羊草光合特性与土壤呼吸对不同放牧强度的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家畜的采食减少了碳素由地上向地下的输入,使草地的固碳能力降低。光合作用和土壤呼吸是全球碳循环的重要组成部分。通过对呼伦贝尔草甸草原区域,不同放牧强度下天然草地优势种—羊草的光合生理指标以及草地土壤呼吸及其环境变化进行研究;进一步分析个体水平上羊草光合特性对放牧强度的适应机制和寻找合适放牧强度以降低放牧对草地土壤呼吸的不利影响。从而为放牧生态系统C循环模拟与监测提供基础数据。
     以不同放牧强度下(R0,R1,R2,R3,R4,R5)呼伦贝尔草甸草原未采食和采食羊草(Leymus chinensis)光合生理特征,天然草地土壤呼吸以及其环境因子为研究对象;采用红外线CO2气体分析仪(IRGA)、丙酮乙醇法、烘干法和环刀法分别进行系统研究。结果表明:
     1、在连续放牧方式下,羊草叶片的Pn、Tr、Gs对不同放牧强度响应日动态,既有“单峰”曲线也有“双峰”曲线,Ci呈“U”字型变化;不同放牧强度下未采食和采食羊草Pn、Tr季节变化均呈单峰型,而Tr变化较Pn剧烈。羊草叶片Pn、Tr、Gs日均值随着放牧强度的增大而下降;未采食和采食羊草季节变化,除R1外,随放牧强度增加而降低;Ci却相反。处于生长盛期羊草的光合指标值均优于生长晚期。采食羊草比未采食羊草Pn略低;Tr略高。大气温度、大气相对湿度、PAR综合作用于Pn和Tr。采食后,受损羊草Pn、Tr对环境水热因子的响应更为敏感;而R1较轻度放牧强度对羊草光合特性无显著影响,而R4和R5下均存在显著影响。除R1外,随R增大,羊草的最大净光合速率(Pmax)、表观量子效率(AQY)和暗呼吸速率(Rd)下降,而光补偿点(LCP)和光饱和点(LSP)增加。羊草对弱光吸收利用能力低,对强光敏感性弱。羊草采食后的叶绿素含量并未升高,随放牧强度增大,羊草光合色素变化激烈,并受季节影响。
     2、2011年测试期,SRR日变化与土壤温度(ST)和土壤含水量(SWC)及牧草生育期相关。SRR最大值出现在10:00~12:00;最小值分两个生长阶段,6月12日和7月10日(生长盛期)出现在16:00~18:00;8月12日和9月14日出现在6:00~8:00。SRR日变化呈单峰曲线,2010和2011年SRR季节变化趋势分别呈双峰形式和多峰波动形式;SRR日均值和各测试时间下SRR值,均随着放牧强度(除R1外)增大而下降,放牧强度间差距越大,SRR差异也越显著。在生长盛季,放牧强度越大,SRR日变化、季节变化浮动越剧烈,在生长后期变化减缓。放牧强度在一定程度上改变SRR的微环境,其中SWC、AB、RB和LA均随随放牧强度(除R1)增大而降低;放牧强度差异越大,影响因子之间差异越显著;ST的变化不具显著性,但R4和R5的值明显高于R0或R1。当温度低于生物最低生长温度时(如:2010年9月30日和2011年9月的3个测试日),各放牧强度之间SRR差异不显著;其它测试时间下,草地土壤呼吸随放牧强度(除R1外)增大而下降;其中,R4和R5显著低于R0和R1,而相邻放牧强度之间SRR不存在显著性差异。在时间序列上,ST是影响SRR的主要因子之一;而R4和R5放牧强度下,SWC与SRR的相关系数大于R0。SRR与生物因子(AB、RB和LA)和该环境下水热因子(大气温度、降水量、ST、SWC)呈正相关,与放牧强度干扰和壤容重呈负相关。
     综上可得, R1对羊草光合特性、SRR及其环境因子均无影响,而R4和R5对以上研究内容均有显著影响,R2和R3对它们的影响介于二者之间。因此,从生产的角度,R2和R3是合理的放牧强度;从生态的角度,R1是合理的放牧强度。
The input of carbon has decreased from the aboveground to the underground, toreduce the carbon sequestration capacity of grassland. Photosynthesis and soilrespiration are the elementary component of global carbon cycle. The photosyntheticand physiological indexes of dominant species-Leymus chinensis, soil respiration andits controlled factors were measured in Hulunber meadow steppe. It can be analyzedby the photosynthesis of L. chinensis for the adaptation to grazing intensities on theindividual level, looking for suitable grazing intensity to reduce the adverse effects,providing basic data for the simulation and monitoring of carbon cycle.
     The photosynthetic characteristics of ungrazed and grazed Leymus chinensis andsoil respiration were studied by the method of infrared radiation gas analyzer underthe treatments of six different grazing intensities (R0, R1, R2, R3, R4and R5) among allexperimental plots in Hulunber meadow steppe. The photosynthetic pigments andbiomass (including aboveground and root) were studied by Acetone ethanol methodand drying method.The results have showed as follow.
     (1) Results show that daily variation of net photosynthetic rate (Pn), transpiration rate (Tr),stomatal conductance (Gs) appears single peak curve and double peak curve, but intercellular CO2concentration (Ci) demonstrates shape of U. Which responsed to different grazing intensitiesunder condition of continuous grazing. Pn, Tr of ungrazed and grazed L. chinensis have showedsingle peak curve during the period of experiment under different grazing intensities. Tr is moresensitive to different grazing intensities and seasonal change than Pn. In addition, Pn, Tr, Gs of L.chinensis shows the decrease with the increase of grazing intensities, but Ci presents the increase.Pn, Tr of ungrazed and grazed L. chinensis has presented the decline with the increase of grazingintensities, Ci reverses (except R1) in the period of growing season2011year. The photosyntheticvalues of early growth stage are better than late. The Pnof grazed L. chinensis were lower thanungrazed L. chinensis, while Tr higher. Air temperature (Ta), relative humidity (RH),photosynthetically active radiation (PAR) were combined the effects of each other rather thanoperated by a single factor. After grazing, Pn, Tr of damaged L. chinensis are severely sensitive toresponse to hydrothermic factors. R1has no significance with photosynthesis of L. chinensis, while R4and R5achieve the significant level. The maximum of net photosynthetic rate (Pmax), apparentquantum yield (AQY), and apparent dark respiration rate (R_d) of L. chinensis with the increase ofgrazing intensities (except R1) have decreased. It showed that the absorption and utilization abilityof L. chinensis was low of weak light, and was weak sensitivity of strong light. The content ofchlorophyll of grazed L. chinensis were not rising. With the increase of grazing intensities, thecontent of chlorophyll L. chinensis has changed dramatically, influencing on seasonal condition.
     (2) The diurnal variation of soil respiration rate (SRR) has correlated with soil temperature(ST), soil water content (SWC) and the growing period of herbage. The maximum has appearedbetween10and12o’clock. But the time of appearing minimum was inconsistent. The minimumappeared in the period of16to18o’clock on12June and10July, while it showed in the period of6to8o’clock on12August and14September. The diurnal variation trend of SRR has presented asingle peak trait curve, the seasonal change trend of SRR among experimental period haspresented a double peak trait curve under different grazing intensities in2010year, while hasexpressed the form of multi-peak fluctuations in2011year. The mean value of SRR decreased withthe increase of grazing intensities. The difference of SRR was more obvious with the increase ofgrazing intensity gap. In the peak of growing season, the diurnal changes of SRR fluctuatedfiercely with the increase of grazing intensities, then, the extent of fluctuation slowed down in thelate stage of growing season. Grazing intensity has altered the micro-enviroment of SRR in thesome extent. Such as, SWC, above ground biomass (AB), root biomass (RB) and litteraccumulation (LA) have declined with the increase of grazing intensities (except R_1). The gap ofgrazing intensities was larger, the difference of controlled factors being more sharply. ST has noregular changes under different grazing intensities, while the ST of R4and R5are distinctly higherthan R0or R1. When the temperature is lower than the minimum of growth (such as, on30thSeptember in2010year, on three experimental days September in2011year), the difference ofSRR has had no significance among different grazing intensities. SRR has decreased with theincrease of grazing intensities (except R1) on the rest of experimental days, therein, R4and R5aresignificantly lower than R0and R1. SRR of the adjacent grazing intensities did not exist significantdifference. In the series of time, ST has been the main controlled factor of SRR. The correlationcoefficient between SWC and SRR under R4and R5, has been extremely higher than R0. SRR waspositive correlation with biotic factors (including AB, RB and LA) and the hydrothermic factor (main including SWC, ST) in these experimental surroundings, negative correlation with grazingintensity and soil bulk density.
     In a word, R1has had no significance with the photosynthetic characteristics of L.chinensis, SRR and its controlled factors. While R4and R5have expressed appreciableimpact on above studies. R2and R3have influenced on them between R1and R4, R5.Hence, R2and R3are the reasonable grazing intensities from the viewpoint of yield.But R1could be suitable choice, from the perspective of ecology.
引文
[1]潘瑞炽.植物生理学(第五版)[M].北京:高等教育出版社,2004:13-94.
    [2] Schlesinger W H and Andrews J A. Soil respiration and the global carbon cycle[J].Biogeochemistry,2000,48(1):7-20.
    [3]钟华平,樊江文,于贵瑞,等.草地生态系统碳蓄积的研究进展[J].草业科学,2005,22(1):4-11.
    [4] Ojima DS, Parton WJ, Schimel DS, et al. Modeling the effects of climate and CO2changeson grassland storage of soil [J]. Water Air and Soil Pollution,1993,(70):643-657.
    [5]唐华俊,辛晓平,杨桂霞,等.现代数字草业理论与技术研究进展及展望[J].中国草地学报,2009,31(4):1-8.
    [6]王艳芬,汪诗平.不同放牧率对内蒙古典型草原地下生物量的影响[J].草地学报.1999,7(3):198-203.
    [7]王玉辉,何兴元,周广胜.放牧强度对羊草草原的影响[J].草地学报,2002,10(1):45-49.
    [8]王艳芬,汪诗平.不同放牧率对内蒙古典型草原牧草地上现存量和净初级生产力及品质的影响[J].草业学报,1999,8(1):15-20.
    [9]高英志,韩兴国,汪诗平.放牧对草原土壤的影响[J].生态学报,2004,24(4):790-797.
    [10]侯扶江.放牧对牧草光合作用、呼吸作用和氮、碳吸收与转运的影响[J].应用生态学报,2001,12(6):938-942.
    [11]刘振国,李镇清.退化草原冷蒿群落13年不同放牧强度后的植物多样性[J].生态学报,2006,26(2):475-482.
    [12]金晓明,韩国栋.放牧对草甸草原植物群落结构及多样性的影响[J].草业科学,2010,27(4):7-10.
    [13]蒙旭辉,李向林,辛晓平,等.不同放牧强度下羊草草甸草原群落特征及多样性分析[J].草地学报,2009,17(2):239-244.
    [14]刘颖,王德利,王旭,等.放牧强度对羊草草地植被特征的影响[J].草业学报,2002,11(2):22-28.
    [15]杨殿林.呼伦贝尔草原群落植物多样性与生产力关系的研究[D].呼和浩特:内蒙古农业大学研究生院,2006.
    [16]侯扶江,杨中艺.放牧对草地的作用[J].生态学报,2006,26(1):244-262.
    [17]闫瑞瑞,辛晓平,张保辉,等.肉牛放牧梯度对呼伦贝尔草甸草原植物群落特征的影响[J].中国草地学报,2010,32(3):62-66.
    [18]焦树英,韩国栋,李永强,等.不同载畜率对荒漠草原群落结构和功能群生产力的影响[J].西北植物学报,2006,26(3):564-571.
    [19]陈俊博.绵羊放牧对草原土壤呼吸的作用及其主要影响因子分析[D].兰州:兰州大学研究生院,2009.
    [20]赵哈林,赵学勇,张铜会,等.放牧胁迫下沙质草地植被的受损过程[J].生态学报,2003,23(8):1505-1511.
    [21] Milchunas, D. G., Lauenroth, W. K. Quantitative effects of grazing on vegetation andsoils over a global range of environments[J]. Ecological Monographs,1993,(63):327-366.
    [22]李金花,李镇清.不同放牧强度下冷蒿、星毛委陵菜的形态可塑性及生物量分配格局[J].植物生态学报,2002,26(4):435-440.
    [23] Oesterheld M, McNaughton S J. Effects of stress and time for recovery on the amount ofcompensatory growth after grazing [J]. Oecologia,1991,(85):305-313.
    [24]汪诗平,王艳芬.不同放牧率下糙隐子草种群补偿性生长的研究[J].植物学报,2001,43(4):413-418.
    [25]安渊,李博,杨持,等.植物补偿性生长与草地可持续利用研究[J].中国草地,2003,23(6):1-5.
    [26]刘艳,卫智军,杨静,等.短花针茅草原不同放牧制度的植物补偿性生长[J].中国草地,2004,26(3):18-23.
    [27]张荣,杜国祯.放牧草地群落的冗余与补偿[J].草业学报,1998,7(4):13-19.
    [28]马银山,张世挺.植物从个体到群落水平对放牧的响应[J].生态学杂志,2009,28(1):113-121.
    [29]杜占池,杨宗贵.十种草原植物光合速率与光照的关系[J].生态学报,1988,8(4):319-323.
    [30]杜占池,杨宗贵.羊草和大针茅光合作用午间降低与生态因子关系的研究[J].自然资源学报,1990,5(2):177-187.
    [31]杜占池,杨宗贵,羊草叶片光合作用日进程类型的研究[J].植物学通报,1993,(10):12-22.
    [32]杜占池,杨宗贵,崔骁勇.草原植物光合生理生态研究[J].中国草地,1999,(3):20-27.
    [33]王德利,王正文,张喜军.羊草两个趋异类型的光合生理生态特性比较的初步研究[J].生态学报,1999,19(6):837-843.
    [34]王玉辉,周广胜.松嫩草地羊草叶片光合作用生理生态特征分析[J].应用生态学报,2001,12(1):75-79.
    [35]陈效逑,周萌,郑婷,等.呼伦贝尔草原羊草(Leymus chinensis)光合速率的季节变化--以鄂温克旗牧业气象试验站为例[J].生态学报,2008,28(5):2003-2011.
    [36]李林芝.呼伦贝尔草甸草原不同土壤水分梯度下羊草光合生理特性研究[D].兰州:甘肃农业大学,2010.
    [37]黄立华,梁正伟,马红媛.苏打盐碱胁迫对羊草光合_蒸腾速率及水分利用效率的影响[J].草业学报,2009,18(5):25-30.
    [38] Daniel R. LeCain, Jack A. Morgan, Gerald E. Schuman, et al. Carbon exchange andspecies composition of grazed pastures and exclosures in the shortgrass steppe ofColorado[J]. Agriculture, Ecosystem and Environment,2002,(93):421-435.
    [39]赵鸿,王润元,郭铌,等.禁牧对安西荒漠化草原芨芨草光合生理生态特征的影响[J].干旱气象,2007,25(1):63-66.
    [40]贾宏涛,方光新,蒋平安,等.围栏封育对巴音布鲁克草原两种建群草光合日变化的影响[J].新疆农业大学学报,2007,30(3):49-52.
    [41]赵威.羊草对过度放牧和刈割的生理生态响应[D].北京:中国科学院研究生院,2006.
    [42]闫瑞瑞,卫智军,运向军,等.放牧制度对短花针茅荒漠草原主要植物种光合特性日变化影响的研究[J].草业学报,2009,18(5):160-167.
    [43] G.J.BRAGA, C.G.S.PEDREIRA, V.R.HERLING, et al. Herbage Allowance effects onleaf photosynthesis and canopy light interception in palisade grass pastures underrotational stocking [J]. Tropical Grasslands,2008,(42):214-223.
    [44] S.P.Chen, Y.F.Bai, G.H.Lin, et al. Effects of grazing on photosynthetic characteristics ofmajor steppe species in the Xilin River Basin, Inner Mongolia,China[J]. Photosynthetica,2005,43(4):559-565.
    [45] Cui XY, Wang YF, Niu HS, et al. Effect of long-term grazing on soil organic carboncontent in semiarid steppes in Inner Mongolia[J]. Ecological Research,2005,(20):519–527.
    [46] Y. Peng, G.M. Jiang, X.H. Liu, et al. Photosynthesis, transpiration and water useefficiency of four plant species with grazing intensities in Hunshandak Sandland, China[J].Journal of Arid Enviroments,2007,(70):304-315.
    [47] Reiners, W.A. Carbon dioxide evolution from the floor of three Minnesota forest[J].Ecology,1968,(49):471-483.
    [48] H.A. Mooney, B.G. Drake, R.J. Luxmoore, et al. Predicting ecosystem responses toelevated CO2concentrations[J]. Bioscience,1991,4(12):96-104.
    [49] MING XU, YE Qi. Soil-surface CO2effux and its spatial and temporal variations in ayoung ponderosa pine plantation in northern California[J]. Global Change Biology,2001,(7):667-677.
    [50] Guangxuan Han, Guangsheng Zhou, Zhenzhu Xu, et al. Biotic and abiotic factorscontrolling the spatial and temporal variation of soil respiration in an agriculturalecosystem [J]. Soil Biology&Biochemistry,2007,(39):418-425.
    [51] Dale J. Bremer, Jay M. Han, Clenton E. Owensby, et al. Response of soil respiration toclipping and grazing in tallgrass prairie[J]. Journal of Environmental Quality,1998,(27):1539-1548.
    [52] LeCain, D.R, Morgan J A, Schuman G E, et al. Carbon exchange rates in grazed andungrazed pasture of Wyoming[J]. Journal of Range Management,2000,(53):199-216.
    [53]周萍,刘国彬,薛萐.草地生态系统土壤呼吸及其影响因素研究进展[J].草业学报,2009,18(2):184-193.
    [54] Ryan MG, Binkley D, Fownes JH, et al. An experimental test of the causes of forestgrowth decline with stand age [J]. Ecological Monograph,2004,74:393-414.
    [55] Raich JW, Nadelhoffer KJ. Belowground carbon allocation in forest ecosystem: globaltrends[J]. Ecology,1989,70:1346-1354.
    [56] Collins, S.L., K. Knapp, J.M. Briggs, et al. Modulation of diversity by grazing andmowing in native tall-grass prairie[J]. Science,1998,(280):745-747.
    [57]崔骁勇,陈四清,陈佐忠.大针茅典型草原土壤CO2排放规律的研究[J].应用生态学报,2000,11(3):390-394.
    [58]戎郁萍,韩建国,王培,等.放牧强度对草地土壤理化性质的影响[J].中国草地,2001,23(4):41-47.
    [59]车宗玺,刘贤德,王顺利,等.祁连山放牧草原土壤呼吸及影响因子分析[J].水土保持学报,2008,22(5):172-174.
    [60] Guangmin Cao, Yanhong Tang, Wenhong MO, et al. Grazing intensity alters soilrespiration in an alpine meadowon the Tibetan plateau[J]. Soil Biology&Biochemistry,2004,(36):237-243.
    [61]贾炳瑞.放牧与围栏羊草草原土壤呼吸作用研究[D].北京:中国科学院研究生院,2006.
    [62]李玉强,赵哈林,赵学勇,等.不同强度放牧后自然恢复的沙质草地土壤呼吸、碳平衡与碳储量[J].草业学报,2006,15(5):25-31.
    [63]陈海军,王明玖,韩国栋,等.不同强度放牧对贝加尔针茅草原土壤微生物和土壤呼吸的影响[J].干旱区资源与环境,2008,22(4):165-169.
    [64] WANG Zhong-wu, JIAO Shu-ying, HAN Guo-dong, et al. Soil Respiration Response toDifferent Stocking Rates on Stipabreviflora Griseb.Desert Steppe[J]. Journal of InnerMongolia University,2009,40(2):186-193.
    [65] Stark S, Strommer R, Tuomi J. Reindeer grazing and soil microbial processes in twosuboceanic and two subcontinental tundra heaths[J]. Oikos,2002,(97):69-78.
    [66] Frank, A.B. Carbon dioxide fluxes over a grazed prairie and seeded pasture in theNorthern Great Plains[J]. Environmental Pollution,2002,(116):397-403.
    [67]李凌浩,王其兵,白永飞,等.锡林河流域羊草草原群落土壤呼吸及其影响因子的研究[J].植物生态学报,2000,24(6):680-686.
    [68]李凌浩,韩兴国,王其兵,等.锡林河流域一个放牧草原群落中根系呼吸占土壤总呼吸比例的初步估计[J].植物生态学报,2002,26(1):29-32.
    [69] Braga G J, Pedreira C G S, Herling V R, et al. Herbage allowance effects on leafphotosynthesis and canopy light interception in palisade grass pastures under rotationalstocking [J]. Tropical Grasslands,2008,42:214-223.
    [70]闫秀峰,孙国荣,李敬兰,等.羊草和星星草光合蒸腾日变化的比较研究[J].植物研究,1994,14(3):287-291.
    [71]王平,周道玮.野大麦、羊草的光合和蒸腾作用特性比较及利用方式的研究[J].中国草地,2004,26(3):8-12.
    [72]宋炳煜.几个主要地面因子对草原群落蒸发的影响[J].植物生态学报,1996,21(6):495-503.
    [73] Nowak R S, Caldwell M M. A test of compensatory photosynthesis in the field:implications for herbivory tolerance[J]. Oecologia,1984,62:322-329.
    [74]原保忠,王静,赵松岭.植物受动物采食后的补偿作用——影响补偿作用的因素[J].生态学杂志,1997,16(6):41-45.
    [75] Nelson C J. Physiology and developmental morphology. In: Moser LE Buxon DRandCasler MD(eds) Cool–season Forage Grass[J]. Agronomy Monograph34AmericanSociety of Agronomy, Madism, Wisconsin.1996,87-125.
    [76]韩刚,赵忠.不同土壤水分下4种沙生灌木的光合光响应特性[J].生态学报,2010,30(15):4019-4026.
    [77] Farquhar G D, Von C S, Berry J A. Models of photosynthesis[J]. Plant Physiology,2001,125(1):42-45.
    [78]刘振琦,刘振业,马达鹏,等.水稻叶绿素含量及其与光合速率关系的研究[J].作物学报,1984,10(1):57-64.
    [79]张秋英,李发东,刘孟雨.冬小麦叶片叶绿素含量及光合速率变化规律的研究[J].中国生态农业学报,2005,13(3):95-98.
    [80]许大全.叶绿素含量的测定及其应用中的几个问题[J].植物生理学通讯,2009,45(9):896-898.
    [81]程林海,李占林,高洪文.水分胁迫对白羊草光合生理特性的影响[J].中国农学通报,2004,20(6):231-233.
    [82]张昌楠,白贞女,石连旋.松嫩盐碱化羊草草甸草原羊草光合色素的研究[J].长春师范学院学报,2008,27(2):51-55.
    [83]王静,杨持,王铁娟,谢玉平.冷蒿种群在不同放牧干扰下叶绿素_可溶性糖的对比研究[J].内蒙古大学学报,2005,36(3):280-283.
    [84]张宪政主编.《作物生理研究法》[M].农业出版社,1992,148-150.
    [85]张宪政.植物叶绿素含量测定---丙酮乙醇混合液法[J].辽宁农业科技,1986,3:26-28.
    [86]金岭梅,王钦.草坪植物正常生长期叶绿素含量测定值的影响因素[J].1993,10(5):51-53.
    [87] Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris[J]. Plant Physiology,1949,24:1-5.
    [88] Dale MP, Caustond DR. Use of the chlorophyll a/b ratio as a bioassay for the lightenvironment of a plant [J]. Functional Ecology,1992,6:190-196.
    [89]安渊.放牧干扰对大针茅草原生态系统的影响及其受损机理的研究[D].呼和浩特:内蒙古大学,2000.
    [90] Yoshiko Kosugi, Tomonori Mitani, Masayuki Itoh et al. Spatial and temporal variationin soil respiration in a Southeast Asian tropical rainforest[J]. Agricultural and ForestMeteorology,2007,147:35-47.
    [91] Gaelle Vincent, Ali Reza Shahriari, Eric Lucot.et al. Spatial and seasonal variations insoil respiration in a temperate deciduous forest with fluctuating water table[J]. Soil Biology&Biochemistry,2006,38(9):2527-2535.
    [92]李洪建.不同生态系统土壤呼吸与环境因子的关系研究[D].山西:山西大学博士论文,2008.
    [93]王君,沙丽清,李检舟等.云南香格里拉地区亚高山草甸不同放牧管理方式下的碳排放[J].生态学报,2008,28(8):3574-3582.
    [94] Yun she Dong, Shen Zhang, Yu chun Qi, et al. Fluxes of CO2, N2O and CH4from atypical temperate grassland in Inner Mongolia and its daily variation[J]. Chinese ScienceBulletin,2000,45(3):1590-1594.
    [95] Jin Zhao, Qi Yu chun, Dong Yun she. Diurnal and seasonal dynamics of soil respirationin desert shrubland of Artemisia Ordosica on Ordos Plateau of Inner Mongolia, China[J].Journal of Forestry research,2007,18(3):231-235.
    [96] Shushi Peng, Shilong Piao, Tao wang, et al. Temperature sensitivity of soil respiration indifferent ecosystems in China[J]. Soil Biology&Biochemistry,2009,41:1008-1014.
    [97] Johnson L C, Matchett J R. Fire and grazing regulate below ground processes intallgrass prairie[J]. Ecology,2001,82(12):3377-3389.
    [98] S.R. Gupta, J.S. Singh. Soil respiration in a tropical grassland[J]. Soil Biology&Biochemistry,1981,13(4):261-268.
    [99] Xingwu Lin, Zhenhua Zhang, Shiping Wang, et al. Response of ecosystem respiration towarming and grazing during the growing seasons in the alpine meadow on the Tibetanplateau [J]. Agricultural and Forest Meteorology,2011,151:792-802.
    [100]孙伟.松嫩草原贝加尔针茅群落土壤呼吸与个体水分生理生态研究[D].2003,东北师范大学.
    [101]徐海红,侯向阳,那日苏.不同放牧制度下短花针茅荒漠草原土壤呼吸动态研究[J].草业学报,2011,20(2):219-226.
    [102]杨庆朋,徐明,刘洪升,等.土壤呼吸温度敏感性的影响因素和不确定性[J].生态学报,2011,31(8):2301-2311.
    [103]陈全胜.内蒙古锡林河流域草原群落土壤呼吸的时空变异及其影响因子研究[D].北京:中国科学院研究生院博士学位论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700