62-67
    
    [83]杨立霞,张文丽.低分子量聚丙烯酸钠的制备及应用进展[J].化学工程师,2005,(3): 35-37
    
    [84]龚斌,董放战,李涛.氧化铝生产中絮凝剂应用的探讨[J].矿产保护与利用,2005,(3): 49-51
    
    [85]赵劭,曹文仲.交效絮凝剂(PAS-1)的效果试验[J].轻金属,1997,(9):12-15
    
    [86]吕子剑,曹文仲.PAS-1絮凝剂的选择和专门处理技术研究[J].轻金属,1998,(3):18-22
    
    [87]苟中入.高浓度铝酸钠溶液碳酸化分解的工艺与机理[D].长沙:中南大学硕士学位论 文,2002
    
    [88]黄子卿.电解质溶液理论导论(修订版)[M].北京:科学出版社,1983:8
    
    [89] LI Xiaobin, Lv Weijun, FENG Gangtao, et al. The applicability of Debye-Huckel model in NaAl(OH)_4-NaOH-H_2O system[J].过程工程学报,2005,5(5):525-528
    
    [90]温元凯,邵俊,陈德伟.含氧酸盐矿物生成自由能的计算[J].地质科学, 1978,4: 348-357
    
    [91]温元凯,邵俊,王三山.含氧酸盐矿物生成热的简单计算[J].金属学报,1979,15(3): 98-103
    
    [92]傅崇说.有色冶金原理[M].北京:冶金工业出版社,1984:157-177
    
    [93]彭志宏.铝酸钠溶液添加水合碳铝酸钙脱硅的研究[D].长沙:中南工业大学博士学位 论文,1993
    
    [94] Criss CM. The corresponding theory of ion entropy[J]. J. Amer. Chem. Soc. 1964, 86: 53-85
    
    [95] Russell A.S, Edwards J.D and Taylor C.S. Solubility and density of hydrated aluminas in NaOH solutions[J]. Journal of Metals, 1955, 203(7): 1123-1128
    
    [96]杨显万,何蔼平.高温水溶液热力学数据计算手册[M].北京:科学出版社,1983:10
    
    [97] #12
    
    [98] #12
    
    [99] 《联合法生产氧化铝》编写组.联合法生产氧化铝.熟料溶出与脱硅[M].北京:冶金工 业出版社,1975:7
    
    [100]杨重愚.氧化铝生产工艺学[M].北京:冶金工业出版社,1993:230-238
    
    [101]李小斌,吕卫君,彭志宏,等.硅酸钙烧成及碱液溶出性质研究[J].矿冶工程,2005, 25(1): 47-49
    
    [102] Danielle S, Klimesch, AbhiRay. DYA-TGA evaluations of the CaO-Al_2O_3 -SiO_2- H_2O system treated hydrothermally[J]. Thermo -chimica Acta, 1999, 334: 115-122
    
    [103]饶东升主编.硅酸盐物理化学[M].北京:冶金工业出版社,1991:134-146
    
    [104]朱金勇,杨巧芳,娄世斌,等.合成水合铝酸钙的性质研究[J].轻金属,2000,(12): 13-15
    
    [105]B и巴不什金,FM马特维耶夫著.硅酸盐热力学[M].蒲心诚,曹建华译.北京:中 国建筑工业出版社,1983:345
    
    [106]赵卓.水合硅酸钙在铝酸钠溶液中的行为[D].长沙:中南大学硕士学位论文,2005
    
    [107]《联合法生产氧化铝》编写组.联合法生产氧化铝-熟料溶出与脱硅[M].北京:冶金工 业出版社,1975:14
    
    [108]《联合法生产氧化铝》编写组.联合法生产氧化铝-控制与分析[M].北京:冶金工 业出版社,1977:172-176
    
    [109]佟志芳.铝酸钙炉渣的综合利用[D].沈阳:东北大学,2006:85-86
    
    [110]刘桂华.铝土矿全湿法预处理的工艺与机理研究[D].长沙:中南大学博士学位论文,1998:19
    
    [111]李洪桂.冶金原理[M].北京:冶金工业出版社,2004:278-290
    
    [112]庞思明,陶东平,文明芬,等.一水硬铝石型铝土矿盐酸浸出脱铁过程表观动力学[J]. 有色金属,1999,51(3):49-53
    
    [113]傅献彩,沈文霞,姚天扬.物理化学[M].北京:高等教育出版社,1990: 742
    
    [114]华一新.冶金过程动力学[M].北京:冶金工业出版社,2004:193
    
    [115] Li Xiaobin, Zhao Zhuo, Liu Guihua, etal. Behavior of calcium silicate hydrate in aluminate solution[J]. Trans Nonferrous Met Soc China, 2005,15(5): 1145-1149
    
    [116]苟中入.新型骨缺损修复材料-硅酸二钙生物活性材料的制备和性能研究[D].上海:中 国科学院上海硅酸盐研究所,2005:79-80
    
    [117]李小斌.铝酸钠溶液铝硅分离工艺与理论研究[D].东北大学博士学位论文,2000.53
    
    [118]刘桂华,李小斌,张传福.含钙化合物在铝酸钠溶液中行为的热力学讨论[J].轻金属, 1997,(6):24-26
    
    [119]张新玉.高浓度SiC浆料的制备[D].重庆大学硕士学位论文,2001.10
    
    [120] Roger G H. Surface force and their action in ceramic materials[J]. J. Am Ceram Soc, 1990, 73(5): 1117-1135
    
    [121]王瑞刚.陶瓷料浆稳定分散的进展[J].材料科学与工程,1999,17(2):66-71
    
    [122]杨重愚.氧化铝生产工艺学[M].北京:冶金工业出版社,1992:245,99,111
    
    [123]元炯亮,郝存江.赤泥的絮凝沉降[J].湿法冶金,2002,21(1):18-21
    
    [124]周高云,陈定洲,罗家珂,等.沉降赤泥的高效絮凝剂的应用研究[J].矿冶,2003, 12(2):41-45
    
    [125]祖庸,王训,郭晓英,等.超细二氧化钛分散性研究[J].涂料工业,1999,(6):6-8
    
    [126]徐晓军.化学絮凝剂作用原理[M].北京:科学出版社,2005:118
    
    [127]王毓华,陈兴华,胡业民.碳酸钠对细粒铝硅酸盐矿物分散行为的影响[J].中国矿业 大学学报,2007,36(3):292-297
    
    [128]侯万国,孙德军,张春光.应用胶体化学[M].北京:科学出版社,1998:11
    
    [129]王海波.表面活性剂分散纳米CeO_2粉体的性能研究[D].中南大学硕士学位论文, 2005.12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700