铝锆碳质滑板材料组成、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑板是炼钢连铸生产过程中直接用于控制钢水流量和流速、稳定钢水液面的关键部件,是滑动水口系统中最重要的部分。铝锆碳质滑板是目前钢厂大中型钢包和中间包普遍采用的材质。随着高效连铸技术的发展以及钢种的增加,滑板的使用条件愈发苛刻,因此进一步提升铝锆碳滑板的综合性能显得尤为重要。金属Al、单质Si是铝锆碳滑板常用的添加剂,在热处理过程中它们与原料中的碳或周围气氛中的CO、N_2发生的一系列化学反应,生成Al_4C_3、SiC、AlN或Si3N4等陶瓷增强相,赋予了铝锆碳滑板良好的性能。Al-Si-SiO_2三元体系在氮气气氛且有碳存在条件下的热力学分析表明,该体系中反应特性更为丰富,反应产物均具有优良的理化性能,这为进一步通过材料的组分裁剪、微结构设计来提升材料的综合性能提供了可能。到目前为止,还未见到系统研究金属Al、单质Si、SiO_2微粉含量及工艺制度对铝锆碳滑板微结构及力学性能的影响报道。因此,系统研究金属Al、单质Si和SiO_2微粉含量、引入形式以及热处理制度对提升铝锆碳滑板材料综合性能和降低滑板的生产成本具有重要的现实意义。
     本论文针对目前主流使用的铝锆碳滑板,首先对不同温度下金属Al、单质Si、SiO_2微粉与碳反应进行热力学模拟和微结构表征,在此基础上系统研究了Al/Si比以及SiO_2微粉的引入量、引入形式及烧成气氛对Al_2O_3-ZrO_2-C滑板材料微结构与性能的影响,借助压汞仪和扫描电镜等检测手段分析了材料力学行为与微结构之间的关系,最后基于实验室的研究成果研制出新一代铝锆碳滑板,并进行了规模化生产及工业试验,得到以下主要
     结论:
     (1)碳复合耐火材料中添加剂(金属Al、单质Si、SiO_2微粉中的一种或一种以上复合)和鳞片石墨及炭黑的混合物反应生成的物相,与碳的反应热力学模拟结果完全一致。物相生成温度和形貌与添加剂种类、组合方式及烧成温度和气氛密切相关。同时碳素原料也显著影响材料中陶瓷相的形貌。
     (2)通过Al/Si比对Al_2O_3-ZrO_2-C滑板微结构与性能的影响研究发现,Al、Si加入比例显著影响Al_2O_3-ZrO_2-C材料的力学性能。经800和1000℃煅烧后,试样的抗折强度、弹性模量和韧性均随铝粉加入量的增加而增大,而经1 300和1 400℃煅烧后,试样的抗折强度、弹性模量和韧性均随铝粉加入量的增加而减小。试样的平均孔径呈现出与力学性能相反的变化规律。试样强度的变化主要与试样的微观结构密切相关。不同Al/Si加入比例的试样可以通过选择合理处理温度,优化材料的微观结构,获得最佳力学性能。
     (3)SiO_2微粉加入量、加入形式以及烧成气氛对不同Al/Si复合Al_2O_3-ZrO_2-C滑板的微结构均有影响,并使材料表现出不同的力学行为。SiO_2微/纳米粉的引入,还可以改善含金属Al的滑板抗水化性能,并避免高温烧成时强度的急剧下降,降低了滑板材料对烧成温度的敏感性。在氮气保护条件下烧成,铝锆碳滑板材料获得更佳的性能。
     (4)在上述工作基础上,选取基质中添加2%金属铝、3%单质硅和1%硅微粉的配方A21进行规模化工业生产。在工业生产线上经过1200℃烧成后的新型滑板具有晶须细小且均匀分布的结构特征,获得了优良的物理性能;并在不同的钢厂大中型钢包上取得一致良好的使用效果。
Sliding gate plate is the key component to directly control molten steel flux and flowing speed,and stabilize the liquid level as it is the most important part in whole sliding gate system. Currently, Al_2O_3-ZrO_2-C sliding gate plates are widely used on medium or large size ladles and tundish in steel-making industries all over the world. With the development of the continuous casting technology with higher efficiency and steel grades, the field conditions for sliding gate plates are becoming harsher. Therefore, it is very important to continuously improve the properties of Al_2O_3-ZrO_2-C sliding gate plates. Metal aluminum and silicon powder are usually added into Al_2O_3-ZrO_2-C refractories to form ceramic phases such as Al_4C_3、SiC、AlN or Si3N4,etc, due to in-situ reaction with carbon in the matrix or the CO、N2 in surrounding atmosphere, which contributes to the excellent properties. From the thermodynamic analysis of Al-Si-SiO_2 ternary system with carbon under nitrogen atmosphere, quite a lot of reactions present, and all related resulting products have excellent physical and chemical properties, which provide different approaches to improve the refractories properties by the materials selection and microstructure design. Up to now, there are very few reports about the influence of Al, Si, SiO_2 content and manufacturing process on microstructure and mechanical properties Al_2O_3-ZrO_2-C refractories. Therefore, it is of great importance to have the whole research about the influence of amount and types of metal Al, Si, SiO_2, and firing atmospheres on Al_2O_3-ZrO_2-C refractories properties.
     In this thesis, focusing on Al_2O_3-ZrO_2-C refractories, the thermodynamic simulation of reactions among carbon and Al, Si under different temperatures and their micro-structure characterization were carried out. The influence of ratio of Al/Si, additional amount and types of SiO_2 powder and firing atmospheres on Al_2O_3-ZrO_2-C refractories microstructure and properties were studied. The relationship between material microstructure and mechanical properties were characterized by means of mercury analyzer and scanning electron microscopy. A new generation of aluminum zirconium carbon sliding gate material was developed, and the large-scale production and field trials were carried out. The main results are as follows:
     (1). The new phases from the reactions among metal Al, Si and SiO_2 powder with the mixture of graphite and carbon black are in line with those results from the thermodynamic simulation. The formation temperatures and morphology of new phases depend on the types of additions, additional ratios, and firing temperatures and atmospheres. Another remarkable influence of new ceramic phases on the morphology is from the carbon source.
     (2). The additional ratios of metal Al and Si play a main role on the microstructure and properties of Al_2O_3-ZrO_2-C refractories. From 800℃to 1000℃, the CCS, CMOR, elastic moduls, and toughness of samples increase as the metal Al content increases, but when firing temperature is 1300 or 1400℃, those mechnical properties show the dropping as the metal Al content increases. The average pore sizes present opposite trends against the mechanical properties. The strength change of samples depends on their microstructure. The mechnical properties of Al_2O_3-ZrO_2-C refractories can be optimized by the additional ratio of metal Al and Si under reasonable firing temperature.
     (3). The different mechanical properties of Al_2O_3-ZrO_2-C refractories are contributed to the addition, types of micro/nano size SiO_2 powder and atmosphere. Addition of micro / nano size SiO_2 powder in the matrixes is beneficial for the improvement of hydration resistance, and less strength sensitivity on firing temperature for those sliding gate refractories containing metal Al. Compared with coke-bed atmosphere, samples fired under nitrogen atmosphere present better properties.
     (4). Based on the work above, code A21 formulation with 2% Al, 3% Si and 1% SiO_2 powder was chose to run the industrial production. Those new sliding gate plates present good microstructure with finer and well distributed whiskers after fired under 1200℃in industrial production line, showed excellent physical properties, and achieved good field performance on large/medium size ladles.
引文
[1]刘玠.连铸及炉外精炼自动化技术[M].北京:冶金工业出版社, 2006
    [2]周川生.连铸耐火材料的新进展[J].连铸, 2003, 1: 5-7
    [3]苏宪明.铝碳滑板的研制[J].耐火材料, 1986, 2: 5-9
    [4]张琛译.性能优良的Al_2O_3-C质滑板[J].国外耐火材料, 1994, 19(5): 33-38
    [5]孙庚辰,张兰银.烧成Al_2O_3-C质滑板砖的热机械性能[J].连铸用耐火材料新进展, 1993(内部资料)
    [6]成濑,余市.含氧化锆碳结合滑动水口的性质及使用性能[J].国外耐火材料, 1985, 10: 47-53
    [7]刘新彧,孙庚辰,钟香崇.炉渣对Al_2O_3-SiO_2-ZrO_2-C系材料的侵蚀[J].耐火材料, 1998, 5: 1-5
    [8]张文杰,汪厚植.结合剂及工艺条件对铝锆碳滑板性能的影响[J].耐火材料, 1992, 3: 135-140
    [9]杨开保,张文杰,皮波.加入锆莫来石及特殊碳对烧成铝碳滑板性能的影响[J].耐火材料, 1994, 1: 38-140
    [10] A Watanabe, H Takahasl, T Matsukl, M Takahasi. Some properties of magnesia-carbon bricks containing Mg and Al [J]. Taikabutsu overseas, 1985, 5(4): 7-12
    [11] AYamaguchi, T Matsuda. The effect of Al and Mg alloy addition on the properties of carbon-containing refractories[C]. Proceedings of UNITECR, Tokyo, Japan, 1987: 915-924
    [12] J Yu, A Yamaguchi. Behavior of Al on microstructure and properties of MgO-C-Al refractories[J]. Journal of the Ceramic Society of Japan, 1993, 101(1172): 475-479
    [13]山口明良.加入含碳耐火材料中的SiC和Al的性状[J].国外耐火材料, 1984, 9(3): 62-65
    [14] T Matsumura, S Uto, K Hosokawa, M Geji. Properties of magnesium carbon bricks containing aluminum or aluminum alloys[J]. Taikabutsu overseas, 1988, 8(4): 24-26
    [15]岳卫东,钟香崇,石凯.低碳Al_2O_3-β-Sialon烧成滑板的热机械性能及显微结构[J].耐火材料, 2006, 40(5): 342-345
    [16]杨晓春,姚春战,高阳,等.金属-氮化物结合滑板的研制与应用[J].耐火材料, 2003, 37(5): 271-273
    [17]李亚伟,李楠,易献勋.含氮铝炭质滑动水口生产与使用[J].武汉科技大学学报(自然科学板), 2001, 24(4): 331-333
    [18] Schober Reiner, Richter Hans-jurgen. Ceramic matrix composited based on silicon nitride and aluminum nitirde[C]. Proceedings of UNITECR, Berlin, Germany, 1999: 198-200
    [19]贺智勇,洪彦若,孙加林,等.铝锆炭滑板在浇铸钙处理钢时的化学侵蚀[J].耐火材料, 2004, 38(5): 316-317
    [20]周春泉,黄广镇.钢水的钙处理和对滑板的侵蚀分析[J].炼钢, 1999, 15(6): 34-37
    [21] U.Hintzen.滑动水口耐火材料的选择及其使用寿命[J].国外耐火材料, 1989, 3: 26-30
    [22]王玺堂,汪厚植,张文杰,等.钙处理钢、含氧量高的钢用碱性滑板[J].炼钢, 1999, 15(2): 36-38
    [23]廖建国译.浇铸Ca合金处理钢用MgO-C质滑板[J].国外耐火材料, 1998, 28(4): 21-26
    [24]吴秋玲译.长寿命镁尖晶石滑板在英国钢铁公司TEESSIDE厂的应用[J].国外耐火材料, 1999, 5: 11-17
    [25] Mark R Snyder, Alireza Rezaie, Priyadarshi G Desai,Improved basic carbon refractory material for slide gate plate application[C]. Proceedings of UNITECR, Salvador, Brazil, 2009, No.249
    [26]付博,吴兆学.滑板修复再利用技术的研究与应用[J].山东冶金, 2003, 25: 169-170
    [27] Mark R Snyder, Priyadarshi G Desai,Alireza Rezaie, et al. Composite design technology for high performance slide gate[C]. Proceedings of UNITECR, Salvador, Brazil, 2009, No.250
    [28]徐利华,王体壮,徐斌,等.铝炭质滑板的抗侵蚀特征分析[J].耐火材料, 2004, 38(4): 242-244
    [29]邱文冬,王锡章,孙加林,等.铝锆炭滑板中锆莫来石分解的显微结构研究[J].耐火材料, 1999, 33(1): 9-11
    [30]卜景龙,杨晓春.金属-氮化物结合刚玉滑板的结构与性能[J].硅酸盐学报, 2005, 33(2): 253-257
    [31]杨晓春.金属-氮化物结合刚玉质滑板抗损毁机理研究[D].河北:河北理工学院硕士学位论文, 2003
    [32] Mohamed E, Ewais M. Carbon based refractories[J]. Journal of the Ceramic Society of Japan, 2004, 112(10): 517-532
    [33] Taffin C, Poirier J. The behavior of metal additives in MgO-C and alumina-carbon refractories[J]. Interceram, 1994, 43(5): 356-358
    [34]周国红.赛隆/刚玉/石墨/氮化硼复相耐火材料研究[D].武汉:武汉科技大学硕士学位论文, 2004
    [35]王铁军,王声宏.预热自蔓延合成SiC粉末机理的研究[J].硅酸盐学报, 1998, 26(2): 237-242
    [36]李亚伟,张忻,田海兵,等.单质Si直接氮化反应合成氮化硅研究[J].硅酸盐通报, 2003, 22(1): 30-34
    [37]王彦君. Al粉添加对莫来石结合刚玉材料性能和结构的影响[J].中国建材科技, 2006, 15(4): 41-44
    [38]卜景龙,孙利春,王榕林,等. ZrO_2-AlN复相材料的制备与性能研究[J].陶瓷, 2009, (2): 28-32
    [39]牛森森,涂军波,魏军.从Al粉加入量对凝胶粉结合铝镁不烧砖力学性能的影响[J].硅酸盐通报, 2010, 29(4): 930-934
    [40]周安宏,石凯,李纪伟,等.添加Si粉改善高铝浇注料抗蠕变性能的研究[J].耐火材料, 2010, 44(3): 209-212
    [41]刘新红,叶方保,钟香崇. Si粉加入量对刚玉制品性能、组成和结构的影响[J].耐火材料, 2007, 41(1): 13-17
    [42]滕国强,张晖,王金相. Al粉和Si粉对铬刚玉质材料显微结构的影响[J].耐火材料, 2008, 42(6): 424-427
    [43]王林俊,陈开献,孙荣国,等. Al和Si对MgO-Si3N4复合材料强度和显微结构的影响[J].耐火材料, 2004, 38(6): 420-422
    [44]张文杰,李楠.碳复合耐火材料[M].北京:科学出版社, l990
    [45]田守信.添加物对Al_2O_3制品性能的影响及侵蚀机理[D].洛阳:洛阳耐火材料研究院硕士学位论文, 1987
    [46]方磊,李亚伟,金胜利,等.单质Si粒度和含量对烧成Al_2O_3-ZrO_2-C材料强度与结构的影响[J].耐火材料, 2007, 41(3): 183-187
    [47]李友胜,张唐文,鲍家兴.加入Si粉对低碳铝镁碳材料性能的影响[J].耐火材料, 2007, 41(4): 245-248
    [48]孔繁枢,蒋士英.提高不烧铝碳复合滑动水口使用性能的途径[J].山东冶金, 1992, 14(1): 40-42
    [49]李新士,党金海,刘加善,等.单质硅加入量对铝碳材料力学性能和抗氧化性能的影响[J].耐火材料, 2006, 40(1): 77-78
    [50]岳卫东,聂洪波,钟香崇,等.金属Al-Si复合不烧铝碳滑板材料的热机械性能及显微结构[J].耐火材料, 2006, 40(3): 177-180
    [51]石凯,钟香崇.金属Al-Si结合Al_2O_3-C滑板的性能和使用[J].耐火材料, 2007, 41(3): 205-207
    [52]陈方,叶方保,钟香崇.加入Si, Si/Al对高碳Al_2O_3-C材料抗热震性的影响[J].硅酸盐通报, 2009, 28(3): 421-425
    [53]任桢,马良成,钟香崇.加入Al粉和Si粉对低碳MgO-Al_2O_3-C材料性能的影响[J].耐火材料, 2010, 44(1): 38-40
    [54]洪彦若,孙加林,王玺堂,等.非氧化物复合材料[M].北京:冶金工业出版社, 2003
    [55] M W Barsoum, B Houng. Transient plastic phase processing of titanium-boron-carbon composites[J]. Journal of the American Ceramic Society, 1993, 76(6): 1445-1451
    [56]苗彦安译.回转式水口和滑板的改进[J].国外耐火材料, 1999, 24(5): 4l-43
    [57]薛文东,熊尾贞,孙加林,等.塑性相结合刚玉复合材料的力学性能[J].耐火材料, 2001, 35(6): 311-315
    [58]朱伯铨,方斌祥,张文杰.原位反应合成Al/AlN结合刚玉基耐火材料[J].稀有金属材料与工程, 2008, 37(增刊): 785-788
    [59]于岩,阮玉忠,林春莺,等.铁合金厂回收的硅微粉在不同温度下晶相结构的研究[J].结构化学, 2004, 23(3): 306-311
    [60]刘晓华,盖国胜.微单质Si在国内外应用概述[J].铁合金, 2007, 22(5): 41-44
    [61] E Karadeniz, C Gurcan, S Ozgen, S Aydin. Properties of alumina based low-cement self flowing castable refractories[J]. Journal of the European Ceramic Society, 2007, 27(2-3): 1849-1853
    [62] H Hommer. The effect of polycarboxylate ethers as deflocculants in microsilica containing high cement castables[C]. Proceedings of UNITECR, Dresden, Germany, 2007, 401-404
    [63]沈君麟.非金属矿选矿工艺技术现状[C].桂林:第八届全国选矿技术交流大会论文集, 2004: 15-21
    [64] S Bhanja, B Sengupta. Influence of silica fume on the tensile strength of concrete[J]. Cement and Concrete Research, 2005, 35: 743-747
    [65] Larbi J A,Fraay A L A, Bijen J M. Chemistry of the pore fluid of silica fume-blended cement systems[J]. Cement and Concrete Research, 1990, 20(4): 506-516
    [66]高思.硅微粉纯化试验研究[D].天津:南开大学硕士学位论文, 2007
    [67] Fuat Koksal, Fatih Altun, Ilhami Yigit, Yusa Sahin. Combined effect fume and steel fiber on the mechanical properties of high strength concrets[J]. Constrcution and Building materials, 2008, 22: 1874-1880.
    [68]阮国智,孟繁洁,程智,等. SiO_2微粉加入量对Al_2O_3-SiC-Al耐火材料性能的影响[J].耐火材料, 2007, 41(4): 263-266
    [69]栾舰,孙加林,曲殿利,等.硅微粉对Al_2O_3-SiC-C质铁钩浇注料性能的影响[J].耐火材料, 2004(3): 215-216
    [70]贺智勇,彭小燕,王素珍,等.硅微粉对超低水泥浇注料流动性的影响[J].硅酸盐通报, 2005, 24(6): 53-55
    [71]彭红, Bjorn Myhre, Jan-Olaf Roszinski.硅微粉对矾土基耐火浇注料性能的影响[J].耐火材料, 2007, 41(增刊): 186-191
    [72]赵惠忠,杨辅龙,崔江涛.不同硅微粉的质量及其对高铝质耐火材料浇注料施工性能的影响[C].洛阳:全国不定形耐火材料学术会议, 2009
    [73]张欣,申少华,曹国娥,等.活性超细硅微粉在低水泥耐火浇注料中的应用研究[J].非金属矿, 2003, 26(6): 23-25
    [74]张巍.硅微粉及热处理温度对铝矾土基喷涂料性能影响[J].中国粉体技术, 2010, 16(3): 74-77
    [75]隋富山,周云麟译.二氧化硅微粉和氧化铝微粉对铝镁系耐火浇注料膨胀的影响[J].国外耐火材料, 1996, 21(4): 51-52
    [76]张芸,陈俊红,邵晓军.硅微粉对RH浸渍管浇注料性能的影响[J].冶金能源, 2002, 21(5): 36-38
    [77] Yang Daoyuan, Sun Hongwei, Feng Jianqiu, et al. Effect of ZrO_2 additives on the thermal shock resistance of MgO-MA refractory[J]. China’s Refractory, 2000, 9(1): 25-28
    [78]邹大鹏,张利芳,苗艳玲,等.尖晶石-氧化锆复合材料的制备与性能[J].河北理工大学学报, 2009, 31(2): 84-87
    [79]李有奇,柯昌明,汪尧进,等.金属Zn粉对烧成Al_2O_3-C材料性能和显微结构的影响[J].硅酸盐通报, 2006, 25(5): 158-161
    [80]王周福,张保国,王玺堂,等.纳米二氧化硅对刚玉浇注料性能与结构的影响[J].武汉科技大学学报, 2005, 28(4): 336-337
    [81] Jin S L, Aneziris C G, Li Y W. Application of carbon nanotubes in Al_2O_3-C refractories with environmental friendly binder for sliding gate application[C]. Proceedings of UNITECR, Salvador, Brazil, 2009
    [82] Li Y W, Aneziris C G, Jin S L. Integrated properties improvement on Al_2O_3-C refractories due to carbon nanotubes and titania additives[C]. Proceedings of UNITECR, Salvador, Brazil, 2009
    [83]顾幸勇,任永国,董伟霞. MgO对原位烧结含锆莫来石材料性能影响的研究[J].中国陶瓷, 2006,42(8): 17-19
    [84]郭巍,安胜利.二茂铁的加入对铝碳耐火材料性能的影响[J].硅酸盐通报, 2007, 26(5): 1011-1015
    [85]王国飞.过渡金属化合物掺杂酚醛树脂及其在铝锆碳材料中应用[D].武汉:武汉科技大学硕士学位论文, 2009
    [86]贾全利,叶方保,钟香崇.纯铝酸钙水泥对刚玉-尖晶石浇注料性能的影响[J].硅酸盐通报, 2008, 27(6): 1104-1108
    [87] Chen D J, Xu L, Zhang X H, et al. Preparation of ZrB2 based hybrid composites reinforced with SiC whiskers and SiC particles by hot-pressing[J]. Journal of Refractory Metals & Hard Materials, 2009, 27: 792-795
    [88] Pavel B S, Dmitry G K, Alexander G K, et al. Theoretical study of elastic properties of SiC nanowires of different shapes[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(8): 4992-4997
    [89] Homeny J, Vaughn W L. Whiskers reinforced ceramic matrix composites[J]. MRS Bulletin, 1987, 7(7): 66-71
    [90] Garnier V, Fantozzi G, Nguyen D, et al. Influence of SiC whisker morphology and nature of SiC/Al_2O_3 interface on thermomechanical properties of SiC reinforced Al_2O_3 composities[J]. Journal of the European Ceramic Society, 2005, 25: 3485-3493
    [91]唐庆海译.抗氧化剂对不烧碳复合耐火材料性能的影响[J].国外耐火材料, 2000, 6: 53-57
    [92]杨丁熬,袁守谦.铝粉加入量对刚玉基复合材料性能的影响[J].耐火材料, 2006, 40(6): 457-459
    [93]田晓利,薛群虎.金属结合不烧铝碳滑板的中温力学性能研究[J].硅酸盐通报, 2008, 7(5): 1032-1039
    [94]马志春译.耐火材料结构与性能[M].北京:冶金工业出版社, 1993
    [95] Lee W E, Zhang S. Melt corrosion of oxide and oxide-carbon refractories [J]. International Materials Reviews, 1999, 44(3): 77-103
    [96]童贝,李亚伟,金胜利,等.烧成气氛对铝锆碳滑板性能的影响[J].武汉科技大学学报, 2008, 31(增刊), 250-253
    [97] Helga Szibor, Hans W.Hennicke,王振林,徐如恬.瓷材料的显微结构数据与力学性能之间的关系(第Ⅱ部分)[J].电瓷避雷器, 1984, 4: 36-40
    [98]方斌祥,朱伯铨,李享成.浇注料孔径分布与强度关系的灰色系统研究[J].稀有金属材料与工程, 2009, 38(增刊2): 1185-1188
    [99] T Gambaryan-Roisman, M Shapiro, E Litovsky 1, A Shavit. Influence of gas emission on heat transfer in porous ceramics[J]. International Journal of Heat and Mass Transfer, 2003, 46: 385-397
    [100]宁莉萍,王齐华,杨景锋,等.高温耐火绝热复合材料的研究[J].材料科学与工程学报, 2005, 23 (5): 576-579
    [101]李懋强,陈玉峰.微孔硅酸钙绝热材料的密度和导热系数的关系[J].硅酸盐学报, 2005, 33(11): 1414-1417
    [102] G Reichenauer, U Heinemann, H P Ebert. Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspect, 2007, 300: 204-210
    [103] Jean Cote, Jean-Marie Konrad. Assessment of structure effects on the thermal conductivity of two-phase porous geomaterials[J]. International Journal of Heat and Mass Transfer, 2009, 52, 796-804
    [104] Lysenko V. Study of Nano-porous Silica with Low Thermal Conductivity as Thermal Insulating Material[J]. Journal of Porous Materials, 2000, 7(1): 177-182
    [105]曾令可,曹建新,王慧,等.硬硅钙石-SiO_2复合纳米孔超级绝热材料[J].陶瓷学报, 2004, 25(2): 75-80
    [106] Lee O J, Lee K H, Yim T J, et al. Determination of mesopore size of aerogels from thermal conductivity measurements[J]. Journal of Non-Crystalline Solids, 2002, 298(2-3): 287-292
    [107] Xilai Chen, Yawei Li, Yuanbing Li,et al. Effect of temperature on the properties and microstructures of carbon refractories for blast furnace (BF) [J]. Metallurgical and Materials Transactions A, 2009, 40A: 1675-1683
    [108]李志春,李楠.刚玉-莫来石多孔陶瓷透气性的研究[J].中国陶瓷, 2008, 44(9): 28-30
    [109]鄢文,李楠.孔径分布及组成对多孔尖晶石抗渣性能的影响[J].耐火材料, 2007, 41(增刊): 192-197
    [110]邵荣丹,张文杰,顾华志.超细炭素原料对Al_2O_3-ZrO_2-C材料性能及微孔结构的影响[J].耐火材料, 2005, 39(5): 330-332
    [111]李亚伟, C.G. Aneziris,易献勋,等.哑铃形β-SiC晶须在Al_2O_3-ZrO_2-C复合耐火材料中的形成[J].国外耐火材料, 2006, 31(2): 25-28
    [112]白世鸿,乔生儒,舒武炳,等.先进结构陶瓷高温力学性能测试与表征[J].材料工程, 2000, 10: 45-48
    [113] T. Ebadzadeh, M. Heidarzadeh-Tari, C. Falamaki. In situ reaction synthesis of Al_2O_3-SiC nanostructure using different carbon sources[J]. Advances in Applied Ceramics, 2009, 108(6): 369-372
    [114]白晨,黄志明.铝锆碳质滑板中SiC晶须形成机理[J].钢铁研究, 2007, 35(3): 8-11
    [115] Fu Qiangang, Li Hejun, Shi Xiaohong, et al. Microstructure and growth mechanism of SiC whiskers on carbon/carbon composites prepared by CVD[J]. Materials Letters, 2005, 59: 2593-2597

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700