离子液体、壳聚糖衍生物对蠕虫状胶束结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蠕虫状胶束的高粘弹性、高剪切稀释等特点使其在食品、农药以及石油工业等众多领域得到了广泛的应用。目前很多研究表明有机盐、部分疏水取代的高分子可以进一步稳定蠕虫状胶束的结构增强其粘弹性,拓宽它的应用领域,因此寻找各种能增强蠕虫状胶束粘弹性的添加物既具有理论意义又具有实际应用价值。
     通常,有机盐的加入能减弱表面活性剂分子极性头基之间的排斥,使胶束排列更加紧密,有利于胶束的生长,体系的粘弹性增强。离子液体作为一种室温熔融盐,既具有有机盐的特点又具有蒸汽压低、熔点低、液程宽、可溶性好和稳定性高等特性,因此本文首先研究了离子液体bmimBF4对蠕虫状胶束结构的影响,结果发现与传统的有机盐不同,bmimBF4没有增强蠕虫的粘弹性反而诱导蠕虫状胶束向球状胶束转变。因此本文又研究了具有丰富流变行为的生物大分子—O-羧甲基壳聚糖及其疏水衍生物对蠕虫状胶束结构的影响。结果发现这一类生物大分子能够增强蠕虫状胶束的粘弹性,而且可以通过改变疏水链的长度、静电作用、温度等因素调节它们之间的作用,得到了比较丰富的蠕虫状胶束结构调控方面的信息。主要内容如下:
     (1)研究了离子液体bmimBF4对Tween80/Brij30/H2O蠕虫状胶束结构的影响。流变的结果表明,bmimBF4的加入会降低蠕虫状胶束的粘弹性。这可能是因为bmimBF4在胶束中的定位影响了表面活性剂的几何排列因子,从而诱导蠕虫状胶束向球状胶束转变。芘探针、电导率、核磁等实验结果进一步证实了这一观点。此外,在CTAB/NaCl和SDS/Brij30/H2O蠕虫状胶束体系中也发现了类似的结果。
     (2)研究了O-羧甲基壳聚糖及其疏水衍生物对Tween80/Brij30/H2O蠕虫状胶束结构的影响。流变的结果表明,O-羧甲基壳聚糖可以极大地增强体系的粘弹性,而经过疏水取代后,这种增强作用反而减弱了。O-羧甲基壳聚糖经过疏水取代后其分子内的作用增强可能是导致这一结果的主要原因,并通过温度对其与蠕虫状胶束相互作用的影响得到了进一步的证实。
     (3)研究了C8-OCMCS对带相反电荷的CTAB胶束结构的影响。流变的结果表明,C8-OCMCS能够增强CTAB溶液的粘弹性,诱导体系中复合网络结构的形成。从低温扫描电镜和核磁的结果得知这可能是因为C8-OCMCS既可以起到电解质的作用促进胶束的生长也可以通过疏水作用在胶束之间起到连接的作用。
     (4)研究了N-疏水链取代的O-羧甲基壳聚糖(Cn-OCMCS,n=4,6,8)对带相反电荷的CTAB/NaCl蠕虫状胶束结构的影响。流变的结果表明,C4-OCMCS的加入降低体系的粘弹性,C6-OCMCS的加入可以使体系的粘弹性略微增强,而C8-OCMCS的加入则会使其极大地增强。从核磁的结果可知这可能与Cn-OCMCS分子中疏水链的长度有关,只有疏水链足够长才可以插入到胶束内部,使高分子在胶束之间起到连接的作用,从而增强体系的粘弹性。
     (5)研究了N-疏水取代的O-羧甲基壳聚糖(Cn-OCMCS,n=4,8)对同电荷的SDS/Brij30/H2O蠕虫状胶束结构的影响。结果表明,C4-OCMCS或C8-OCMCS存在时体系达到相同的粘度需要的Brij30的含量降低,但是体系所能达到的粘度最大值也降低。说明C4-OCMCS和C8-OCMCS的加入可以加速胶束的生长但也会加速它的分枝。核磁的结果表明C4-OCMCS和C8-OCMCS与胶束之间没有明显的相互作用,在该胶束体系中C4-OCMCS和C8-OCMCS可能只是起到了类似NaCl的电解质的作用。
Due to the high viscoelastic properties, wormlike micelles are widely used in many areas, such as coatings, cosmetics and oil recovery. Recently, several researches have demonstrated that organic salts and some polymers can considerably increase the viscoelasticity of wormlike micelles, thus expanding its application fields. So, it is believed that looking for additives, which could increase the viscoelastic properties of wormlike micelles, is vital from both theory and application points-of-view.
     It is well-known that organic salts can usually decrease the electrostatic interactions among surfactant molecules so that the micelles grow rapidly, and the viscoelastic properties of micelles increase. Ionic liquids are a class of organic salts that are liquid at temperatures below100℃and they possess many distinctive properties such as negligible vapor pressure, wide potential window, high thermal stability, high viscosity, and good conductivity. Thus, in this paper, bmimBF4is chosen initially as an example of ionic liquid to study its influence on the structure of wormlike micelles. But, contrary to conventional organic salts, bmimBF4can't increase the viscoelastic properties of wormlike micelles but induces a wormlike-rod/spherical micellar transition. So, the effects of O-carboxymethylchitosan and its hydrophobically modified derivations on the structure of wormlike micelles are studied later. It has been found that these polymers could increase the viscoelastic properties of wormlike micelles obviously and their interactions can be adjusted by varying the alkyl chain length, electrostatic interactions and temperature, which provide us sufficient information about the structure changes of wormlike micelles. The main results are as follows:
     (1) The structural changes of wormlike micelles composed of Tween80and Brij30in the presence of a common ionic liquid1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) were studied. Upon addition of bmimBF4, the viscosities of the wormlike micelle systems decrease, or in other words, more Brij30is needed to attain a similar viscosity value. The changes of the storage/loss modulus and the relaxation time also show that the viscoelastic properties of the wormlike micelles decrease with increasing bmimBF4concentration. We believe that these results are attributed to a wormlike-rod/spherical micellar transition in the wormlike micelle solution, which is further confirmed by FF-TEM images. The location of bmimBF4in mixed micelles was studied to explain the structure transition in the above systems. Additionally, similar results are also observed in CTAB/NaCl and SDS/Bij30/H2O wormlike micelles.
     (2) The enhancement of wormlike micellar structure after the addition of O-carboxymethylchitosan (OCMCS) or hydrophobically modified O-carboxymethylchitosan (hm-OCMCS) has been studied by rheology and FF-TEM. The results show that the viscoelastic properties of the wormlike micelles composed of Tween80and Brij30increase significantly after the addition of OCMCS. However, as the OCMCS molecules are hydrophobically modified, the viscosity enhancement is reduced and even diminishes with an increase of the length of aliphatic chains. FF-TEM was also used to provide us a direct investigation of the microstructure changes of wormlike micelles after the addition of OCMCS and hm-OCMCS. Combined with the rheology behavior of OCMCS and hm-OCMCS, we believe that these results are originated from a greater degree of intra-aggregation of polymers after hydrophobic modifications, which results in a weaker interaction between polymers and micelles. Additionally, the influence of temperature on the rheological behavior of polymer/wormlike micelles systems also demonstrates the intra-aggregation of polymers is the main impact factor in these systems.
     (3) The effect of hydrophobically modified O-carboxymethylchitosan on the structure of oppositely charged CTAB micelles has been studied by rheology, cryo-SEM and1H NMR. The results show that the viscoelastic properties of CTAB micelles increase significantly after the addition of C8-OCMCS. When CTAB content is lower, C8-OCMCS could induce the formation of complex network structure and when CTAB content is higher, or in other words, the network structure of wormlike micelles has already existed, C8-OCMCS could strengthen it. Based on cyco-SEM and1H NMR experiments, we hypothesize that these results should be attributed to the following reasons:(1) C8-OCMCS could decrease the electrostatic interactions among CTAB molecules inducing the micellar growth;(2) the C8chains could thread through and link the micelles, inducing the formation of more rigid complex network structure.
     (4) The effects of hydrophobically modified O-carboxymethylchitosan (Cn-OCMCS, n=4,6,8) on the viscoelastic properties of oppositely charged CTAB/NaCl wormlike micelles have been studied. The rheological data show that addition of C4-OCMCS decreases the viscoelastic properties of wormlike micelles. But, as the length of alkyl chain increases, the influence of Cn-OCMCS becomes opposite gradually, as shown by a slight increase of viscoelastic properties of wormlike micelles induced by C6-OCMCS and a larger increase induced by C8-OCMCS. From the detailed examination of how Cn-OCMCS (n=4,6,8) influences the FF-TEM images of wormlike micelles and1H chemical shifts of surfactant molecules, we posit a possible mechanism to explain these results, which lies on the length of alkyl chains on polymer molecules. In the mixed system containing C4-OCMCS, the C4chain is too short to anchor into the micelles and the electrostatic interactions between CTAB and C4-OCMCS may remove some surfactant molecules from the structure of wormlike micelles, thus the viscoelastic properties of admixtures decrease. But, for C6-OCMCS and C8-OCMCS, intercalation of the hydrophobic stickers into the wormlike micelles physically cross-links the system, so that the viscoelastic properties of admixtures increase. Because the cross-link effect is proportional to the alkyl chain length, the effect of C6-OCMCS is weaker than that of C8-OCMCS.
     (5) The effect of hydrophobically modified O-carboxymethylchitosan (C4-OCMCS, C8-OCMCS) on the rheological behavior of like-charged SDS/Bij30/H2O wormlike micelles has been studied by rheology, FF-TEM and1H NMR. The results show that in the presence of C4-OCMCS and C8-OCMCS less Brij30is needed to attain a similar viscosity value, but the maximum viscosity is also decreased. However, no obvious interaction is observed between polymer and wormlike micelles in1H NMR experiments. Compared with the effect of NaCl on the viscoelastic properties of wormlike micelles, we believed that C4-OCMCS or C8-OCMCS plays similar role to salt in this system.
引文
[1]肖进新,赵振国,表面活性剂应用原理[M],化学工业出版社,北京,2003.
    [2]Mandeep, S. B.; Shweta, S. Colloid Polym. Sci.2005,283,671-676.
    [3]Maik, N. I. Colloid J.2005,67,32-40.
    [4]Sanz, M. A.; Granizo, N. M. Colloid Polym. Sci.2005,283,646-652.
    [5]Myska, J.; Mik, V. Energ. Buildings 2003,35,813-819.
    [6]Sak-Bosnar, M.; Madunic-Cacic, D.; Matesic-Puac, R.; Grabaric, Z. Anal. Chim. Acta 2007,581,355-363.
    [7]Haitsma, J. J.; Lachmann, U.; Lachmann, B. Adv. Drug Deliver Rev.2001,47, 197-207.
    [8]Yang, H. Y.; Zheng, X. J.; Huang, W. S.; Wu, K. B. Colloids Surf. B 2008,65, 281-284.
    [9]Wang, H. Y.; Cao, X. L.; Zhang, J. C.; Zhang, A. M. J. Petrol. Sci. Eng.2009,65, 45-50.
    [10]Rivera, A.; Farias, T. Micropor. Mesopor. Mat.2005,80,337-346.
    [11]霍姆博格等著,韩丙勇,张学军译,水溶液中的表面活性剂和聚合物(原著第二版)[M],化学工业出版社,北京,2005.
    [12]Israelachvili, J. N.; Mitchell, D. J.; Ninhem, B. W. J. Chem. Soc., Faraday Trans. I 1976,72,1525-1545.
    [13]Helgeson, M. E.; Structure, Rheology, and Thermodynamics of Wormlike Micelle-Nanoparticle Mixtures.2009.
    [14]Yamashita, Y.; Kunieda, H.; Oshimura, E.; Sakamoto, K. J. Colloid Interface Sci. 2007,312,172-178.
    [15]Kunieda, H.; Ozawa, K.; Aramaki, K.; Nakano, A.; Solans, C. Langmuir 1998,14, 260-263.
    [16]Siperstein, F. R.; Gubbins, K. E. Langmuir 2003,19,2049-2057.
    [17]Klaus, A.; Tiddy, G. J. T.; Touraud, D.; Schramm, A.; Stuhler, G.; Drechsler, M.; Kunz, W. Langmuir 2010,26,5435-5443.
    [18]Zemb, Th.; Dubois, M.; Deme, B.; Gulik-Krzywicki, Th. Science 1999,283, 816-819.
    [19]Dubois, M.; Deme, B.; Gulik-Krzywicki, Th.; Dediu, J. C.; Vautrin, C.; Desert, S.; Perez, E.; Zemb, Th. Nature 2001,411,672-675.
    [20]Debye, P.; Anacker, E. W. J. Phys. Coll. Chem.1951,55,644-655.
    [21]Gladys, M.; Lawrence, R.; Christian, L. Langmuir 2002,18,5687-5694.
    [22]张为灿,李干佐,牟建海,沈强,郑立强,梁好君,吴奇,科学通报,2000, 45,1138-1140.
    [23]Kuperkar, K.; Abezgauzb, L.; Daninob, D.; Vermac, G.; Hassan, P. A.; Aswal, V. K.; Varade, D.; Bahadur, P. J. Colloid Interface Sci.2008,323,403-409.
    [24]Rao, U. R. K.; Manohar, C.; Valaulikar, B. S.; Iyer, R. M. J. Phys. Chem.1987,91, 3286-3291.
    [25]Clausen, T. M.; Vinson, P. K.; Minter, J. R.; Davis, H. T.; Talmon, Y.; Miller, W. G. J. Phys. Chem.1992,96,474-484.
    [26]Shikata, T.; Hirata, H.; Kotaka, T. J. Phys. Chem.1990,94,3702-3706.
    [27]Liu, S. Y.; Gonzalez, Y. I.; Danino, D.; Kaler, E. W. Macromolecules 2005,38, 2482-2491.
    [28]Mu, J. H.; Li, G. Z.; Jia, X. L.; Wang, H. X.; Zhang, G. Y. J. Phys. Chem. B 2002, 706,11685-11693.
    [29]Angelescu, D.; Khan, A.; Caldararu, H. Langmuir 2003,19,9155-9161.
    [30]Arleth, L.; Bergstro, M. Langmuir 2002,18,5343-5353.
    [31]Acharya, D. P.; Kunieda, H. Adv. Colloid Interface Sci.2006,123,401-413.
    [32]Acharya, D. P.; Sato, T.; Kaneko, M.; Singh, Y.; Kunieda, H.J. Phys. Chem. B 2006,110,754-760.
    [33]Acharya, D. P.; Hattori, K.; Sakai, T.; Kunieda, H. Langmuir 2003,19,9173-9178.
    [34]Acharya, D. P.; Kunieda, H. J. Phys. Chem. B 2003,107,10168-10175
    [35]Varade, D.; Ushiyama, K.; Shrestha, L. K.; Aramaki. K. J. Colloid Interface Sci. 2007,312,489-497.
    [36]Baker, C. A.; Saul, D.; Tiddy, G. J. T.; Wheeler, B. A.; Willis, E. J. Chem. Soc., Faraday Trans.11974,70,154-162.
    [37]Koehler, R. D.; Raghavan, S. R.; Kaler, E. W. J. Phys. Chem. B 2000,104, 11035-11044.
    [38]Raghavan, S. R.; Fritz, G.; Kaler, E. W. Langmuir 2002,18,3797-3803.
    [39]Chase, B.; Chmilowski, W.; Dang, Y. Oilfield Review[M]. New York:Academic Press,1997,20-33.
    [40]Wakler, L. M.; Moldenaers, P.; Berret, J. F. Langmuir 1996,12,6309-6314.
    [41]Hassan, P. A.; Candau, S. J. Langmuir 1998,14,6025-6029.
    [42]牟建海,李干佐,日用化学工业,2002,32,32-42.
    [43]Gasljevic, K.; Aguilar, G.; Matthys, E. F. J. Non-Newton. Fluid.2001,96,405-409.
    [44]李干佐,孙立新,聂玉峰,日用化学工业,2008,38,402-408.
    [45]Rubin, F. K.; Blarcom, D. V. Viscose Compositions Containing Amido Betaines and Salts. US 4375421,1983.
    [46]Smith, W. L. Viscoelastic cleaning compositions with long relaxation times. US 5389157,1995.
    [47]Yang, J. Curr. Opin. Colloid Interface Sci.2002,7,276-281.
    [48]Welton, J. Chem. Rev.1999,99,2071-2083.
    [49]Bonhote, P.; Dias, A. P.; Papageorgiou, N. Inorg. Chem.1996,35,1168-1178.
    [50]Handy, S. T. Curr. Org. Chem.2005,9,959-988.
    [51]Katayama, Y.; Dan, S.; Miura, T. J. Electrochem. Soc.2001,148,102-105.
    [52]Fuller, J.; Carlin, R. T.; Osteryoung, R. A. J. Electrochem. Soc.1997,144, 3881-3885.
    [53]Yang, C. H.; Tai, C. C.; Huang, Y. T.; Sun, I. W. Tetrahedron 2005,61, 4857-4864.
    [54]Howarth, J.; Dallas, A. Molecules 2000,5,851-855.
    [55]Kim, K. S.; Demberelnyamba, D.; Lee, H. Langmuir 2004,20,556-560.
    [56]Wang, W. W.; Zhu, Y. J. Inorg. Chem. Commun.2004,7,1003-1005.
    [57]Zhou, Y.; Jan, H.; Antonietti, M. Nano Lett.2004,4,477-481.
    [58]Khachatryan, K. S.; Smirnova, S. V.; Pletnev, L. V. Anal. Bioanal. Chem.2005,381, 464-470.
    [59]Beyaz, A.; Oh, W. S.; Reddy, V. P. Colloids Surf., B 2004,35,119-124.
    [60]Behera, K.; Pandey, S. J. Colloid Interface Sci.2007,316,803-814.
    [61]Behera, K.; Dahiya, P.; Pandey, S. J. Colloid Interface Sci.2007,307,235-245.
    [62]Zhang, J. L.; Li, W.; Zhao, Y. J.; Han, B. X.; Yang, G. Y. Colloids Surf., A 2009, 336,110-114.
    [63]Jayakumar, R.; Prabaharan, M.; Nair, S. V.; Tokura, S.; Tamura, H.; Selvamurugan, N. Prog. Mater Sci.2010,55,675-709.
    [64]Rinaudo, M. Prog. Polym. Sci.2006,31,603-632.
    [65]Muzzarelli, R. A. A. Cell Mol. Biol. Life Sci.1997,55,131-140.
    [66]Nair, K. G. R.; Madhavan, P. Fishery Tech.1984,21,109-112.
    [67]Mckay, G.; Blair, H. S.; Gardner, J. R. J. Appl. Polym. Sci.1989,27,3043-3057.
    [68]Chen, X. G.; Wang, Z.; Liu, W. S.; Park, H. J. Biomaterials 2002,23,4609-4614.
    [69]An, N. T.; Thien, D. T.; Dong, N. T.; Dung, P. L. Carbohydr. Polym.2009,75, 489-497.
    [70]Mima, S.; Miya, M.; Iwamoto, R. J. Appl. Polym. Sci.1983,28,1909-1917.
    [71]Satoh, T.; Vladimirov, L.; Johmen, M.; Sakairi, N. Chem. Lett.2003,32,318-319.
    [72]Lim, Sang-Hoon.; Hudson, S. M. Carbohydr. Res.2004,339,313-319.
    [73]Yalpani, M.; Hall, L. D. Macromolecules 1984,17,272-281.
    [74]Baurnann, H.; Faust, V. Carbohydr. Res.2001,331,43-57.
    [75]Kwon, S.; Park, J. H. Langmuir 2003,19,10188-101931.
    [76]Bao, S. H.; Nomura, T. Anal. Sci.2002,18,881-885.
    [77]Zhu, A. P.; Chan-Park, M. B.; Dai, S.; Li, L. Colloids Surf., B 2005,43,143-149.
    [78]Muzzarelli, R. A. A.; Tarsi, R. Int. J. Biol. Macromol.1994,16,177-180.
    [79]Li, Z.; Liu, X. F.; Zhuang, X. P.; Guan, Y. L.; Yao, K. D. J. Appl. Polym. Sci. 2002,84,2049-2059.
    [80]Yan, L. Y.; Poon, Y. F.; Chan-Park, M. B.; Chen, Y.; Zhang, Q. J. Phys. Chem. C 2008,112,7579-7587.
    [81]Kim, S. Y.; Cho, S. M.; Lee, Y.M. J. Appl. Polym. Sci.2000,78,1381-1391.
    [82]Kweon, D. K.; Kang, D. W. J. Appl. Polym. Sci.1999,74,458-463.
    [83]Zhu, A. P.; Jin, W. J.; Yuan, L. H.; Yang, G. J.; Yu, H.; Wu, H. Carbohydr. Polym. 2007,68,693-700.
    [84]Zhu, A. P.; Liu, J. H.; Ye, W. H. Carbohydr. Polym.2006,63,89-96.
    [85]Peng, X. H.; Zhang, L. N. Langumir 2007,23,10493-10498.
    [86]Peng, X. H.; Zhang, L. N. Colloids Surf., A 2009,337,21-25.
    [87]Zhu, A. P.; Yuan, L. H.; Dai, S. J. Phys. Chem. C 2008,112,5432-5438.
    [88]Zhu, T.; Ogbe, D. O.; Khataniar, S. Ind. Eng. Chem. Res.2004,43,4413-4421.
    [89]Solomatin, S. V.; Bronich, T. K.; Eisenberg, A.; Kabanov, V. A.; Kabanov, A. V. Langmuir 2007,23,2838-2842.
    [90]Kim, Y. H.; Gihm, S. H.; Park, C. R. Bioconjugate Chem.2001,12,932-938.
    [91]Thongngam, M.; Mcclements, D. J. J. Agric. Food Chem.2004,52,987-991.
    [92]Onesippe, C.; Lagerge, S. Colloids Surf., A 2008,317,101-108.
    [93]Dedinaite, A.; Ernstsson, M. J. Phys. Chem. B 2003,107,8181-8188.
    [94]Grant, J.; Lee, H.; Liu, R. C. W.; Allen, C. Biomacromolecules 2008,9,2146-2152.
    [95]Onesippe, C.; Lagerge, S. Colloids Surf., A 2008,330,201-206.
    [96]Li, Y. M.; Xu, G. Y.; Wu, D.; Sui, W. P. Eur. Polym. J.2007,43,2690-2698.
    [97]Shrestha, R. G.; Shrestha, L. K.; Aramaki, K. J. Colloid Interface Sci.2008,322, 596-604.
    [98]Kalur, G. C.; Frounfelker, B. D.; Cipriano, B. H.; Norman, A. I.; Raghavan, S. R. Langmuir 2005,21,10998-11004.
    [99]Nettesheim, F.; Liberatore, M. W.; Hodgdon, T. K.; Wagner, N. J.; Kaler, E. W.; Vethamuthu, M. Langmuir 2008,24,7718-7726.
    [100]Bandyopadhyay, R.; Sood, A. K. J. Colloid Interface Sci.2005,283,585-591.
    [101]Brackman, J. C.; Engberts, J. B. F. N. J. Am. Chem. Soc.1990,112,813-814.
    [102]Shashkina, J. A.; Philippova, O. E.; Zaroslov, Y. D.; Khokhlov, A. R.; Pryakhina, T. A.; Blagodatskikh, I. V. Langmuir 2005,21,1524-1530.
    [103]Yoshida, T.; Taribagil, R.; Hillmyer, M. A.; Lodge, T. P. Macromolecules 2007,40, 1615-1623.
    [1]Saha, S. K.; Jha, M.; Ali, M.; Chakraborty, A.; Bit, G.; Das, S. K.J. Phys. Chem. B 2008,112,4642-4647.
    [2]Kern, F.; Lemarechal, P.; Candau, S. J.; Cates, M. E. Langmuir 1992,8,437-440.
    [3]Lin, Z. Q.; Lu, B.; Zakin, J. L.; Talmon, Y.; Zheng, Y.; Davis, H. T.; Scriven, L. E. J. Colloid Interface Sci.2001,239,543-554.
    [4]Kumar, S.; Bansal, D.; Kabir-ud-Din. Langmuir 1999,15,4960-4965.
    [5]Acharya, D. P.; Sato, T.; Kaneko, M.; Singh, Y.; Kunieda, H. J. Phys. Chem. B 2006, 110,754-760.
    [6]Li, L.; Yang, Y.; Dong, J. F.; Li, X. F. J. Colloid Interface Sci.2010,343,504-509.
    [7]Sato, T.; Acharya, D. P.; Kaneko, M.; Aramaki, K.; Singh, Y.; Ishitobi, M.; Kunieda, H. J. Dispersion Sci. Technol.2006,27,611-616.
    [8]Abe, M.; Tobita, K.; Sakai, H.; Kondo, Y; Yoshino, N.; Kasahara, Y.; Matsuzawa, H.; Iwahashi, M.; Momozawa, N.; Nishiyama, K. Langmuir 1997,13,2932-2934.
    [9]Shashkina, J. A.; Philippova, O. E.; Zaroslov, Y D.; Khokhlov, A. R.; Pryakhina, T. A.; Blagodatskikh, I. V. Langmuir 2005,21,1524-1530.
    [10]Tabuteau, H.; Ramos, L.; Nakaya-Yaegashi, K.; Imai, M.; Ligoure, C. Langmuir 2009,25,2467-2472.
    [11]Menge, U.; Lang, P.; Findenegg, G. H. J. Phys. Chem. B 1999,103,5768-5774.
    [12]Rodriguez-Abreu, C.; Aramaki, K.; Tanaka, Y.; Lopez-Quintela, M. A.; Ishitobi, M.; Kunieda, H. J. Colloid Interface Sci.2005,291,560-569.
    [13]Behera, K.; Dahiya, P.; Pandey, S. J. Colloid Interface Sci.2007,307,235-245.
    [14]Beyaz, A.; Oh, W. S.; Reddy, V. P. Colloids Surf.,B 2007,35,119-124.
    [15]Behera, K.; Pandey, S. J. Colloid Interface Sci.2007,316,803-814.
    [16]Croce, V.; Cosgrove, T.; Dreiss, C. A. Langmuir 2004,20,984-999.
    [17]Flood, C.; Dreiss, C. A.; Croce, V.; Cosgrove, T. Langmuir 2005,21,7646-7652.
    [18]Acharya, D. P.; Hattori, K.; Sakai, T.; Kunieda, H. Langmuir 2003,19,9173-9178.
    [19]Acharya, P. D.; Varade, D.; Aramaki, K. J. Colloid Interface Sci.2007,315, 330-336.
    [20]Kunieda, H.; Kabir, H.; Aramaki, K.; Shigeta, K. J. Mol. Liq.2001,90,157-166.
    [21]Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. J. Chem. Soc. Faraday Trans.2 1976,72,1525-1568.
    [22]Mu, J. H.; Li, G. Z.; Jia, X. L.; Wang, H. X.; Zhang, G. Y. J. Phys. Chem. B 2002, 106,11685-11693.
    [23]Mitchell, D. J.; Ninham, B. W. J. Chem. Soc. Faraday Trans.2 1981,77,601-629.
    [24]Felippe, A. C.; Schweitzer, B.; Bo, A. G. D.; Eising, R.; Minatti, E.; Zanette, D. Colloids Surf., A 2007,294,247-253.
    [25]Rutkaite, R.; Swanson, L.; Li, Y.; Armes, S. P. Polymer 2008,49,1800-1811.
    [26]Wang, D.; Peng, Z. P.; Liu, X. X.; Tong, Z.; Wang, C. Y.; Ren, B. Eur. Polym. J. 2007,43,2799-2808.
    [27]Miki, K.; Westh, P.; Nishikawa, K.; Koga, K. J. Phys. Chem. B 2005,109, 9014-9019.
    [1]Walker, L. M. Curr. Opin. Colloid Interface Sci.2001,6,451-456.
    [2]Sharma, S. C.; Acharya, D. P.; Aramaki, K. Langmuir 2007,23,5324-5330.
    [3]Raghavan, S. R.; Kaler, E. W. Langmuir 2001,17,300-306.
    [4]Kumar, S.; Bansal, D. Langmuir 1999,15,4960-4965.
    [5]Zheng, Y.; Lin, Z.; Zakin, J. L.; Talmon, Y. J. Phys. Chem. B 2000,104,5263-5271.
    [6]Cao, Q.; Yua, L.; Zheng, L. Q.; Li, G. Z.; Ding, Y. H.; Xiao, J. H. Colloids Surf., A 2008,312,32-38.
    [7]Torres, M. F.; Gonzalez, J. M.; Rojas, M. R.; Muller, A. J.; Saez, A. E.; Lof, D.; Schillen, K. J. Colloid Interface Sci.2007,307,221-228.
    [8]Acharya, D. P.; Kunieda, H. J. Phys. Chem. B 2003,107,10168-10175.
    [9]Koehler, R. D.; Raghavan, S. R.; Kaler, E. W. J. Phys. Chem. B 2000,104, 11035-11044.
    [10]Varade, D.; Ushiyama, K.; Shrestha, L. K.; Aramaki, K. J. Colloid Interface Sci. 2007,312,489-497.
    [11]Yue, H.; Guo, P.; Guo, R. (unpublished).
    [12]Shashkina, J. A.; Philippova, O. E.; Zaroslov, Y. D.; Khokhlov, A. R.; Pryakhina, A.; Blagodatskikh, I. V. Langmuir 2005,21,1524-1530.
    [13]Ramos, L.; Ligoure, C. Macromolecules 2007,40,1248-1251.
    [14]Couillet, I.; Hughes, T.; Maitland, G. Macromolecules 2005,38,5271-5282.
    [15]Suksamranchit, S.; Sirivat, A.; Jamieson, A. M. J. Colloid Interface Sci.2006,304, 497-504.
    [16]Ng, W. K.; Tam, K. C.; Jenkins, R. D. Polymer 2001,42,249-259.
    [17]Xue, W.; Hamley, I. W.; Castelletto, V.; Olmsted, P. D. Eur. Polym. J.2004,40, 47-56.
    [18]Rojas, M. R.; Muller, A. J.; Saez, A. E. J. Colloid Interface Sci.2008,322,65-72.
    [19]Zhu, A. P.; Fang, N. Biomacromolecules 2005,6,2607-2614.
    [20]Cai, K. Y.; Yao, K. D.; Li, Z.; Yang, Z. M.; Li, X. Q. J. Biomater. Sci. Polym. Ed. 2001,12,1303-1315.
    [21]Zhang, C.; Ding, Y.; Ping, Q.; Yu, L. J. Agric. Food Chem.2006,54,8409-8416.
    [22]Zhu, A. P.; Chan-Park, M. B.; Dai, S.; Li, L. Colloids Surf., B 2005,43,143-149.
    [23]Acharya, D. P.; Hattori, K.; Sakai, T.; Kunieda, H. Langmuir 2003,19,9173-9178.
    [24]Flood, C.; Dreiss, C. A.; Croce, V.; Cosgrove, T. Langmuir 2005,21,7646-7652.
    [25]Croce, V.; Cosgrove, T.; Dreiss, C. A. Langmuir 2005,21,6762-6768.
    [26]Nettesheim, F.; Liberatore, M. W.; Hodgdon, T. K.; Wagner, N. J.; Kaler, E. W. Vethamuthu, M. Langmuir 2008,24, 718-7726.
    [27]Ortona, O.; Errico, G. D.; Mangiapia, G.; Ciccarelli, D. Carbohydr. Polym.2008, 74,16-21.
    [28]Acharya, D. P.; Varade, D.; Aramaki, K. J. Colloid Interface Sci.2007,315, 330-336.
    [29]Shrestha, R. G.; Shresths, L. K.; Aramaki, K. J. Colloid Interface Sci.2008,322, 596-604.
    [1]Ghoreishi, S. M.; Fox, G. A.; Bloor, D. M.; Holzwarth, J. F.;Wyn-Jones, E. Langmuir 1999,15,5474-5479.
    [2]Matulis, D.; Rouzina, L.; Bloomfield, V. A. J. Mol Biol.2000,296,1053-1063.
    [3]Wang, C.; Tam, K. C. Langmuir 2002,18,6484-6490.
    [4]Li, Y.; Ghoreishi, S. M.; Warr, J.; Bloor, D. M.; Holzwarth, J. F.; Wyn-Jones, E. Langmuir 1999,15,6326-6332.
    [5]Zana, R. Structure-Performance Relationships in Surfactants (2nd ed). Surfactant Science Series 547, Marcel Dekker:New York,2003.
    [6]Wang, C.; Tam, K. C.; Jenkins, R. D.; Tan, C. B. J. Phys. Chem. B 2003,107, 4667-4675.
    [7]Yang, J. S.; Zhao, J. Y.; Fang, Y. Carbohydr. Res.2008,343,719-725.
    [8]Thuresson, K.; Lindman, B.; Nystrolm, B. J. Phys. Chem. B 1997,101,6450-6459.
    [9]Muzzalupo, R.; Infante, M. R.; Perez, L.; Pinazo, A.; Marques, E. F.; Antonelli, M. L.; Strinati, C.; Mesa, C. L. Langmuir 2007,23,5963-5970.
    [10]Watson, L.; Luciana, A. C. T.; Lay-Theng, L. J. Phys. Chem. B 2004,108, 3196-3201.
    [11]Wakler, L. M.; Moldenaers, P.; Berret, J. F. Langmuir 1996,12,6309-6314.
    [12]Hassan, P. A.; Candau, S. J. Langmuir 1998,14,6025-6029.
    [13]Rubin, F. K.; Blarcom, D. V. Viscose Compositions Containing Amido Betaines and Salts. US 4375421,1983.
    [14]Walker, L. M. Curr. Opin. Colloid Interface Sci.2001,6,451.
    [15]Yang, J. Curr. Opin. Colloid Interface Sci.2002,7,276-281.
    [16]Zhang, C.; Ding, Y.; Ping, Q.; Yu, L. J. Agric. Food Chem.2006,54,8409-8416.
    [17]Zhu, A. P.; Chan-Park, M. B.; Dai, S.; Li, L. Colloids Surf., B 2005,43,143-149.
    [18]Acharya, D. P.; Hattori, K.; Sakai, T.; Kunieda, H. Langmuir 2003,19,9173-9178.
    [19]Flood, C.; Dreiss, C. A.; Croce, V.; Cosgrove, T. Langmuir 2005,21,7646-7652.
    [20]Croce, V.; Cosgrove, T.; Dreiss, C. A. Langmuir 2005,21,6762-6768.
    [21]Rehage, H.; Hoffmann, H. J. Phys. Chem.1988,92,4712-4719.
    [22]Acharya, D. P.; Kunieda, H. J. Phys. Chem. B 2003,107,10168-10175.
    [23]Shrestha, R. G.; Shresths, L. K.; Aramaki, K. J. Colloid Interface Sci.2008,322, 596-604.
    [1]Kogej, K. Adv. Colloid Interface Sci.2010,158,68-83.
    [2]Onesippe, C.; Lagerge, S. Carbohydr. Polym.2008,74,648-658.
    [3]Langevin, D.Adv. Colloid Interface Sci.2009,147,170-177.
    [4]Wang, H. Y.; Cao, X. L.; Zhang, J. C.; Zhang, A. M. J Petrol Sci Eng.2009,65, 45-50.
    [5]Petzold, G.; Mende, M.; Kochurova, N. Colloids Surf., A 2007,298,139-144.
    [6]Taugb(?)l, K.; Ly, T. V.; Austad, T. Colloids Surf., A 1995,103,83-90.
    [7]Bokias, G. Polymer 2001,42,3657-3664.
    [8]Thuresson, K.; Lindman, B.; Nystrom, B. J. Phys. Chem. B 1997,101,6450-6459.
    [9]Wang, X. Y.; Li, Y J.; Wang, J. B.; Wang, Y. L.; Ye, J. P.; Yan, H. K. J. Phys. Chem. B 2005,109,12850-12855.
    [10]Torrens, F.; Abad, C.; Codoner, A.; Garcla-Lopera, R.; Campos, A. Eur. Polym. J. 2005,41,1439-1452.
    [11]Shashkina, J. A.; Philippova, O. E.; Zaroslov, Y. D.; Khokhlov, A. R.; Pryakhina, T. A.; Blagodatskikh, I. V. Langmuir 2005,21,1524-1530.
    [12]Couillet, I.; Hughes, T.; Maitland, G. Macromolecules 2005,38,5271-5282.
    [13]Yoshida, T.; Taribagil, R.; Hillmyer, M. A.; Lodge, T. P. Macromolecules 2007,40, 1615-1623.
    [14]De Abreu, F. R.; Campana-Filho, S. P. Carbohydr. Polym.2009,75,214-221.
    [15]Zhu, A. P.; Jin, W. J.; Yuan, L. H.; Yang, G. J.; Yu, H.; Wu, H. Carbohydr. Polym. 2007,68,693-700.
    [16]Sui, W. P.; Wang, S. F.; Chen, G. H.; Xu, G. Y. Carbohydr. Res.2004,339, 1113-1118.
    [17]Hirano, S.; Hayashi, K.; Hirochi, K. Carbohydr. Res.1992,225,175-178.
    [18]Zhu, A. P.; Chan-Park, M. B.; Dai, S.; Li, L. Colloids Surf, B 2005,43,143-149.
    [19]Zhang, C.; Ding, Y.; Ping, Q. N.; Yu, L. L. J. Agric. Food Chem.2006,54, 8409-8416.
    [20]Angelescu, D.; Khan, A.; Caldararu, H. Langmuir 2003,19,9155-9161.
    [21]Rodriguez, C.; Acharya, D. P.; Hattori, K.; Sakai, T.; Kunieda, H. Langmuir 2003, 19,8692-8696.
    [22]Rehage, H.; Hoffmann, H. J. Phys. Chem.1988,92,4712-4719.
    [23]Acharya, D. P.; Kunieda, H. J. Phys. Chem. B 2003,107,10168-10175.
    [24]Kuperkar, K.; Abezgauz, L.; Danino, D.; Verma, G.; Hassan, P. A.; Aswal, V. K. Varade, D.; Bahadur, P. J. Colloid Interface Sci.2008,323,403-409.
    [25]Suksamranchit, S.; Sirivat, A.; Jamieson, A. M. J. Colloid Interface Sci.2006,304, 497-504.
    [26]Shrestha, R. G.; Shresths, L. K.; Aramaki, K. J. Colloid Interface Sci.2008,322, 596-604.
    [27]Raghavan, S. R.; Kaler, E. W. Langmuir 2001,17,300-306.
    [1]Jonsson, B.; Lindman, B.; Holmberg, K.; Kronberg, B. Surfactants and Polymers in Aqueous Solution. John Wiley&Sons Ltd:West Sussex, UK,1998.
    [2]Schulz, D. N.; Glass, J. E. Eds. Polymers as Rheology Modifiers. American Chemical Society:Washington DC,1991.
    [3]Dubin, P.; Bock, J.; Davies, R. M.; Schulz, D. N.; Thies, C. Eds. Macromolecular Complexes in Chemistry and Biology. Springer-Verlag:Berlin,1994.
    [4]Wang, H. Y.; Cao X. L.; Zhang J. C.; Zhang, A. M. J Petrol Sci Eng.2009,65, 45-50.
    [5]Petzold, G.; Mende, M.; Kochurova, N. Colloids Surf, A 2007,298,139-144.
    [6]Taugb(?)l, K.; Ly, T. V.; Austad, T. Colloids Surf., A 1995,103,83-90.
    [7]Onesippe, C.; Lagerge, S. Colloids Surf, A 2008,330,201-206.
    [8]Onesippe, C.; Lagerge, S. Carbohydr. Polym.2008,74,648-658.
    [9]Onesippe, C.; Lagerge, S. Colloids Surf, A 2008,317,100-108.
    [10]Khokhlov, A. R.; Kramarenko, E. Y.; Makhaeva, E. E.; Starodubtzev, S. G. Macromolecules 1992,25,4779-4783.
    [11]Li, Y.; Xu, R.; Couderc, S.; Bloor, D. M.; Warr, J.; Penfold, J.; Holzwarth, J. F.; Wyn-Jones, E. Langmuir 2001,17,5657-5665.
    [12]Zhang, C.; Ding, Y.; Ping, Q.; Yu, L. J. Agric. Food Chem.2006,54,8409-8416.
    [13]Zhu, A. P.; Chan-Park, M. B.; Dai, S.; Li, L. Colloids Surf., B 2005,43,143-149.
    [14]Yue, H.; Guo, P.; Guo, R. J. Chem. Eng. Data,2009,54,2923-2929.
    [15]Acharya, D. P.; Hattori, K.; Sakai, T.; Kunieda, H. Langmuir 2003,19,9173-9178.
    [16]Flood, C.; Dreiss, C. A.; Croce, V.; Cosgrove, T. Langmuir 2005,21,7646-7652.
    [17]Croce, V.; Cosgrove, T.; Dreiss, C. A. Langmuir 2005,21,6762-6768.
    [18]Acharya, D. P.; Kunieda, H. Adv. Colloid Interface Sci.2006,123,401-413.
    [19]Acharya, D. P.; Kunieda, H. J. Phys. Chem. B 2003,107,10168-10175
    [20]Varade, D.; Ushiyama, K.; Shrestha, L. K.; Aramaki. K. J. Colloid Interface Sci. 2007,312,489-497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700