稀土氧化物类型对自韧α-Sialon陶瓷的氧化及热震行为影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用热压烧结工艺制备了Nd、Sm、Dy和Yb等四种稀土掺杂的α-Sialon陶瓷材料。利用XRD、SEM、TEM等手段研究了稀土类型及额外添加2wt%稀土氧化物作为助烧剂对Sialon陶瓷材料的致密化、物相组成及显微组织结构的影响;采用三点弯曲、单边缺口测试方法对室温弯曲强度及断裂韧性进行了评定;并着重系统地研究了稀土类型、物相构成及显微组织结构对材料热物理性能、抗热震性能及抗氧化性能的影响。
     试验结果表明,采用1800℃/30MPa/60min工艺热压烧结,所有材料都获得了大于98%的致密度。通过额外添加2wt.%对应稀土氧化物补充必要的烧结液相,以高纯超细Si_3N_4、AlN、Al_2O_3、RE_2O_3(RE为Nd、Sm、Dy或Yb)粉末为原料,RE_(1/3)Si_(10)Al_2ON_(15)边界成分的小稀土掺杂的Dy-、Yb-α-Sialon也能够获得全致密的陶瓷材料。
     XRD物相分析结果显示,对Nd-Sialon材料来说,添加或不添加2wt.%过量稀土氧化物作为助烧剂对物相影响不大,都获得了以α-Sialon为主晶相、同时含有少量β-Sialon和M′(R_2Si_(3-x)Al_xO_(3+x)N_(4-x))相的陶瓷材料。添加2wt%稀土氧化物助烧剂的Dy-和Yb-sialon材料的XRD物相十分纯净,均由单相α-Sialon组成,并因此保持了很高的硬度(Hv10=21GPa左右)。
     受稀土类型影响,所得材料的显微组织结构有较大差别。Yb、Dy小稀土掺杂的α-Sialon有较大的化学驱动力,α-Sialon的快速生成尽早地耗尽了高温液相,阻碍α-Sialon晶粒各向异性生长,从而得到了细晶等轴组织;相反Nd、Sm大稀土倾向于延长高温液相的持续时间,有利于获得棒晶组织。本文所得Sialon材料的抗弯强度和断裂韧性分别在300MPa~600MPa和4.0MPa·m~(1/2)~5.1MPa·m~(1/2)之间,随棒晶长径比及含量增加而增加。主要的强韧化机制为载荷传递、韧化机制为裂纹的偏转、长棒状晶体的拔出与桥接。
     所得α-Sialon材料具有较好的抗热震能力,经受1200℃热震温差的剩余强度保持率最低在75%以上;1100℃温差热震,发现材料的剩余强度增加现象。良好的力学与热物理综合性能是其具有较高抗热震能力的主要原因。
     本文所得的α-Sialon材料具有良好的抗氧化能力。氧化分析结果表明1300℃氧化32h时,NdE2和NdE0单位面积氧化增重为3.5mg/cm~2左右,而SmE2、DyE2、YbE2仅仅增重了1.5mg/cm~2左右。氧化增重与时间呈抛物线规律。NdE2、NdE0、SmE2、DyE2、YbE2氧化反应活化能计算结果分别为475、488、505、512和515kJ/mol。
α-Sialon ceramics composites doped with Nd, Sm, Dy, and Yb rare-earth additives were synt-hesised by hot-pressing. The effects of adding excess 2 wt.% rare earth oxide as sintering aids on the densification, phase components, and microstructure were studied by XRD, SEM and TEM. Room temperature flexure strength and fracture toughness were measured through three-point bending, and single-dege-notch beam bending method. The influence of the rare earth, phase components, and microstructures on the themophysical properties, thermal shock and oxidation resistance of the composites had been investigated.
     Results showed that all theα-Sialon ceramics achieved densities higher than 98% of their theoretical values after hot pressing at 1800℃for 1h under pressure of 30MPa in a nitrogen atomosphere of 0.1 MPa. The Dy and Yb-dopedα-Sialons were successfully densified by adding 2 wt.% corresponding rare earth oxide as additives, and by using utrafine Si_3N_4、AlN、Al_2O_3 and RE_2O_3(RE= Dy and Yb)as the starting powders.
     XRD results revealed that the Nd-Sialons hadα-Sialon, trace ofβ-Sialon and M′(R_2Si_(3-x)Al_xO_(3+x)N_(4-x)) in their phase components regardless of the 2 wt.% excess rare earth oxide. On the contrary, the other Sm-, Dy-, and Yb-sialon were pureα-Sialon, and had high hardness (H_(v10)=21GPa), accordingly.
     The microstructure of the materials varied with rare earths. Yb and Dy-sialon obtained fine equiaxed grains in their microstructures, because that the smaller rare earths promoted the formation ofα-Sialon. After the transient liquid was depleted, anisotropical growth of theα-Sialon was stunted. This was contrarory to the case of Nd and Sm-Sialon, where elongated grains were presented. The flexure strength and fracture toughness of the materials falled into the range from 300MPa~600MPa and 5.1MPa·m~(1/2), depending on their microstructures. Elongated grains of composites impart high toughness and strength to the material throngh energy-absorbing mechanisms of crack bridging,grain pullout,and crack path deflection.
     The research results show that the composites have excellent thermal shock resistance propertier. The minimum residual strength remained 75% of its original flexural strength at a thermal shock resistance temperature dirrerence (△T) up to1200℃. The residual strength of the composites improved at a thermal shock resistance temperature dirrerence (△T) up to1100℃after water quenching for 14 times.Combination of the excellent mechanical properties together with the good thermophysical properties result in its excellent thermal shock resistance properties.
     The high temperature oxidation resistance of -Sialon ceramics composites doped with different rare-earth additives was farely good. Weigh gains by area at 1300℃for 32h were 3.5 mg/cm2 for NdE2 and NdE0, but 1.5 mg/cm~2 for SmE2, DyE2, YbE2 materials. Oxidation activation energies of NdE2, NdE0, SmE2, DyE2,YbE2,were determined to be 475kJ/mol,488kJ/mol,505kJ/mol,512kJ/mol, 515kJ/mol respectively.
引文
1.仲维斌,李文超,王俭.赛隆陶瓷的发展概况.耐火材料. 1994:4
    2. T. Ekstrom, Mats Nygren. Sialon Ceramics. Journal of American Ceramics Society. 1992(75):259~276
    3.姜涛,薛向欣,杨建. Sialon陶瓷材料的结构、性质及应用.耐火材料. 2001, 35(4):229~232
    4.谢鹏.原位合成TiN/O- Sialon复相材料的制备工艺、结构和性能研究.博士学位论文.东北大学. 2000:20~28
    5. H. K. Jack, I. W. Wilson. Ceramica based on the Si-Al-O-N and related systems. Nature Phys Sci. 2002(238):28~29
    6. I. J. Gauckler, H. L. Lukas, G. J. Petzow. Contribution to the phase diagram Si3N4 -AlN-Al 2 O3 -SiO2 . J . Am. Ceram. Soc. 1995, 58(8):246~247.
    7. T. Ekstrom, M. J. Nygren. Nd 2 O3-doped Sialon with ZrO2/ZrN additions fromde by sintering and hot isostatic pressing. J. Am. Ceram. Soc. 1992,75(2):259~276.
    8.曾汉民.高技术新材料要览.中国科学技术出版社,1993:26~30
    9. Z. J. Shen, T. Ekstrom, Preparation and Properties of Stable Dysprosium Dopedα-Sialon Ceramics. J. Mater. Sci. 2003, (32):1325
    10. P. L. Wang, C. Zhang, W. Y. Sun. Formation behavior of multi-cationα-sialon containing calcium and magnesium. Mater. Lett. 1999, (38):178~185
    11.王佩玲,贾迎新,孙维莹.稀土元素对R-α-Sialon材料致密化和物相组成的影响.无机材料学报. 2000, 9(1):55~60
    12. I. W.Chen, W. Y. Sun, D. S. Yan. Effect of AlN-Polytypoid on Formation of Elongatedα-Sialon. Matterial Letters. 2002, 42:251~256
    13.张宏泉,戴英,李凝芳. Sialon的合成技术与应用.陶瓷研究. 1996, 11(2):83
    14. N. D. Jiang. Materials and processing technologies for highly reusable vehicles. AIAA97~2857
    15. K. Asada. Fabrication and Mechanical Properties of Carbon Fiber-reinforced Silicon Carbide Compositess. Journal of the Ceramic Society of Japan. 1992, 100(4):472~475
    16. H. J. Wang, P. Z. Gao, Z. H. Jin. Preparation and oxidation behavior of three-dimensional braided carbon fiber coated by SiC. Materials Letters. 2005, 59: 486~490
    17.王浩,庄汉锐,孙维莹.添加Sm2 O3的α-12H复相Sialon.硅酸盐学报. 1994,22(1):1
    18. V. A. Izhevskiy, L. A. Genova, J. C. Bressiani. Progress in Sialon ceramics. Journal of European Ceramic Society. 2002, (20):2275~2295
    19. Jay YU, Henry Du. Dopant-dependent oxidation behavior ofα-Sialon ceramics. J. Am. Ceram. Soc. 2004, (39):4855~4860
    20.谢朋,翟玉春,薛向欣.复相Sialon陶瓷材料及其制备工艺的研究现状.中国陶瓷. 1999, 35(3):25~26
    21.陈卫武. BN/Sialon的研究.硅酸盐学报. 2002, 28(3):26~29
    22.杨建,薛向欣,王文忠. Sialon基陶瓷的结果特征及物理和化学性质.陶瓷工程. 1999:33
    23. M. Akimune. Sanchez. Spacecraft electric propulsion-an overview. Journal of Propulsion and Power. 1998, 14(5):35~38
    24. P. J. Huang, V. K. Rawlin, J. R. Beattie. Ion Thruster Development Trends and Status in the United States. J. P. P. 1998, 14(5):708~715
    25. S. Hirano, Ye Haihui, Yury Gogotsi. Synthesis of Boron Nitride Coating on Carbon Nanotubes. J. Am Ceram. Soc. 2004, 87(1):147~151
    26. H. Mandal, D. P. Thompson. CeO2 dopoedα-sialon ceramics. J. Mater. Sci. Lett. 2002, 79(3):1435~1439
    27.鲁晓勇,张德.不同因素对Sialon陶瓷结构与性能的影响. 2005:1
    28.都兴红,张广荣,隋智通. Sialon陶瓷的性质.中国陶瓷. 1998, (34):24~34
    29.仲维斌,李文超,钟香崇. O-Sialon-ZrO2复合材料的显微结构与力学性能的研究.耐火材料. 2002, 30(1):10~15.
    30.仲维斌,李文超.无压烧结合成O-Sialon耐火材料. 1996, 30(2):63~68.
    31.刘光华,陈克新,葛振斌等.自增韧α-sialon陶瓷的研究进展.硅酸盐学报. 2003, 24(3):34~40
    32. I. W. Chen, A. Rosenflanz. A Tough Sailon Ceramic Based onα-Si 3 N4 with a Whisker-like Microsturcture. Nature. 1997, 389(16):701~704
    33. S. Bandyopadhyay, J. Mukerji, K. Roychoudhury. Sintering and properties ofβprime-Sialon with a nitrogen-rich Y2 O3 sintering aid. J. Am. Ceram. Soc. 1989, 72(6):1061~1064
    34. I. W. Chen. UekiM, M. Sugiyama. (O’+β’)-Sailon ceramics. J. Mater. Sci. 2000, 28(14):3789~3792
    35. K. Asada, T. Ekstrom, H. Herbertsson. Yttriumα-Sialon ceramics by hot isostatic pressing and post hotisostatic pressing. J. Am. Ceram. Soc. 1992, 75(2):432~436
    36. M. Barte, T. Y. Tien. Formation of O prime /βprime Sialon in the presence of yttria. J. Am. Ceram. Soc. 2004, 77(10):2653~2657
    37. H. Y. Tu, W. Y. Sun, Study on the solid solubility of Al in the melilite systems R2 Si 3-x AlxO3 +x N4-x with R=Nd, Sm, Gd, Dy and Y. J. Eur. Ceram. Soc. 1995, 15(7):689~695
    38. W. Y. Sun. Subsolidus phase relationships in system Dy2 O 3 -Si3 N4 -AlN-Al2O3. J. Eur. Ceram. Soc. 1999, 16:1277~1282
    39.王浩,孙维莹,严东生. Dy-α-Sialon陶瓷的制备与相变研究.无机材料学报. 1997, 12(4):609~612
    40. K. H. Jack. Sialons and related ceramics: the ircrystal chemistry, phase relationships, properties and industrial pot entail/ /R iley F L. Nitrogen ceramics. Noordhoff Intern. Pub Ley-den. 1977:257~263
    41.王零森,张正富,樊毅.烧结助剂对Sialon常压烧结的影响.中国有色金属学报. 2003, 11(2):386~389
    42.张骋,黄拿灿,杨少敏.表面改性中稀土提高材料抗高温氧化及耐蚀性能的作用.材料保护. 2005:8
    43.冯建基,李国卿. Si 3 N4陶瓷材料的高温氧化理论及其抗氧化研究现状.中国陶瓷工业. 2004:16
    44.张正富,张立同.自韧Si3N4陶瓷的高温性能特征.现代技术陶瓷. 1996:3
    45.蔡英骥. Sialon陶瓷的研究进展.大连轻工业学院学报.1999, 3:187~193
    46. P. O. Olsson. Crystal defects and coherent intergrowth ofα-andβ-crystals in Y-Ce doped Sialon materials. J. Mater. Sci. 1999, 24(11):3878~3887
    47. C. J. Hwang, D W. Sinsnitzky, D. R. Beaman. Preparation of multicationα-Sialon containing strontium. J. Am. Ceram. Soc. 1995, 78:588~592
    48.张军红,王佩玲,张炯.复合稀土掺杂α-Sialon的氧化行为.无机材料学报. 1999, 14(5):806~812
    49. Z. K. Huang, Y. Z. Jiang, T. Y. Tien. Formation ofα-Sialons with dualmodifying cations (Li +Y and Ca+Y). J. Mater. Sci. Lett. 1997, 16:747~751
    50.陈卫武,孙维莹,严东生.不同稀土元素对α-Sialon-AlN-多型体复相陶瓷生成动力学的影响.无机材料学报. 2000, 15(2):264~268
    51.金格瑞.陶瓷导论.中国建筑工业出版社, 1982:829~834
    52.华南工学院.陶瓷材料物理性能.中国建工出版社, 1982:75
    53.李雅文.王佩玲.陈卫武.复合掺杂(Ca+Nd)-α-Sialon的研究.硅酸盐学报. 2000, 28(3):26~29
    54.贾德昌,周玉.陶瓷材料抗热震性研究进展.材料科学与工艺. 1993, 1(4):96~102
    55.张彪,郭景坤,诸培等.抗热震陶瓷材料的设计.硅酸盐通报.1995, 14(3):35~40
    56.徐永东.高温结构陶瓷材料的设计准则.硅酸盐通报. 2004, 16(3):55~58
    57.郭景坤.关于先进结构陶瓷的研究.无机材料学报. 1999, 14(2):193~202
    58. J. H. Zhang, P. L. Wang, D. S. Yan. Study on oxidation behavior of (Nd,Y)- and (Nd,Yb)-α-Sialon. J. Mater. Sci. 2002, 37:1407~1412
    59. H. Mandal, N. Camuscu, D. P. Thompson. Comparison of the effectiveness Sialon Ceramics. J. Mater. Sci. 1995,30:5901~5909
    60. L. O. Nordberg. Stability and Oxidation Properties of RE-α-Sialon Ceramics(RE=Y, Nd, Sm, Yb). J. Am. Ceramic. Soc. 2002, 81(6):1461~1470

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700