钢铁行业固体废弃物农业利用基础技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体废弃物的综合利用是发展循环经济的有效途径,是实现经济又好又快发展的迫切要求,可以有效的解决资源短缺与经济发展之间的矛盾,提高经济效益,减轻对环境的污染。
     高炉渣是钢铁生产过程中所产生的主要固体废弃物,为了解决我国高炉渣综合资源化利用过程中所存在的问题,拓展高炉渣资源化利用的途径,为我国农业发展开辟新的肥源,促进我国钢铁工业和农业可持续发展。本文进行了以高炉脱硅渣为原料改性合成缓释性硅钾肥的研究,主要工作如下:
     首先,通过在铁水脱硅渣中添加不同量的K2CO3,制取K2O含量分别为15%、20%,25%和30%的硅钾肥,考察K2O含量、加热温度、保温时间、渣系、冷却方式以及添加物等工艺条件对合成硅钾肥结晶性能、微观结构、溶出特性,以及对耐火材料的抗侵蚀性能的影响。实验结果表明合成工艺条件对硅钾肥的结晶性能及显微结构没有显著影响,含钾化合物均以非结晶相的形式存在,合成硅钾肥具有较为明显的缓释性能和侵蚀性能。
     其次,采用正交实验设计法与神经网络法相结合的实验设计和数据处理新方法体系,并且采用初期终止法对数据进行弥补,明显提高了网络的泛化性能,对合成硅钾肥工艺反应条件进行优化。实验结果分析表明,在制取温度1400℃,氧化钾含量20%,保温时间15min条件下,对合成硅钾肥最为有利。
     再次,在硅钾肥合成最优工艺反应条件确定的前提下,运用数学规划方法对合成硅钾肥工艺流程中的相关细节阶段进行逐一分析,以经济效益最好或经济损失最低为目标分别建立优化模型,并初步探讨模型的求解方法,对铁水脱硅渣工业化生产硅钾肥的工艺流程进行优化。
     最后,对合成的硅钾肥进行农艺栽培实验,考察硅钾肥对农作物产量、品质以及土壤的影响。农艺实验表明,施用硅钾肥不仅能够提高作物产量,还能提高土壤中速效钾和缓效钾含量,对土壤pH影响不大。采用绿色核算方法对合成硅钾肥的农用环境经济效益进行核算,结果表明,若仅以经济产出来评估,由脱硅渣制成的缓释硅钾肥可以取代普通速效钾肥,并且具有更佳的效果。
The synthesize Utilization of solid waste is an effective method to develop cycling economy. And it is also an urgent need to carry out the economy developing with good quality and high speed. It can be an effective solution to the contradiction between resource shortage and economic development, which can increase the economic benefit and reduce the pollution to environment.
     Blast furnace slag is the main solid waste which discharged from the steel-making process. In order to solve the problems exist in the resource utilization process of blast furnace slag in china, slag utilization ways should be developed. And the slag can be made to new fertilizer for agriculture, which can promote the sustainable development of steel industry and agriculture. In this dissertation, preparation technology of slow-release silicon-potassium fertilizer which used the desiliconization slag as the mainly material was studied. The contents of the research are organized as follows.
     Firstly, Silicon-potassium fertilizer samples were synthesized with difference K2O content, which were 15%, 20%, 25% and 30%. The crystal performance, microcosmic structure, dissolving character and corrosion resistance performance to refractory materials of silicon-potassium fertilizer samples with difference synthesize such conditions as K2O content, heat temperature, heat preservation time, cooling mode and joined substance was observed. The experiment results showed that the synthesize conditions had no obvious influence on the crystal performance and microcosmic structure of the silicon-potassium fertilizer. All of the chemicals which include K in the fertilizer were existed in non-crystal state. And the silicon-potassium fertilizer has obvious slow-release character and corrosion performance.
     Secondly, the orthogonal experiment design and neural network methods were used to optimize the reaction condition for silicon-potassium fertilizer production. In this study, the initial stage stop method was used to remedy data, which could increase the network generalization ability obviously. The result showed that 1400℃, the content of K2O about 20% and heat preservation 15 minutes is the best reaction condition for silicon-potassium fertilizer.
     Thirdly, based on the precondition that the best reaction condition was decided, mathematic programming method was used to analysis the specific phases of synthesizing flow of silicon-potassium fertilizer. An optimization model was established whose objective function was economic benefit maximization or economic losing minimization. Then, the resolution method for the optimization model was discussed to optimize the technics flow for using desiliconization slag to produce silicon-potassium fertilizer in industrialization.
     At last, agricultural experiments were carried out to study the effect of silicon-potassium fertilizer on crop yield, quality and soil. The agricultural experiments showed that not only the crop output was increased but also the content of K in the soil was also increased and the influence on the pH value of the soil is weak. In order to evaluate the environmental and economic benefit of silicon-potassium fertilizer, the green accounting method was used. The results showed that if it was only evaluated based on economic output, the silicon-potassium fertilizer could replace the traditional quick result fertilizer and has better effect.
引文
[1]高彩玲,黄正文,赵英明等.“固体废弃物”与“再生原料”概念辨析[J].中国资源综合利用,2006,24(10):36-39.
    [2]于健,张玉峰,邱瑞霞等.浅议固体废弃物的污染现状及防治对策[J].中国科技信息,2007,14:26-28.
    [3]崔健.小议固体废弃物对人类的影响和处理方法[J].中国科技信息,2006,2:147.
    [4]田松鹤,许林,罗新民.加强技术创新、提高固体废弃物资源化综合利用[J].湖南有色金属,2006,22(2):75-77.
    [5]胡春华,陈雯,汪茜.固体废弃物资源的综合利用及管理探讨[J].环境科学与技术,2005,28(增刊):65-66.
    [6]丁晓琳.我国工业固体废弃物研究[J].交通运输系统工程与信息,2002,2(2):80-86.
    [7]梁平,马粤英.水泥工业利用固体废弃物的研究[J].研究与探讨,2007,2:94-98.
    [8]陈泉源,柳欢欢.钢铁工业固体废弃物资源化途径[J].矿冶工程,2007,27(3):49-56.
    [9]马军,邹真勤.国内外钢铁企业固体废弃物资源化利用及技术新进展[J].循环经济,2006,4:32-33.
    [10]顾文飞,张孝德.宝钢固体废弃物资源化综合利用的现状和发展方向[J].宝钢技术,2005,3:1-4.
    [11]董保澎.固体废料的处理与应用[M].北京:冶金工业出版社,1999,22.
    [12]郭文华.高炉重矿渣在地基处理中的应用[J].科技情报开发与经济,2001,11(5):121-122.
    [13]梁玉山,吕清华,陈朝辉.凌钢矿渣作路面基层材料的应用[J].辽宁交通科技,2000,2:12-13.
    [14]党君源,周国新,文晓燕.矿渣代替粘土配料对生料易烧性的影响[J].水泥技术,2001,5:54.
    [15]吴华.采用矿渣作晶种生产立窑生产立窑早强水泥[J].水泥工程,2001,1:23-25.
    [16]王绍文,梁富智,王纪曾.固体废弃物资源化技术与应用[M].北京:冶金工业出版社,2003,326-327.
    [17]杨吉林.钢铁工业固体废物治理[M].北京:中国环境科学出版社,1992,38-88.
    [18]张巨松,李好新,隋智通.高硅贝利特—硫铝酸盐水泥与矿渣复合的实验研究[J].沈阳建筑工程学院学报(自然科学版),2002,18(1):36-38.
    [19]叶平.高炉矿渣微粉的生产和应用[J].马钢技术,2003,4:43-46.
    [20]杨合,赵苏.高炉渣在建材领域的应用[J].矿产保护合利用,2004,1:47-51.
    [21]胡俊鸽.国内外高炉炉渣综合利用技术的发展及对鞍钢的建议[J].鞍钢技术,2003,3:8-11.
    [22] S. K. Malhotra, S. P Tehri. Development of bricks from granulated blast furnace slag[J]. Construction fand BuildingMaterials, 1996, 110(3), 191-193 .
    [23]王守勤,陈璐,李天伶.马鞍山高炉渣微晶玻璃的研制[J].中国建材科技,1997,6(4):23-26.
    [24]杨家宽,肖波,王秀萍.利用钢铁炉渣制备微晶玻璃技术[J].有色金属,2003,55(3):130-133.
    [25]许淑惠.矿渣微晶玻璃产品的研究与开发[J].玻璃与陶瓷,2002,2:51-56.
    [26]潘儒宗,张强,蒋丽君.红外矿渣微晶玻璃的研制[J].红外技术,1995,17(1):42-44.
    [27]李培容,吴知方,崔书庆.以宝钢矿渣为主要原料制备微晶玻璃[J].玻璃,2004,2:3-6.
    [28]南雪丽,傅希圣,周琦.高炉矿渣微晶玻璃的研制[J].玻璃,2005,3:15-18.
    [29]许淑惠,林宏飞,彭国勋等.矿渣微晶玻璃产品的研究与开发[J].玻璃与搪瓷,1999,28(2):51-52.
    [30]蒋伟峰.高炉水渣综合利用—用高比例高炉水渣制造微晶玻璃[J].中国资源综合利用,2003,3:28-29.
    [31]刘洋,肖汉宁.高炉渣含量与热处理制度对矿渣微晶玻璃性能的影响[J].陶瓷,2003,6:17-20.
    [32]吴羽飞,胡朝晖,张洋.薄木贴面矿渣刨花板的贴面研究[J].林业科技开发,1997,5:33-35.
    [33]李志达.硅肥的生产和施用[J].江苏化工,1990,2:3-6.
    [34]岑永权.钢铁渣处理和应用的发展[J].钢铁,1994,29,5:74-82.
    [35] J. Geiseler, M. Kuehn. Steel&iron Slag ferti1izer[J]. Iron&Steel Scrap, 2000, 3: 34-35.
    [36]唐福军,曲红杰,张之一.硅肥生产技术综述[J].黑龙江八一农恳大学学报,2006,18(4):72-75.
    [37]刘克明.高炉渣碳热还原氮化合成Ca-α-Sialon-SiC复合材料的研究[D].北京科技大学博士学位论文,2001.
    [38] Maurizia Seggiani, Sandra Vitolo. Recovery of silica gel from blast fumace slag[J]. Resources, Conservation and Recycling, 2003, 40: 71-80.
    [39]王明玉,刘晓华,隋智通.冶金废渣的综合利用技术[J].矿产综合利用,2003,3:28-32.
    [40] NKK成功开发粒状高炉渣回收新方法,特钢技术,2001,4:65.
    [41]郑轶荣,李文兴,胡长胜.用高炉渣处理含磷废水的试验研究[J].河北冶金,2004,141(3):13-15.
    [42]彭宝翠,张炳哲.钢铁厂熔渣热量的回收和利用[J].冶金动力,2005,110(4):105-109.
    [43]陈登福,佐祥均,温良英.液态高炉渣热量回收利用方法及问题[J].环境污染治理技术与设备,2006,7(7):133-137.
    [44] Kenney W. F. Energy Conservation in the Process Industries[M]. Orlando: Academic Press, 1984, 13-19.
    [45] Bisio G.. Proc. of ENSEC’93(Cracow)[M]. Gliwice: University of Silesia, 1993: 731-738.
    [46] Bisio G.. Proc. of 24th IECEC[M]. New York: IEEE, 1989, 1719-1724.
    [47] K. E Wirth. Heat transfer in circulating fluidized beds[J]. Chemical Engineering Scince, 1995, 50: 2137-2151.
    [48] Bisio G.Energy Recovery from molten slag and exploitation of recovered energy[J]. Energy, 1997, 22: 501.
    [49] Nagata K., Ohara H., Nakagome Y. The heat transfer performance of a gas-solid sontactor with regularly arranged baffle plates[J]. Powder Technology, 1998, 99: 302-307.
    [50]曾有文.浅谈高炉炉渣热能利用[J].科技创业月刊,2004,12:153-155.
    [51]龚尚富.高炉炉渣热能利用浅析[J].冶金动力,2001,85(3):55-56.
    [52]臧传宝.高炉冲渣水余热采暖的应用[J].山东冶金,2003,25(1):22-23.
    [53]马元武,田立章.冲渣水余热的夏季利用[J].河北冶金,2002,132(6):35-36.
    [54]何岩峰,董燕,郑怀林等.谈钢铁企业废渣零排放、全利用的可能性[J].粉煤灰综合利用,2006,1:55-56.
    [55]金霞,李辽沙,董元箎.国内外高炉渣资源化技术发展现状和展望[J].中国资源综合利用,2005,9:4-7.
    [56]曹德秋,李灿华.我国高炉粒化渣资源化利用的研究进展[J].中国废钢铁,2006,5:26-29.
    [57]朱桂林,孙树杉.加快钢铁渣资源化利用是我国钢铁企业的一项紧迫任务[J].中国废钢铁,2006,6:33-42.
    [58]常春荣,龚觅真,廖基兴.硅肥对南方花生产量和品质效应研究[J].中国农学通报,2006,22(11):432-435.
    [59]严明建,黄文章,吕直文等.硅肥对水稻产量的影响[J].安徽农业科学,2006,34(14):3426-3427.
    [60] Damof R L E, Deren C W, Snyder G H.Silicon fertilization for disease management of rice in Florida[J]. Crop Protection, 1997, 16(6): 525-53l.
    [61]刘显清,陈淑洁,那永光.寒地水稻硅肥追施效果[J].现代农业,2006,5:11.
    [62] Matichenkov V V, Calvert D V. Silicon as a beneficial element for sugarcane[J]. Journal American Society of Sugarcane Technologists, 2002, 22(2): 21-30.
    [63] W ang L J, Wang Y h. Silicon induced cadm ium tolerance of rice seedlings [J]. Journal of plant nutrition, 2000, 23(10): 1397-1406.
    [64]姜娟,李金凤,赵斌.加强硅肥应用、改善土壤肥力、促进增产增收—硅肥研究现状及在辽宁的应用前景[J].农业经济,2005,10:54-55.
    [65]刘海清,马保国,孙红.施用硅肥对黄瓜抗白粉病及其产量的影响[J].河南农业科学,2005,5:65-66.
    [66] Baylis. A D, Gragopoulou. C, Davidson.K. J, etal. Efect of silicon on the toxicity of aluminum to soybean[J]. Common Soil Sci Plant Anal, 1994: 537-546.
    [67]张建玲,王春辉,胡天明等.马铃薯施用硅肥的肥效初探[J].内蒙古农业科技,2004,12:137-138.
    [68]高淑萍,昝林生.硅肥对小麦养分吸收与光合物质生产的影响[J].土壤肥料,2001,5:35-37.
    [69] Yongchao Liang, J. W. C. Wong, Long Wei. Silicon-mediated enhancement of cadmium tolerance in maize grown in cadmium contaminated soil[J]. Chemosphere, 2005, 58: 475-483.
    [70]聂喜秀,李安耕.花生施用硅肥的效果与技术简介[J].江西农业科技,2001,3:28.
    [71]高红莉,蔡德龙,贾建新等.盐渍土冬小麦施用硅肥效应的试验研究[J].地域研究与开发,2003,22(4):92-94.
    [72] Horiguchi. T. Mechanism of manganese toxicity and tolerance in plants[J]. Soil science and Plant Nutrition, 1988, 34: 65-73.
    [73]武艳菊,宋祥伟,刘振学.硅肥的研究现状及展望[J].磷肥与化肥,2006,21(3):55-56.
    [74]周春旋,张济宇,李宝霞.硅肥发展现状及展望[J].化学工业与工程技术,2006,27(6):48-53.
    [75]叶协锋,刘国顺,郭战伟.不同钾肥施用量对烤烟生长过程中几种酶活性的影响[J].华北农学报,2004,19(3):88-91.
    [76]贾振华.施钾对提高小麦籽粒产量和改善品质的影响[J].北京农学院学报1993,33(1):9-12.
    [77]王勤,何为华,焦锁民等.增施钾肥对苹果品质和产量的影响[J].果树学报,2002,19(6):424-426.
    [78]石惠恩.施用氮肥对冬小麦产量和品质影响的研究[J].河南职技师院学报1989,17(4):89-93.
    [79]王旭东,于振文,王东.钾对小麦旗叶蔗糖和籽粒淀粉积累的影响[J].植物生态学报,2003,27(2):196-20.
    [80]李佛琳,彭桂芬.我国烟草钾素研究的现状与展望[J].中国烟草科学,1999,1:22-25.
    [81]郑炳松,程晓建.钾元素对植物光合速率、Rubisco和RCA的影响[J].浙江林学院学报,2002,19(1):104-108.
    [82]李玉影,金继运,刘双全等.钾对春小麦生理特性、产量及品质的影响[J].植物营养与肥料学报,2005,11(4):449-455.
    [83]窦桂梅,王景盛,刘巧英.钾肥在农作物上的应用研[J].山西农业科学,2001,29,1:49-52.
    [84]黄建中,饶立华,陆定志.钾营养对杂交水稻叶片发育期间光合作用的影响[J].植物生理学通讯,1991,27(2):91-94.
    [85]张玉华.水稻生产中钾肥的营养与施用[J].中国农学通报,2004,20(3):162-164.
    [86]赵平,林克惠.钾肥对农作物品质的影响[J].云南农业大学学报,2001,16(1):56-59.
    [87]刘素敏,刘征,游国友.油菜施用钾肥的增产效果[J].安徽农业科学,2003,31,2:317.
    [88]曹志洪,周秀如,李仲林等.我国烟叶含钾量状况及其与植烟土壤环境条件的关系[J].中国烟草,1990,3:6-13.
    [89]王喜枝.潮土区棉花施用钾肥的效应研究[J].河南农业科学,2003,10:43-44.
    [90]姜文武,陈式谷,杨龙.不同施钾方法对大麻产量的影响[J].安徽农业科学,2000,28(4):482-483.
    [91]张会民,刘红霞,王林生等.钾对旱地冬小麦后期生长及籽粒品质的影响[J].麦类作物学报,2004,24(3):73-75.
    [92]艳群,林克惠.氮钾营养的交互作用及其对作物产量和品质的影响[J].土壤肥料,2000,2:3-7.
    [93]何天春,谭宏伟,杜承林.钾镁肥对花生生长的影响[J].土壤,1992,24(6):312-314.
    [94]曹淑敏.马铃薯追施硝酸钾增产效果的研究[J].中国马铃薯,2003,17(1):15-16.
    [95]王凤婷,艾希珍.钾与蔬菜品质的相关性研究进展[J].西北农业学报,2004,13(4):183-186.
    [96]杨华.2007年国产钾肥企业面临严峻挑战[J].磷肥与复肥,2007,22(1):17-18.
    [97]钱发军,赵凤兰,邓挺等.长效钾肥产业化与农业可持续发展[J].地域研究与开发,2003,22(2):67-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700