几种重金属离子的检测及应用的新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属在现代工业、农业、医药等领域有着广泛的应用,但是随着现代工业和运输业的发展,重金属污染的环境问题日益突出。重金属难以降解,会在生物体内长期积累,即便极其微量也可能产生严重后果。重金属通过食物链沉积到人体后,可引起各种疾病,对人类健康造成严重损害。因此重金属检测在环境、农产品中残留监测中非常重要。本文主要针对当前常见的几种重金属离子,设计了几种具有不同灵敏度的检测方法,以满足对不同环境中重金属离子检测的需要。在开发针对重金属检测方法的同时也对碲化镉量子点对常青藤光合作用的影响进行了初步研究。工作重点主要涉及以下几个方面:
     1、基于寡核苷酸的Hg(Ⅱ)的传感器的制备及Hg(Ⅱ)的检测
     包含G碱基重复序列的DNA链,能够在K~+和血红素的作用下,形成类似过氧化物氧化酶的DNAzyme,而T碱基与Hg~(2+)之间能特异性结合,形成T-Hg~(2+)-T的结构。利用DNA的这两个特性,本工作中设计了两种具有特殊构成的寡核苷酸链,分别用于Hg~(2+)目视比色传感器和化学发光传感器的制备,并通过目视比色法和化学发光法对水溶液中的Hg~(2+)进行了检测,检测限分别为1×10~(-10) mol L~(–1)和2.5×10~(-9) mol L~(–1)。
     2、Nafion稳定的纳米银汞齐修饰电极的制备及其对Pb~(2+)、Cd~(2+)、Cu~(2+)的检测
     不同于以前固体汞齐电极的制备,本实验中利用nafion为软模板,通过电化学方法使Ag~+和Hg~(2+)在线还原,并在玻碳电极表面形成稳定的纳米级的银汞齐,通过扫描电子显微镜照片证明生成的纳米银汞齐的直径约为50 nm。实验过程中避免了与液态Hg的接触,减少了Hg的用量,并且通过生成银汞齐及nafion对Hg的稳定作用实现了Hg的固定,减少了电极的毒性。利用该方法制得的修饰电极在重金属离子的检测中具有稳定、灵敏、线性范围宽、重现性好的特点。通过对自来水中Cd~(2+)、Pb~(2+)、Cu~(2+)三种金属离子的同时检测,进一步验证了该电极用于实际样品检测的可行性。同时该方法也可推广到其它基底修饰的电极中,应用前景非常广阔。
     3、以硫代苹果酸为显色剂可视化检测Fe~(3+)
     铁不仅在地壳中分布广,而且是动植物中最重要的元素之一,它在许多化学和生理过程中扮有重要的角色。人体血液中的铁必须保持在一定的浓度,过多或过少都会对人体健康造成极大的危害,因此发展方便、快速、廉价的检测方法具有重要意义。通过实验证明,硫代苹果酸能够高选择性地与溶液中的三价铁离子络合并形成紫色络合物,该紫色络合物在体系pH为8.0时能够稳定存在,而且颜色随三价铁离子浓度的改变变化明显,能够用于三价铁离子的快速、灵敏检测。同时还证明本方法适用于人血中铁元素检测,在铁元素检测的常规化方面具有很好的应用前景。
     4、杯[4]芳烃羧酸填充的微萃取柱通过流动注射和火焰原子吸收光谱联用
     对水样中的微量重金属进行在线富集和检测本工作中利用杯[4]芳烃羧酸填充的微柱将流动注射在线预富集和火焰原子吸收光谱仪联用,对水样中的Cu~(2+)、Pb~(2+)、Co~(2+)、Ni~(2+)、Cd~(2+)进行了检测。该方法可以将流动注射在线预富集快速稳定的优势与火焰原子吸收光谱法灵敏、选择性好的优势较好的结合起来。通过对实验条件如:样品的pH值、装载时间、流速以及洗脱液的浓度、体积、流速等的优化,在对Cu~(2+)、Pb~(2+)、Co~(2+)、Ni~(2+)、Cd~(2+)进行检测时,显示出了低检出限,高富集倍数和高样品通量的特点;在对标准品中目标金属的检验中,检验结果与参考值相符合。此外,通过回收实验证明:该方法能够用于实际水样中Cu~(2+)、Pb~(2+)、Co~(2+)、Ni~(2+)、Cd~(2+)的检测,具有很好的实用性。
     5、碲化镉量子点在紫外光下对常青藤光合作用影响的研究
     通过对所合成的量子点的荧光波长进行选择以及常青藤叶片光合作用的最终产物—淀粉的检测,发现所选CdTe能够有效的吸收紫外线的能量并将能量转移给植物的光合反应中心,从而使得光合作用能够在紫外线下进行。CdTe的引入扩大了植物可利用的光谱范围,使原来对植物光合系统造成损害的紫外光能为其所用。另外通过对单位质量叶片叶绿素含量的检测以及显微镜下对叶绿体形貌观察及数量的统计发现,CdTe量子点并不仅仅是充当接收紫外线的角色,它还通过和叶绿体之间的能量交换,有效地保护植物的光合系统不受紫外线的伤害。虽然所用量子点中含有重金属镉,但是其独特的光学特性,使其在光合作用的研究中占有得天独厚的优势,是研究光合作用机理、紫外线伤害防止、光合作用效率提高的强有力工具。
Heavy metals have been used widely in manufacture, agriculture and pharmaceuticals industry, however, as the rapid development of modern industrial and transport, the environmental heavy metals pollution become more and more serious. Heavy metals cannot be rendered harmless by chemical or biological remediation processes and can persist in body of human and animals for long periods. Through the food chain heavy metals may deposit into human and animals body and even a little quantity can cause serious health problems which could transfer to the next generation on the genetic level. So in environmental and agricultural food monitoring it is very important to quantitatively analyze heavy metals. In this study several different methods with different sensitivities were developed to the determination some of the most common heavy metals. Besides researches of heavy metals determination, the effect of CdTe quantum dot on the photosynthetic systems of plant under ultraviolet-B radiation was also studied.
     1. The preparation of oligonucleotide based Hg~(2+) sensor and the application in Hg~(2+) determination.
     In this study a highly sensitive chemiluminescence sensor and a highly sensitive colorimetric sensor for the detection of Hg~(2+) in aqueous solution were developed by using two kind of thymine (T)-rich, mercury-specific oligonucleotide (MSO) probe. The MSO probes can form G-quadruplex DNAzyme on the effect of k+ and hemin. Mismatched thymine-thymine (T-T) base-pairs can take up the mercury ion and form inter-strand T-Hg~(2+)-T complexes, which can affect the formation of DNAzymes. Through investigating the signal changes of luminol-H2O2 system (chemiluminescence) and TMB-H2O2 system (colorimetric) Hg~(2+) could be quantitative detected. The detection limit were 1×10~(-10) mol L-1and 2.5×10~(-9) mol L~(-1)respectively.
     2. Nafion film immobilized nano Ag-Hg amalgam glassy carbon electrode used for simultaneous determination of lead, cadmium and copper
     In this work, a new route to reduce the toxicity of the mercury electrode was presented. Nafion was used as soft template to generate nanosized Ag-Hg amalgams on the surface of a glassy carbon electrode other than the traditional preparation of solid amalgam electrodes. As less mercury was used and it was immobilized by Ag and nafion film, the toxicity of mercury was reduced. Scanning electron microscope (SEM) showed that the size of the formed nano Ag-Hg amalgams was about 50 nm. Finally, the prepared electrode was used to the determination of heavy metals. Good reproducibility, linearity and sensitivity were obtained when it was utilized for the determination of Cd~(2+), Pb~(2+) and Cu~(2+) in deionized water and in tap water (without any further treatment). Different from the general methods of preparing amalgam electrodes, the method used in this work is more simple and possible to be used on different substrate materials.
     3. Visual determination of iron (Ⅲ) with mercaptosuccinic acid as color developing reagent
     In this work, a simple, economical and sensitive method for Fe~(3+) determination with naked eye was presented inμg mL~(-1) level. For the first time, mercaptosuccinic acid (MSA) was used to form a stable purple complex with Fe~(3+) at pH 8.0. When different quantities of Fe~(3+) were added, the color of the complex changed, which was sensitive enough to be observed with naked eye. Effects of pH and MSA concentrations were discussed to optimize the experimental conditions. Under the optimum conditions, the corresponding relationship between Fe~(3+) concentration and the color of the complex system was studied in the concentration range of 0.5-100μg mL-1. In addition, the method showed good selectivity for Fe~(3+) over Ni~(2+), Pb~(2+), Mn~(2+), Cr~(3+), Cu~(2+) and Co~(2+) when 1, 2-ethylenediamine was used as the masking agent. The feasibility of the method in the visible determination of the content of full iron (both Fe~(3+) and Fe~(2+)) in human whole blood samples was approved.
     4. On-line preconcentration and determination of trace metals in water samples by flow injection combined with flame atomic absorption spectrometry using calix[4]arene carboxylic acid packed micro-column
     The results obtained in this work indicate that the combination of FI on-line preconcentration with FAAS is an efficient and simple method when using a micro-colum packed with calix[4]arene carboxylic acid. The developed method exhibits an excellent configuration, joining the advantages of flow injection preconcentration in terms of speediness and robustness to those of FAAS in terms of sensitivity and selectivity. When used for the determination of heavy metal ions, Cu~(2+), Pb~(2+), Co~(2+), Ni~(2+), and Cd~(2+), the present strategy provides low limits of detection, high enrichment factors and throughput after the experimental parameters have been optimized, i.e., sample pH, loading time, flow rate, and eluent concentration, volume, and flow rate. The analytical results of the target metals in certified reference materials with the present method are in good accordance with the certified values. In addition, the method has been assessed through recovery experiments when employed for the determination of trace Cu~(2+), Pb~(2+), Co~(2+), Ni~(2+), and Cd~(2+) in water samples.
     5. Study on the effect of CdTe quantum dots on the photosynthetic systems of Ivy under ultraviolet-B radiation
     Water soluble CdTe quantum dots (QDs) were synthesized and the photoluminescence wavelengths of these QDs were optimized to get the best energy transfer between CdTe QDs and the photosynthetic systems of Ivy leaves. It was well known that amylum can be produced through photosynthesis of plants and the quantum of amylum can reflect the effection of photosynthesis. Through detection of amylum it was found that the introduction of CdTe QDs can enhance the light-harvesting process and enable Ivy to absorb sunlight in a much broader spectral range. Further more, through investigation of the shape of chloroplast and counting of the number of chloroplast by cell counting chamber, it was found that CdTe QDs can reduce the harm brought by ultraviolet-B radiation.
引文
[1]刁维萍,倪吾钟,倪天华,等.水环境重金属污染的现状及其评价[J].广东微量元素科学, 2004, 11 (3): 1-5.
    [2] [日]山根靖弘著,贺振东等译环境污染物质与毒性(无机篇) [M].四川科学技术出版社, 1981.
    [3]廖自基.环境中微量重金属元素的污染危害与迁移转化[M].科学出版社, 1989.
    [4] MOORE J W, RAMAMOORTHY S. Heavy Metals in Natural Waters [M]. SringerVerlag, Berlin.1984
    [5]黄秀莲,环境分析与监测[M].北京:高等教育出版社, 1989.
    [6] DUFFUS J H.“Heavy Metals”-A meaningless term [J]. Pure and Applied Chemistry, 2002, 74(5): 793-807.
    [7] DAI X, COMPTON R G. Gold nanoparticle modified electrodes show a reduced interference by Cu(II) in the detection of As(Ⅲ) using anodic stripping voltammetry [J]. Electroanalysis, 2005, 17(14):1325-1330.
    [8]高廷耀,顾国维主编.水污染控制工程[M].高等教育出版社, 1999, 5.
    [9] DAI X, NEKRASSOVA O, HYDE M E, COMPTON R G. Anodic stripping voltammetry of arsenic(Ⅲ) using gold nanoparticle-modified electrodes [J]. Analytical Chemistry, 2004, 76(19): 5924-5929.
    [10] SIMM A O, BANKS C E, COMPTON R G. The electrochemical detection of arsenic (Ⅲ) at a silver electrode [J]. Eletroanalrsis, 2005, 17(19): 1727-1733.
    [11]刘天齐.环境保护[M].北京:化学工业出版社, 2000, 4.
    [12] LOWN J A, JOHNSON D C, Anodic detection of arsenic (Ⅲ) in a flow-through platinum electrode for flow-injection analysis [J]. Analytica Chimica Acta, 1980, 116(1): 41-45.
    [13] HUTTON M, SYMON C. The quantities of cadmium, lead, mercury and arsenic entering the U.K. environment from human activities [J]. Science of the Total Environment, 1986, 57:129-150.
    [14] NIRAGU J O,PACYNA J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals [J]. Nature (London), 1988, 333(6169): 134-139.
    [15]戴清文,樊璞.猪实验性镉中毒[J].动物毒物学, 1992, 7(1): 9-11.
    [16] ELSENHANS B, HUNDER G, STRUGALA G K. Longitudinal patern of enzymatic and absorptive functions in the small intestine of rats after short-term exposure to dietary cadmium chloride [J]. Arch Environ Contam Toxicol, 1999, 36 (3): 341-346.
    [17] WEIDNER W J,SILLMEN A J. Low levels of cadmium chloride demage the corneal endothelium [J]. Archives of Toxicology, 1997, 71 (7): 455-460.
    [18] IARC. Monographs on the evaluation of carcinogenic risks to humans [M]. Lyon, France: International Agency for Research on Cancer, 1993.
    [19]谢黎虹,许梓荣.重金属镉对动物及人类的毒性研究进展[J].浙江农业学报, 2003, 15(6): 376-381.
    [20]马君贤.重金属镉的环境污染化学[J].当代化工, 2007, 36(4): 192-194.
    [21]李一锟.土壤-蔬菜系统重金属富集规律研究[J].沿海企业与科技, 81(02): 43-45.
    [22]中国农业持续发展和综合生产力研究组.中国农业持续发展和综合生产力研究[M].山东科技出版社, 1995, 306.
    [23]高粱.土壤污染及其防止措施[J].农业环境保护, 1992, 11(6): 272-273.
    [24]黄海涛,梁延鹏,魏彩春,等.水体重金属污染现状及其治理技术[J].广西轻工业, 2009, 126(5): 99-100.
    [25]刘素华. 2000-2009年我国重金属污染治理领域科技文献分析[J].企业技术开发, 2010, 29(13): 104-107.
    [26]中华人民共和国卫生部,中国国家标准化管理委员会.生活引用水卫生标准( GB5749- 2006) [S]. 2006.
    [27]钱沙华,韦进宝.环境仪器分析[M].北京:中国环境科学出版社, 2004.
    [28] BUTLER O T, COOK J M, HARRINGTON C. F. Atomic spectrometry update. Environmental Analysis [J]. Journal of Analytical Atomic Spectrometry, 2006, 21(2): 217-243.
    [29] LEERMAKERS M., BAEYENS W, Quevauviller P, Horvat M. Mercury in environmental samples: Speciation, artifacts, and validation [J]. Trends in Analytical Chemistry, 2005, 24(5): 383-393.
    [30] LIU J, CHEN H, MAO X, JIN X, et al. Determination of trace copper, lead, cadmium and iron in environmental and biological samples by flame atomic absorption spectrometry coupled to flow injection on-line coprecipitationpreconcentration using DDTC-nickel as coprecipitate carrier [J]. International Journal of Environmental Analytical Chemistry, 2000, 76(4): 267-282.
    [31]马戈,谢文兵,伍一根,等.横向加热石墨炉原子吸收光谱法测定茶叶中铅和镉[J].光谱学与光谱分析, 2003, 23(6): 1183-1184.
    [32]韩冠英,郭斌,张亚秋.火焰原子吸收光谱法测定魟鱼软骨多糖中铜镉铅的含量[J].中华中医药学刊, 2008, 26(6): 1209-1210.
    [33]于惠芬,时军,董培.准液膜法检测食品中铅镉[J].食品科学, 1997, (3): 38-40.
    [34]吴玉萍,王东丹,李琼珍,等.盐酸浸提-电感偶合等离子体发射光谱法测定烟草中的多元素[J].分析化学, 2002, 30(3): 315-317.
    [35] FASSEL V A. Quantitative elemental analyses by plasma emiss ion spectroscopy [J]. Science, 1978, 202(13): 183-191.
    [36] GREENFILED S, JONES I L, BERRY C T. High-pressure plasmas as spectroscopic emission sources [J]. Analyst, 1964, 89: 713-720.
    [37]傅的,王文桂,谢克金,等.利用多功能LB-HG型雾化氢化物发生器电感藕合等离子体原子发射光谱联用测定人发中砷、锑、汞、铅[J].分析化学, 1998, 26(4): 431- 434.
    [38]谯斌宗,杨元,文君,等.连续氢化物发生端视ICP-AES法直接测定纯净水中痕量铅[J].中国卫生检验杂志, 2001, 11(4): 385-386.
    [39] ZHU Z L, CHAN G C, RAY S J, et al. Microplasma source based on a dielectric barrier discharge for the determination of mercury by atomic emission spectrometry [J]. Analytical Chemistry, 2008, 80(22): 8622-8627.
    [40] RUST J A, NóBREGA J A, CALLOWAY C P, et al. Fraunhofer effect atomic absorption spectrometry [J]. Analytical Chemistry, 2005, 77(4):1060-1067.
    [41] VAN STIPDONK M J, ENGLISH R D, SCHWEIKERT E A, SIMS of organic anions adsorbed onto an aminoethanethiol self-assembled monolayer: an approach for enhanced secondary ion emission [J]. Analytical Chemistry, 2000, 72(11): 2618-2626.
    [42] MAESTRE S E, MORA J, HERNANDIS V, et al. A System for the direct determination of the nonvolatile organic carbon dissolved organic carbon, and inorganic carbon in water samples through inductively coupled plasma atomic emission spectrometry [J]. Analytical Chemistry, 2003, 75(1): 111-117.
    [43] TANGEN G, WICKSTROM T, LIERHAGEN S, et al. Fractionation and determination of aluminum and iron in soil water samples using SPE cartridges and ICP-AES [J]. Environmental Scince & Technology, 2002, 36(24): 5421-5425.
    [44] CHRISTOU S Y, BIRGERSSON H, FIERRO J L G, et al. Reactivation of an aged commercial three-way catalyst by oxalic and citric acid washing [J]. Environmental Science & Technology, 2006, 40(6): 2030-2036.
    [45] YU L-P. Cloud point extraction preconcentration prior to high-performance liquid chromatography coupled with cold vapor generation atomic fluorescence spectrometry for speciation analysis of mercury in fish samples [J]. Journal of Agricultural and Food Chemistry, 2005, 53(25): 9656-9662.
    [46] SHADE C W, HUDSON R J M. Determination of MeHg in environmental sample matrices using Hg-thiourea complex ion chromatography with on-line cold vapor generation and atomic fluorescence spectrometric detection [J]. Environmental Science & Technology, 2005, 39(13): 4974-4982.
    [47] YAN X P, YIN X B, JIANG D Q, et al. Speciation of mercury by hydrostatically modified electroosmotic flow capillary electrophoresis coupled with volatile species generation atomic fluorescence spectrometry [J]. Analytical Chemistry 2003, 75(7): 1726-1732.
    [48] GREGORI I DE, QUIROZ W, PINOCHET H, et al. Simultaneous speciationanalysis of Sb(Ⅲ), Sb(V) and (CH3)3SbCl2 by high performance liquid chromatography hydride generation-atomic fluorescence spectrometry detection (HPLC-HG-AFS): Application to antimony speciation in sea water [J]. Journal of Chromatography A, 2005, 1091(1-2): 94-101.
    [49] GREGORI I DE, QUIROZ W, PINOCHET H, et al. Speciation analysis of antimony in marine biota by HPLC-(UV)-HG-AFS: Extract ion procedures and stability of antimony species [ J]. Talanta, 2007, 73(3): 458-465.
    [50]余自力,程光磊.金属离子分析技术[M].北京:化学工业出版社, 2004.
    [51]叶存玲,樊静,冯素玲,等.流动注射催化光度法测定香烟中的汞(lI) [J].分析化学, 2000, 28(9): 1155-1157.
    [52]李忠,施红林,王岚,等. 5-(H-酸偶氮)-8-氨基喹啉与铜显色反应研究在烟草分析中的应用[J].光谱实验室, 2000, 17(6): 643-645.
    [53]万益群,刘江磷,陈卫玲.新型固相分光光度法测定茶叶中痕量锰的研究[J].分析科学学报, 2000, 16(5): 394-396.
    [54]徐茂军.双硫腙水相直接光度法测定食品中铅[J].中华预防医学杂志, 2002, 36(1): 52-55.
    [55]常彧.固相光度法检测食品中微量镉的研究[D].天津科技大学, 2007, 12
    [56] COTTINGHAM K, Hybrid vigor for mass spectrometers [J]. Analytical Chemistry, 2003, 75(14): 315A-319A.
    [57] XIE Y, SCHUBOTHE K M, LEBRILLA C B, Infrared laser isolation of ions in fourier transform mass spectrometry [J]. Analytical Chemistry, 2003, 75(1): 160-164.
    [58] HUANG Z Y, ZHUANG Z X, WANG X R. et al. Preparation and characterization of radix salvia reference material for heavy metals under GAP control [J]. China Journal of Chinese Material Medical, 2003, 28(9): 808-811.
    [59]张思冲,周晓聪,叶华香,等. X射线荧光光谱法测定哈尔滨城郊菜地土壤重金属[J].中国农学通报, 2009, 25(13): 230-233.
    [60]蒲国刚等.电分析化学[M].合肥:中国科学技术大学出版社, 1993
    [61]武汉大学化学系.仪器分析[M].北京:高等教育出版社, 2001
    [62] JADHAV S, BAKKER E, Selectivity behavior and multianalyte detection capability of voltammetric ionophore-based plasticized polymeric membrane sensors [J]. Analytical Chemistry, 2001, 73(1): 80-90.
    [63] KHOLDEEVA O A, TRUBITSINA T A, MAKSIMOV G M, et al. Synthesis, characterization, and reactivity of Ti(IV)-monosubstituted keggin polyoxometalates [J]. Inorganic Chemistry, 2005, 44(5): 1635-1642.
    [64] MALON A, VIGASSY T, BAKKER E, Potentiometry at trace levels in confined samples: ion-selective electrodes with subfemtomole detection limits [J]. Journal of the American Chemical Society, 2006, 128(25): 8154-8155.
    [65]董学芝,赵海兰,艾天宗,等.催化电位滴定法测定铬鞣剂中铬Ⅲ[J].分析化学研究简报, 2001, 29(1):77-79.
    [66] CLARK A C, SCOLLARY G R, Determination of total copper in white wine by stripping potentiometry utilising medium exchange [J]. Analytica Chimica Acta, 2000, 413(1-2): 25-32.
    [67]王镇浦等译.仪器分析[M].北京:北京大学出版社, 1986.
    [68]王国顺等译著.电化学分析-溶出伏安法[M].北京:中国计量出版社, 1988.
    [69]曾立平.新型化学修饰电极的制备及其应用于食品中重金属检测的方法研究[D].上海:华东师范大学理工学院, 2009.
    [70] GHONEIM M M, HASSANEIN A M, HAMMAM E, BELTAGI A M. Simultaneous determination of Cd, Pb, Cu, Sb, Bi, Se, Zn, Mn, Ni, Co and Fe dissolved in natural water by differential pulse stripping voltammetry with a hanging mercury drop electrode [J]. Fresenius' journal of analytical chemistry 2000, 367(4): 378-383.
    [71] ENSAFI A, KHAYAMIAN T, BENVIDI A, Simultaneous determination of copper, lead and cadmium by cathodic adsorptive stripping voltammetry using artificial neural network [J]. Analytica Chimica Acta, 2006, 561(1-2): 225-232.
    [72] FEENEY R; KOUNAVES S P. Voltammetric Measurement of Arsenic in Natural Waters [J]. Talanta, 2002, 58(1), 23-31.
    [73]赵藻藩.仪器分析[M].北京:高等教育出版社, 1990.
    [74] MEUCCIA V, LASCHIB S, MINUNNIB M, et al. An optimized digestion method coupled to electrochemical sensor for the determination of Cd, Cu, Pb and Hg in fish by square wave anodic stripping voltammetry [J]. Talanta, 2009, 77: 1143–1148.
    [75] DAI X, NEKRASSOVA O, HYDE M E, et al. Anodic stripping voltammetry of arsenic(Ⅲ) using gold nanoparticle-modified electrodes [J]. Analytical Chemistry, 2004, 76 (19): 5924-5929.
    [76] Locatelli C. Voltammetric methods for the simultaneous determination of trace metals in foods, plant tissues and soils [J]. Journal of the Science of Food and Agriculture, 2007, 87: 305-312.
    [77] Long J, Yukio N. Cathodic stripping voltammetric determination of As(Ⅲ) with in situ plated bismuth-film electrode using the catalytic hydrogen wave [J]. Analytica Chimica Acta, 2007, 593(1): 1-6.
    [78]金利通,全威,方禹之.化学修饰电极[M].上海:华东师范大学出版社, 1992.
    [79]董绍俊,车广礼,谢元武,化学修饰电极[M].科学出版社,2003.
    [80]刘有芹,颜芸,沈含熙.化学修饰电极的研究及其分析应用[J].化学研究与应用, 2006, 18(4):337-343.
    [81] MILLAN K M, MIKKELSEN S R. Sequence-selective biosensor for DNA based on electroactive hybridization indicators [J]. Analytical Chemistry 1993, 65(17): 2317-2123.
    [82] SANTOS J E, ZANIQUELI M E D, BATALINI C, Modified electrodes using Mixed langmuir-blodgett films containing a ruthenium complex: features of the monolayers at air-liquid interface [J]. The Journal of Physical Chemistry B, 2001, 105(9): 1780-1785.
    [83] SHEPARD V R, ARMSTRONG N R, Electrochemical and photoelectrochemical studies of copper and cobalt phthalocyanine-tin oxide electrodes [J]. The Journal of Physical Chemistry B, 1979, 83(10): 1268-1276.
    [84] YAMAMOTO K, OHGARU T, TORIMURA M, et al. Highly-sensitive flow injection determination of hydrogen peroxide with a peroxidase-immobilized electrode and its application to clinical chemistry [J]. Analytica Chimica Acta, 2000, 406(2): 201-207.
    [85] WEN Z K, KANG T F. Determination of nitrite using sensors based on nickel phthalocyanine polymer modified electrodes [J]. Talanta, 2004, 62: 351-355.
    [86] DOMENECH A, GAREIA H, ALVARO M, Carbonel E. Study of redox processes in zeolite Y-associated 2, 4, 6-triphenylthiopyrylium ion by square wave voltammetry [J]. The Journal of Physical Chemistry B, 2003, 107(13): 3040-3050.
    [87] DAI X, WILDGOOSE G G, SALTER C, et al. Electroanalysis using macro-, micro-, and nanochemical architectures on electrode surfaces. Bulk surface modification of glassy carbon microspheres with gold nanoparticles and their electrical wiring using carbon nanotubes [J]. Analytical Chemistry, 2006, 78(17): 6102-6108.
    [88]姜艳霞,邹明珠,宋文波,等. MCM 241中孔分子筛修饰电极对铁(Ⅱ)和钌(Ⅱ)的1, 10-二氮杂菲配合物的电化学响应[J].高等学校化学学报, 1998, 19(12): 1929-1932.
    [89]姜艳霞,宋文波,刘颖.高等学校化学学报[J]. 1999, 20(5): 717-721.
    [90] LIN J, WANG Y, DING J, et al. An ionophore-Nafion modified bismuth electrode for the analysis of cadmium(II) [J]. Electrochemistry Communications, 2010, 12(2): 202-205.
    [91] STEINMETZ N F, LIN T, Lomonossoff G P, et al. Structure-based engineeringof an icosahedral virus for nanomedicine and nanotechoology [J]. In Viruses and Nanotechnology, 2009, 327: 23-58.
    [92] MATSUURA N, ROWLANDS J A. Towards new functional nanostruetores for medical imaging. Medieal Physics, 2008, 35(10): 4474-487.
    [93] ONO A, CAO S, TOGASHI H, et al. Specific interactions between silver(I) ions and cytosine–cytosine pairs in DNA duplexes [J]. Chemical Communications, 2008, 39: 4825-4827.
    [94] LIN Y-H, TSENG W-L. Highly sensitive and selective detection of silver ions and silver nanoparticles in aqueous solution using an oligonucleotide-based fluorogenic probe [J]. Chemical Communications, 2009, 43: 6619-6621.
    [95] LI T, SHI L, WANG E, DONG S. Silver-ion-mediated DNAzyme switch for the ultrasensitive and selective colorimetric detection of aqueous Ag+ and cysteine [J]. Chemistry–A European Journal, 2009, 15(14): 3347-3350.
    [96] MIYAKE Y, TOGASHI H, TASHIRO M, et al. MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes [J]. Journal of American Chemical Society, 2006, 128 (7): 2172-2173.
    [97] HE S, LI D, ZHU C. Design of a gold nanoprobe for rapid and portable mercury detection with the naked eye [J]. Chemical Communications, 2008, 40: 4885-4887.
    [98] ONO A, TOGASHI H. Highly Selective Oligonucleotide-based sensor for mercury(II) in aqueous solutions [J]. Angewandte Chemie International Edition, 2004, 43(33): 4300-4302.
    [99] LI T, DONG S, WANG E. Label-Free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes [J]. Analytical Chemistry, 2009, 81(6): 2144-2149.
    [100] CHIANG C-K, HUANG C-C, LIU C-W, CHANG H-T. Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury(II) in aqueous solution [J]. Analytical Chemistry, 2008, 80(10): 3716-3721.
    [101] LIU X, TANG Y, WANG L, et al. Optical detection of mercury(II) in aqueous solutions by using conjugated polymers and label-free oligonucleotides [J]. Advanced materials, 2007, 19(13): 1471-1474.
    [102] LIU J, LU Y. Rational design of“Turn-On”allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity [J]. Angewandte Chemie International Edition, 2007, 46(40): 7587-7590.
    [103] ORGAN L, JOHANSSON G.Determination of trace of mercury(II) by inhibition of an enzyme reactor electrode loaded with immobilized urease [J]. Analytica Chimica Acta, 1978, 96(1): 1-11.
    [104] BAMBANG K. Simple optical fibre biosensor based on immobilized enzyme for monitoring of trace heavy metal ions [J]. Analytical and Bioanalytical Chemistry, 2003, 376(7): 1104-1110.
    [105] EVTUGYN G A, BUDNIKOV H C, NIKOLSKAYA E B.Biosensors for the determination of environmental inhibitors of enzymes [J]. USP KHIM+, 1999, 68(12): 1164-1167.
    [106] VLAHOGIANNI T H, DASSENAKIS M A, SCOULLOS M J, et al. Integrated use of biomarkers (superoxide dismutase catalase and lipid peroxidation) in mussels mytilus galloprovincialis for assessing heavy metals’pollution in coastal areas from the Saronikos Gulf of Gree [J]. Linear Algebra Appl, 2007, 427(1): 1361-1371.
    [107] MALITESTA C, GUASCITO M R. Heavy metal determination by biosensors based on enzyme immobilized by electropolymerisation [J]. Biosens Bioelectron, 2005, 20(8): 1643-1647.
    [108] CIUCU A, LUPU A, PIRVUTOIU S, et al. Biosensors for heavy metals determination based on enzyme inhibition [J]. Chemistry and Materials Science, 2001, 63(4): 33-44.
    [109] KOMADA S, MATSUDA T, FUJINO Y, et al. Determination of Ag(I) Ion and argin by using the composite film of electroinative polyion complex [J]. Sensors and Actuator B, 1998, 52(1-2): 78-83.
    [110] PIRVUTION S, SURUGIU I, COMPAGNONE D, et al. Flow injection analysis of mercury(II) based on enzyme inhibition and thermmometric diction [J]. Analysis, 2001, 126(9): 1612-1616.
    [111]刘功良,王菊芳,李志勇,等.重金属离子的免疫检测研究进展[J].生物工程学报, 2006, 22(6): 877-881.
    [112] JOHNSON D K. A fluorescence polarization immunoassay for cadmium (II) [J]. Analytica Chimica Acta, 1999, 399(1-2): 161-172.
    [113] JOHNSON D K, COMBS S M, PARSEN J D, et al. Lead analysis by anti-chelate fluorescence polarization immunoassay [J]. Environmental Science & Technology, 2002, 36(5): 1042-1047.
    [114] DARWISH I A, BLAKE D A. One step competitive immunoassay for cadmium ions: development and validation for environmental water samples [J]. Analytical Chemistry, 2001, 73(8): 1889-1895.
    [115] BLAKE D A, PAVLOV A R, KHOSRAVIANI M F, et al. Immunoassay for cadmium in ambient water aamples [J]. Cur Prot Field Anal Chem, 1998(1): 1-10.
    [116] Darwish I A , Blake D A. One-step competitive immunoassay for cadmiumions: development and validation for environmental water samples [J]. Analytical Chemistry, 2001, 73(8): 1889-1895.
    [117]郭玉香.试纸法快速测定环境水样中痕量重金属镉汞铅的研究[D].天津:天津理工大学, 2006.
    [118]孔涛.金属铜、镉的快速免疫检测技术研究[D].长春:吉林大学畜牧兽医学院, 2010.
    [119] LENG B, ZOU L, JIANG J, et al. Colorimetric detection of mercuric ion (Hg~(2+)) in aqueous media using chemodosimeter-functionalized gold nanoparticles [J]. Sensors and Actuators B, 2009, 140(1): 162-169.
    [120] CHEN Y-Y, CHANG H-T, SHIANG Y-C, et al. Colorimetric assay for lead ions based on the leaching of gold nanoparticles [J]. Analytical Chemistry, 2009, 81(22): 9433-9439.
    [121]翟慧泉,金星龙,岳俊杰,等.重金属快速检测方法的研究进展[J].湖北农业科学, 2010, 49(8): 1995-1998.
    [122] ANIKEEVA P O, HALPERT J E, BAWENDI M G, et al. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible speetrum [J]. Nano Letters, 2009, 9(7): 2532-2536.
    [123] SUN W T, YU Y, PAN H Y. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes [J]. Journal of the Ameriean Chemieal Society, 2008, 130(4): 1124-1125.
    [124] COE S, WOO W K, BAWENDI M G, et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J]. Nature, 2002, 420 (6917): 800-803.
    [125] SUN Q J, WANG YA, LI L S, et al. Bright, multicoloured light-emitting diodes based on quantum dots [J]. Nature Photonics, 2007, l (12): 717-722.
    [126] VOURA E B, JAISWAL J K, MATTOUSSI H, SIMON S M. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy [J]. Nature Medicine, 2004, 10(9): 993-998.
    [127] BAKALOVA R, ZHELEV Z, OHBA H, Quantum dots as photosensitizers? [J]. Nature Biotechnology, 2004, 22(11): 1360-1361.
    [128] RAVINDRAN S, KIM S, MARTIN R, et al. Quantum dots as bio-labels for the localization of a small plant adhesion protein [J] Nanotechnology, 2005, 16(1): 1-4.
    [129] KONGKANAND A, TVRDY K, TAKEEHI K, et al. Quantum dot solar cells.tuning photoresponse through size and sShape control of CdSe-TIO2 architecture [J]. Journal of the Ameriean Chemical Society, 2008, 130(12): 4007-4015.
    [130] FARROW B, KAMAT P V. CdSe Quantum dots sensitized solar cells.shuttling electrons through stacked carbon nanocups [J]. Journal of the American Chemical Soeiety, 2009, 131(31): 11124-11131.
    [131] HUYNH W U, DITTMEr J J, ALIVISATOS A P. Hybrid nanorod-polymer solar cells [J]. Science, 2002, 295(5564): 2425-2427.
    [132] GUR I, FROMER N A, GEIER M L, ALIVISATOS A P. Air-stable all-inorganic nanocrystal solar cells processed from solution [J], Science, 2005, 310(5747): 462-465.
    [133] GUO Q, KIM S J, KAR M, et al. Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells [J]. Nano Letters, 2008, 8(9): 2982-2987.
    [1] PACYNA E G, PACYNA J M, Pirrone N. European emissions of atmospheric mercury from anthropogenic sources in 1995 [J]. Atmospheric Environment, 2001, 35(17): 2987-2996.
    [2]阳章友,曾一平,张丹,等.汞的分析研究简述[J].河南化工, 2010, 27(2):10
    [3] LIU J, LU Y. Rational design of "turn-on" allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity [J]. Angewandte Chemie, International Edition, 2007, 46(40), 7587– 7590.
    [4] CHIANG C K, HUANG C C, LIU C W, et al. Oligonucleotide-based fluorescence probe for sensitive and selective detection of Mercury(II) in aqueous solution [J]. Analytical Chemistry, 2008, 80(10): 3716–3721.
    [5] NOLAN E M, LIPPARD S J. Tools and tactics for the optical detection of mercuric ion [J]. Chemical. Review, 2008, 108(9): 3443–3480.
    [6] NAGASHIMA K, MURATA T, KURIHARA K. Pretreatment of water samples using UV irradiation- peroxodisulfate for the determination of total mercury [J]. Analytica Chimica Acta, 2002, 454(2): 271-275.
    [7] CAPELO J L, RIVA G M, OLIVEIRA L G, et al. Mercury determination by FI- CV- AAS after the degradation of organom ercurials with the aid of an ultrasonic field: The important role of the hypochlorite ion [J]. Talanta, 2006, 68(3): 813-818.
    [8] TIRTOM V N, GOULDING S, HENDEN E. App lication of a wool column for flow injection online preconcentra tion of inorganic mercury(II) and methyl mercury species prior to atomic fluorescence measurement [J]. Talanta, 2008, 76(5): 1212-1217.
    [9] CABELLO-CARRAMOLINO G., PETIT-DOMINGUEZ M D. Application of new sol-gel electrochemical sensors to the determination oftrace mercury [J]. Analytica Chimica Acta. 2008, 614(1): 103-111.
    [10] MATSUSHITA M, MEIJLER M M, WIRSCHING P, LERNER R A. A blue fluorescent antibody- cofactor sensor for mercury [J]. Organic.Letters, 2005, 7(22): 4943-4946.
    [11] KO S K, YANG Y K, TAE J, SHIN I. In vivo monitoring of mercury ions using a rhodamine-based molecular probe [J]. Journal of the American Chemical Society, 2006, 128(43): 14150-14155.
    [12] TATAY S, GAVINA P, CORONADO E, et al. Optical mercury sensing using a benzothiazolium hemicyanine dye [J]. Organic Letters, 2006, 8(17): 3857-3860.
    [13] LOMBARDO M, VASSURA I, FABBRI D, et al. A strikingly fast route to methylmercury acetylides as a new opportunity for monomethylmercury detection [J]. Journal of Organometallic Chemistry, 2005, 690(3): 588-593.
    [14] LIU L, LAMY W,WONG W Y. Complexation of 4 4′-di(tert-butyl)-5- ethynyl-2,2′-bithiazole with mercury(II) ion: synthesis, structures and analytical applications [J]. Journal of Organometallic Chemistry, 2006, 691(6): 1092-1100.
    [15] LIU L, WONG W Y, LAM Y W, TAM W Y, Exploring a series of monoethynylfluorenes as alkynylating reagents for mercuric ion: Synthesis, spectroscopy, photophysics and potential use in mercury speciation [J]. Inorganica Chimica Acta, 2007, 360(1): 109-121.
    [16] SAITO S, SASAMURA S , HOSHI S. Simultaneous detection of [metal(II)-tpen]2+ as kinetically inert cationic complexes using pre-capillary derivatization electrophoresis: an application to biological samples [J]. Analyst, 2005, 130(5): 659-663.
    [17] MIYAKE Y, TOGASHI H, TASHIRO M, et al. MercuryII-mediated formation of thymine?HgII?thymine base pairs in DNA duplexes [J]. Journal of the American Chemical Society, 2006, 128(7): 2172-2173.
    [18] PARK S Y, LYTTON-JEAN A K R, ABIGAIL KR, et al. DNA-programmable nanoparticle crystallization [J]. Nature, 2008, 451(7178): 553-556.
    [19] XU X, ROSI NL, WANG Y, HUO F, et al. Asymmetric functionalization of gold nanoparticles with oligonucleotides [J]. Journal of the American Chemical Society, 2006, 128(29): 9286-9287.
    [20] LEE J-S, HAN M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-Functionalized gold nanoparticles [J]. Angewandte Chemie International Edition, 2007, 46(22):4093-4096.
    [21] ZHU Z, SU Y, LI J, et al. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gole nanoparticale-based amplification [J]. Analytical Chemistry, 2009, 81(18): 7660-7666.
    [22] ONO A, TOGASHI H. Molecular sensors: Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions [J]. Angewandte Chemie, International Edition, 2004, 43(33): 4300-4302.
    [23] LIU X F, TANG Y L, WANG L H, et al. Optical detection of mercury(II) in aqueous solutions by using conjugated polymers and label-free oligonucleotides [J] Advanced Materials, 2007, 19(11): 1471–1474.
    [24] WANG H, WANG Y X, JIN J Y, YANG R H. Gold nanoparticle-based colorimetric and "Turn-On" fluorescent probe for mercury(II) ions in aqueous solution [J]. Analytical Chemistry, 2008, 80(23): 9021-9033.
    [25] LU N, SHAO C, DENG Z. Colorimetric Hg2+ detection with a label-free and fully DNA-structured sensor assembly incorporating G-quadruplex halves [J]. Analyst, 2009, 134(9): 1822-1825.
    [26] LI T, LI B L, WANG E K, DONG S J. G-quadruplex-based DNAzyme for sensitive mercury detection with the naked eye [J]. Chemical Communications, 2009, 3551–3553.
    [27] LI T, DONG S, WANG E. Label-Free colorimetric detection of aqueous mercury Ion (Hg2+) using Hg2+-Modulated G-Quadruplex-Based DNAzymes [J]. Analytical Chemistry, 2009, 81(6): 2144–2149.
    [28] TRAVASCIO P, LI Y, SEN D. DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex [J]. Chemistry & Biology, 1998, 5(9): 505-517.
    [29] LI T, WANG E, DONG S. Base-pairing directed folding of bimolecular G-quadruplex: new insights into G-quadruplex-based DNAzymes [J]. Chemistry - A European Journal, 2009, 15(9): 2059-2063.
    [30] LI T, SHI L, WANG E, DONG S. Multifunctional G-quadruplex aptamers and their application to protein detection [J]. Chemistry - A European Journal, 2009, 15(4): 1036-1042.
    [31] TRAVASCIO P, WITTING P K, MAUK G, SEN D. The peroxidase activity of a hemin-DNA oligonucleotide complex: free radical damage to specific guanine bases of the DNA [J]. Journal of the American Chemical Society, 2001, 123(7): 1337-1348.
    [32] LI T, DONG S, WANG E. Enhanced catalytic DNAzyme for label-free colorimetric detection of DNA [J]. Chemical Communications, 2007: 4209-4211.
    [33] CHILDS R E, BARDSLEY W G, The steady-state kinetics of peroxidase with 2,2'-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen [J]. Biochemistry Journal, 1975, 145: 93-103.
    [34] ZHANG N, APPELLA D H, Colorimetric detection of anthrax DNA with a peptide nucleic acid sandwich-hybridization assay [J]. Journal of the American Chemical Society, 2007, 129(27): 8424-8425.
    [35] Ostroff R M, Hopkins D, Haeberli A B, Thin film biosensor for rapid visual detection of nucleic acid targets [J]. Clinical Chemistry, 1999, 45(9): 1659-1664.
    [36] SEN D, GILBERT W. A sodium-potassium switch in the formation of four-stranded G4-DNA [J]. Nature, 1990, 344(6265): 410–414.
    [37] UNDQUIS W I, KLUG A. Telomeric DNA dimerizes by formation of guanine tetrads between Hairpin Loops [J]. Nature, 1989, 342 (6251): 825-829.
    [38] PAVLOV V, XIAO Y, GILL R, et al. Amplified chemiluminescence surface detection of DNAand telomerase activity using catalytic nucleic acid labels [J]. Analytical Chemistry, 2004, 76(7): 2152-2156.
    [39] LI T, WANG E, DONG S. Chemiluminescence thrombin aptasensor using high-activity DNAzyme as catalytic label [J]. Chemical Communications, 2008, 43: 5520-5522.
    [40] LI T, DU Y, WANG E. Polyethyleneimine-functionalized platinum nanoparticles with high electrochemiluminescence activity and their applications to amplified analysis of biomolecules [J]. Chemistry–An Asian Journal, 2008, 3(11): 1942–1948.
    [1] WANG J, LU J, HOCEVAR S, FARIAS P, OGOREVE B. Bismuth-coated carbon electrodes for anodie stripping voltammetry [J]. Analytical Chemistry, 2000, 72(14): 3218-3222.
    [2] Kefala G, Economou A, Voulgaropoulos A. A study of nafion-coated bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry [J]. Analyst, 2004, 129(11): 1082-1090.
    [3] Barek J,Fischer J, Navratil T, et al. Silver solid amalgam electrodes as sensors for chemical carcinogens [J]. Sensors, 2006, 6(4): 445-452.
    [4] Wang J,Lu J M, Anik U, et al. Insights into the anodic stripping voltammetric behavior of bismuth film electrodes [J]. Analytica Chimica Acta, 2001, 434(1): 29-34.
    [5] Legeai S, Bois S, Vittori O. A copper bismuth film electrode for adsorptive cathodic stripping analysis of trace nickel using square wave voltammetry [J]. Journal of electroanalytical chemistry, 2006, 591(1): 93-98.
    [6] Torma F, Kádár M, Tóth K, Tatár E. Nafion/2, 2'-bipyridyl-modified bismuth film electrode for anodic stripping voltammetry [J]. Analytica Chimica Acta, 2008, 619(2): 173-82.
    [7] D. W. M. Arrigan, Voltammetric determination of trace metals and organics after accumulation at modified electrodes [J]. Analyst, 1994, 119(9): 1953-1966.
    [8] COMPTON R G, FOORD J S, MARKEN F. Electroanalysis at diamond-like and doped-diamond electrodes [J]. Electroanalysis, 2003, 15(17): 1349-1363.
    [9] HONEYCHURCH K C, HART J P. Screen-printed electrochemical sensors for monitoring metal pollutants [J].Trac-trends in analytical chemistry, 2003, 22(7): 456-469.
    [10] WANG J, TIAN B. Mercury-free disposable lead sensors based on potentiometric stripping analysis of gold-coated screen-printed electrodes [J]. Analytical Chemistry, 1993, 65(11): 1529-1532.
    [11] NOLAN M A, KOUNAVES S P. Microfabricated array of iridium microdisks as a Substrate for direct determination of Cu2+ or Hg2+ using square-wave anodic stripping voltammetry [J]. Analytical Chemistry, 1999, 71(16): 3567-3573.
    [12] KEFALA G, ECONOMOU A, VOULGAROPOULOS A, SOFONIOU M. A study of bismuth-film electrodes for the detection of trace metals by anodicstripping voltammetry and their application to the determination of Pb and Zn in tapwater and human hair [J]. Talanta, 2003, 61(5): 603-610.
    [13] LEE G J, LEE H M, RHEE C K. Bismuth nano-powder electrode for trace analysis of heavy metals using anodic stripping voltammetry [J]. Electrochemistry Communications, 2007, 9(10): 2514-2518.
    [14] KAPTURSKI P, BOBROWSKI A. The silver amalgam film electrode in catalytic adsorptive stripping voltammetric determination of cobalt and nickel [J]. Journal of Electroanalytical Chemistry, 2008, 617(1): 1-6.
    [15] LOVRIC M, LOVRIC S K, BOND A M. Theory of square-wave stripping voltammetry and chronoamperometry of immobilized reactants [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 319(1-2): 1-18.
    [16] BIENIASZ L K. Use of dynamically adaptive grid techniques for the solution of electrochemical kinetic equations. Part 12. patch-adaptive simulation of example transient experiments described by kinetic models defined over multiple space intervals in one-dimensional space geometry [J]. Journal of Electroanalytical Chemistry, 2002, 527(1-2): 21-32.
    [17] MIKKELSEN , SCHRDER K H. Alloy electrodes with high hydrogen overvoltage for analytical use in voltammetry. Some preliminary results [J]. Analyst, 2000, 125(12): 2163-2165.
    [18] YOSYPCHUK B, NOVOTNY L. Cathodic stripping voltammetry of cysteine using silver and copper solid amalgam electrodes [J]. Talanta, 2002,56(5): 971–976.
    [19] NOVOTNY L, HAVRAN L, YOSYPCHUK B, FOJTA M. Adsorptive Stripping Voltammetry of Denatured DNA on Hg/Ag Electrode [J]. Electroanalysis 2000, 12(12): 960-962.
    [20] MIKKELSEN , SCHRDER K H. Amalgam electrodes for electroanalysis [J]. Electroanalysis, 2003, 15(8): 679-687.
    [21] YOSYPCHUK B, NOVOTNY L. Electrodes of nontoxic solid amalgams for electrochemical measurements [J]. Electroanalysis, 2002, 14(24): 1733-1738.
    [22] YOSYPCHUM B, NOVOTHY L. Determination of iodates using silver solid amalgam electrodes [J]. Electroanalysis, 2002, 14(15-16): 1138-1142.
    [23] FISCHER J, VANOURKOVA L, DANHEL A, VYSKOCIL V, CIZEK K, BAREK J, PECKOVA K, YOSYPCHUK B, NAVRATIL T. Voltammetric determination of nitrophenols at a silver solid amalgam electrode [J]. International Journal Electrochemcal Science, 2007, 2(3): 226-234.
    [24] BAS B. Refreshable mercury film silver based electrode for determination of chromium(VI) using catalytic adsorptive stripping voltammetry [J]. Analytica Chimica Acta, 2006, 570(2): 195-201.
    [25] BAS B, KOWALSKI Z. Preparation of silver surface for mercury film electrode of prolonged analytical application [J]. Electroanalysis 2002, 14(15-16): 1067-1071.
    [26] KAPTURSKI P, BOBROWSKI A. Silver amalgam film electrode of prolonged application in stripping chronopotentiometry [J]. Electroanalysis, 2007, 19(18): 1863-1868.
    [27] TERCIER ML, BUFFLE J, GRAZOITTIN F. A novel voltammetric in-situ profiling system for continuous real-time monitoring of trace elements in natural waters [J]. Electroanalysis 1998, 10(6): 355-363.
    [28] BELMONT-HEHERT C, TERCIER ML, BUFFLE J,et al. Gel-Integrated microelectrode arrays for direct voltammetric measurements of heavy metals in natural waters and other complex media [J]. Analytical chemistry, 1998, 70(14): 2949-2956.
    [29] KELLER O C, BUFFLE J. Voltammetric and reference microelectrodes with integrated microchannels for flow through microvoltammetry. 1. the microcell [J]. Analytical chemistry, 2000, 72(5): 936-942.
    [30] MURIMBOH J, LAM M T, HASSAN N M, CHAKRABARTI C L. A study of Nafion-coated and uncoated thin mercury film-rotating disk electrodes for cadmium and lead speciation in model solutions of fulvic acid [J]. Analytica Chimica Acta, 2000, 423(1): 115-126.
    [31] YEAGER H L, STECK A. Ion-exchange selectivity and metal ion separations with a perfluorinated cation-exchange polymer [J]. Analytical chemistry, 1979, 51(7): 862-865.
    [32] HURST MP, BRULAND KW. The use of nafion-coated thin mercury film electrodes for the determination of the dissolved copper speciation in estuarine water [J]. Analytica Chimica Acta, 2005, 546(1): 68-78.
    [33] WANG T, HU J S, YANG W, ZHANG H M. Electrodeposition of monodispersed metal nanoparticles in a nafion film: Towards highly active nanocatalysts [J]. Electrochemistry Communications, 2008, 10(5): 814-817.
    [1] LIN W, LONG L, YUAN L, CAO Z, FENG J. A novel ratiometric fluorescent Fe~(3+) sensor based on a phenanthroimidazole chromophore [J]. Analytica Chimica Acta, 2009, 634(2): 262-266.
    [2] Touati D. Iron and oxidative stress in bacteria [J]. Archives of Biochemistry and Biophysics, 2000, 373(1): 1-6
    [3] Wang S, Gwon S, Kim S. A highly selective and sensitive colorimetric chemosensor for Fe2+ based on fluoran dye [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010, 76(3-4): 293-296.
    [4] Wood M J, Skoien R, Powell L W. The global burden of iron overload [J]. Hepatology International, 2009, 3(3): 434-444.
    [5] Roy C N, Andrews N C. Recent advances in disorders of iron metabolism: mutations, mechanisms and modifiers [J]. Human Molecular Genetics, 2001, 10(20): 2181-2186.
    [6] Tamarit J, Irazusta V, Moreno-Cermeno A, Ros J. Colorimetric assay for the quantitation of iron in yeast [J]. Analytical Biochemistry, 2006, 351(1): 149-151
    [7] Bersier P M, Howell J, Bruntlet C. Tutorial review. Advanced electroanalytical techniques versus atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry in environmental analysis [J]. Analyst, 1994, 119(2): 219-232.
    [8] Naqvi I I, Saeed Q, Farrukh M A. Determination of trace metal (Co, Cu, Cd, Pb, Fe, Ni and Mn) in selected sweets of different shops of Karechi City by atomic absorption spectroscopy [J]. Pakistan Journal of biological Sciences, 2004, 7(8): 1355-1359.
    [9] Duan X C, McLaughlin R L, Brindle I D, Conn A. Investigations into the generation of Ag, Au, Cd, Co, Cu, Ni, Sn and Zn by vapour generation and their determination by inductively coupled plasma atomic emission spectrometry, together with a mass spectrometric study of volatile species. Determination of Ag, Au, Co, Cu, Ni and Zn in iron [J].Journal of Analytical Atomic Spectrometry, 2002, 17(3): 227-231
    [10] Lannuzel D, Jong J d, Schoemann V. Development of a sampling and flow injection analysis technique for iron determination in the sea ice environment [J]. Analytica Chemica Acta, 2006, 556(2): 476-483.
    [11] Lohani C R, Kim J, Lee K. Facile synthesis of anthracene-appended amino acids as highly selective and sensitive fluorescent Fe~(3+) ion sensors [J]. Bioorganic & Medicinal Chemistry Letters, 2009, 19(21): 6069-6073.
    [12] Feng L, Chen Z, Wang D. Selective sensing of Fe~(3+) based on fluorescence quenching by 2,6-bis(benzoxazolyl)pyridine with beta.-cyclodextrin in neutral aqueous solution [J]. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 2007, 66A(3): 599-603
    [13] Ugo P, Moretto L M, Rudello D, Birriel E. J. Chevalet, Trace iron determination by cyclic and multiple square wave voltammetry at Nafion coated electrodes. Application to pore-water analysis [J]. Electroanalysis, 2001,13(8-9): 661-668
    [14] Kruanetr S, Liawruangrath S, Youngvises N. Talanta, 2007, 3(7): 46-53.
    [15] Pullin M J, Cabaniss S E. Colorimetric flow-injection analysis of dissolved iron in high DOC waters [J]. Water Research, 2001, 35(2): 363-372.
    [16] Apilux A, Dungchai W, Siangproh W, Praphairaksit N. Lab-on-Paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and irone [J]. Analytical Chemistry, 2010, 82(5): 1727-1732
    [17] KOMPANY-ZAREH M, MANSOURIAN M, RAVAEE F. Simple method for colorimetric spot-test quantitative analysis of Fe(III) using a computer controlled hand-scanner [J]. Analytica Chimica Acta, 2002, 471(1): 97-104.
    [18] WU F Y, TAN X F, WU Y M, ZHAO Y Q. A novel colorimetric sensor of dihydrogen-phosphate based on metal complex between 8-hydroxy quinoline-5-azo-4′-nitrobenzene and cobalt [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2006, 65(3-4): 925-929.
    [19] GUIRGIS F K, HABIB Y A. A simple colorimetric method for the determination of iron in serum [J]. Analyst, 1970, 95: 614-618.
    [20] CHAI F, WANG C, Wang T, Ma Z, Su Z. L-cysteine functionalized gold nanoparticles for the colorimetric detection of Hg~(2+) induced by ultraviolet light [J]. Nanotechnology, 2010, 21(2): 025501 (6pp)
    [21] XUE X, WANG F, LIU X. J. One-Step, Room Temperature, Colorimetric Detection of Mercury (Hg~(2+)) Using DNA/Nanoparticle Conjugates [J]. Journal of the American Chemical Society [J]. 2008, 130(11): 3244-3245.
    [22] LI T, LI B, WANG E, DONG S. G-quadruplex-based DNAzyme for sensitive mercury detection with the naked eye [J]. Chemical Communications, 2009, 24: 3551-3553
    [23] HE S, LI D, ZHU C, SONG S, et al. Design of a gold nanoprobe for rapid and portable mercury detection with the naked eye [J]. Chemical Communications, 2008, 40: 4885-4887
    [24] SHUNMUGAM R, GABRIEL G J, SMITH C E, AAMER K A. A highly selective colorimetric aqueous sensor for mercury [J]. Chemistry-A European Journal, 2008, 14(13): 3904-3907.
    [25] BALAJI T, SASIDHARAN M, MATSUNAGA H. Optical sensor for the visual detection of mercury using mesoporous silica anchoring porphyrin moiety [J]. Analyst, 2005, 130(8): 1162-1167.
    [26] LIU CW, HSIEH Y T, HUANG C C, et al. Detection of mercury(II) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles [J]. Chemical Communications, 2008, 19: 2242-2244.
    [27] CAMPO O D, CARBAYO A, CUEVAS J V, MUNOZ A. An organopalladium chromogenic chemodosimeter for the selective naked-eye detection of Hg2+ and MeHg+ in water–ethanol 1:1 mixture [J]. Chemical Communications, 2008, 38: 4576-4578.
    [28] WANG H, WANG Y X, JIN J Y, et al. Gold nanoparticle-based colorimetric and "turn-on" fluorescent probe for mercury(II) ions in aqueous solution [J]. Analytical Chemistry, 2008, 80(23): 9021-9028.
    [29] YANG X, LI T, LI B, WANG E. Potassium-sensitive G-quadruplex DNA for sensitive visible potassium detection [J]. Analyst, 2010, 135: 71-75.
    [30] LIANG Z, WANG C, YANG J, GAO H. A highly selective colorimetric chemosensor for detecting the respective amounts of iron(II) and iron(III) ions in water [J]. New Journal of Chemistry, 2007, 31(6): 906-910.
    [31] BASU C, CHOUDHURY S, STOECKLI-EVANS H, MUKHERJEE S. A new chromogenic agent for iron (III): Synthesis, structure and spectroscopic studies [J]. Journal of Chemical Sciences, 2010, 122(2): 217-223.
    [32] SHERVEDANI R K, ABDOLHAMID H, ASGHAR A. Sensitive determination of iron (III) by gold electrode modified with 2-mercaptosuccinic acid self-assembled monolayer [J]. Analytica Chemica Acta, 2007, 601(2): 164-171.
    [33]刘颖,曲筱梅,郭博书,等.树脂相分光光度法测定水中微量铁[J].分析测试学报, 1997, 16(5): 35-37.
    [34]李继慧,冯春峰. 1094例孕妇全血微量元素缺乏的调查[J].检验医学与临床, 2009, 6(23): 2506.
    [35]尹宝萍,冯琳琳,王欣,李波.长春市某医院儿童全血6种矿物质含量的分析[J].中国实验诊断学, 2010, 14(6):935-937.
    [36]陈敏,黄勤烽.多通道火焰原子吸收光谱法测定全血与血浆中5种元素含量的相关性分析[J].分析仪器,2010,1:80-83
    [37]王铭初.孕妇全血钙镁铜铁锌元素测定结果临床分析[J].实用医技杂志, 2009, 16:54-55.
    [1] CRINI G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment [J]. Progress in Polymer Science, 2005, 30(1) : 38-70.
    [2] COEN N. Mothersill C, Kadhim M, Wright E G, Heavy metals of relevance to human health induce genomic instability [J]. Journal of Pathology, 2001, 195(3): 293-299.
    [3] ANTHEMIDIS A N. Automatic sequential injection liquid– liquid micro-extraction system for on-line flame atomic absorption spectrometric determination of trace metal in water samples [J]. Talanta, 2008, 77(2): 541-545.
    [4] MAZHAR S S, WANG H N, SU X G. Determination of trace amounts of nickel(II) by graphite furnace atomic absorption spectrometry coupled with cloud point extraction [J]. Chemical Research in Chinese Universities, 2011, 27(3): 366-370.
    [5] SOYLAK M, ERDOGAN N D. Copper(II)-rubeanic acid coprecipitation system for separation-preconcentration of trace metal ions in environmental samples for their flame atomic absorption spectrometric determinations [J]. Journal of Hazard Materials B, 2006, 137(2): 1035-1041.
    [6] PEHLIVAN E, ALTUN T. Ion-exchange of Pb~(2+), Cu~(2+), Zn~(2+), Cd~(2+), and Ni~(2+) ions from aqueous solution by Lewatit CNP 80 [J]. Journal of Hazard. Materials, 2007, 140(1-2): 299-307.
    [7] NGEONTAE W, Aeungmaitrepirom W., Tuntulani T. Chemically modified silica gel with aminothioamidoanthraquinone for solid phase extraction and preconcentration of Pb(II), Cu(II), Ni(II), Co(II) and Cd(II) [J]. Talanta, 2007, 71(3): 1075-1082.
    [8] ZHAO X W, SONG N Z, JIA Q, ZHOU W H. Determination of Cu, Zn, Mn, and Pb by microcolumn packed with multiwalled carbon nanotubes on-line coupled with flame atomic absorption spectrometry [J]. Microchim. Acta, 2009, 166(3-4):329-335.
    [9] HUANG J M, JIN X R. Adsorption property of natural polymer chitosan as adsorbent [J]. Chemical Journal of Chinese Universities, 1992, 13(4): 535-536.
    [10] WANG Z H, ZHANG Z P, WANG Z P, LIU L W, YAN X P. Acrylic acid grafted polytetrafluoroethylene fiber as new packing for flow injection on-linemicrocolumn preconcentration coupled with flame atomic absorption spectrometry for determination of lead and cadmium in environmental and biological samples [J]. Analytica Chimica Acta, 2004, 514(2-1): 151-157
    [11] GAMA E M, LIMA A S, LEMOS V A. Preconcentration system for cadmium and lead determination in environmental samples using polyurethane foam/Me‐BTANC [J]. Journal of Hazard Materials B, 2006, 136(3): 757-762.
    [12] OHTO K, FUJIMOTO Y, INOUE K. Stepwise extraction of two lead ions with a single molecule of calyx[4]arene tetracarboxylic acid [J]. Analytica Chimica Acta, 1999, 387(1): 61-69.
    [13] OHTO K, INOUE S, EGUCHI N, SHINOHARA T, INOUE K. Adsorption behavior of lead ion on calix[4]arene tetracarboxylic acid impregnated resin [J]. Separation Science and Technology, 2002, 37(8): 1943-1958.
    [14] JAIN V K, PANDYA R A, PILLAI S G, AGRAWAL Y K, SHRIVASTAV P S. Application of a chelate forming calix [4] arene-o-vanillinthiosemicarbazone resin to the separation, preconcentration and trace determination of Cu(II), Cd(II) and Pb(II) in natural water samples [J]. Microchimica Acta, 2004, 147(4): 253-264.
    [15] DURAN A, TUZEN M, SOYLAK M. Preconcentration of some trace elements via using multiwalled carbon nanotubes as solid phase extraction adsorbent [J]. Analytica Chimica Acta, 2009, 169(1-3): 466-471.
    [16] NARIN I, SURME Y, BERCIN E, SOYLAK M. SP70-α-benzoin oxime chelating resin for preconcentration-separation of Pb(II), Cd(II), Co(II) and Cr(III) in environmental samples [J]. Journal of Hazard Materials, 2007, 145(1-2): 113-119.
    [17] VENKATESH G, JAIN A K, SINGH A K. 2,3-Dihydroxypyridine loaded Amberlite XAD-2 (AXAD-2-DHP): preparation, sorption-desorption equilibria with metal ions, and applications in quantitative metal ion enrichment from water, milk and vitamin samples [J]. Microchimica Acta, 2005, 149(3-4): 213-221.
    [18] TOBIASZ A, WALAS S, TRZEWIK B, et al. Cu(II)-imprinted styrene-divinylbenzene beads as a new sorbent for flow injection-flame atomic absorption determination of copper [J]. Microchemical Journal, 2009, 93(1): 87-92.
    [19] ZHANG N, SULEIMAN J S, HE M, HU B. Chromium(III)-imprinted silica gel for speciation analysis of chromium in environmental water samples with ICP-MS detection [J] Talanta, 2008, 75(2): 536-543.
    [20] KAKOI T, TOH T, KUBOTA F, et al. Liquid-liquid extraction of metal ions with a cyclic ligand calixarene carboxyl derivative [J]. Analytical Sciences, 1998, 14(3): 501-506.
    [21] CUI Y M, CHANG X J., ZHU X B, et al. Chemically modified silica gel with p-dimethylaminobenzaldehyde for selective solid-phase extraction and preconcentration of Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) by ICP-OES [J]. Microchemical Journal, 2007, 87(1): 20-26.
    [22] YORDANOV A T, ROUNDHILL D M. Electronic absorption spectroscopy for the investigation of the solution binding of gold, palladium, mercury and silver salts to the lower rim substituted calix[4]arenes 25,26,27,28-(2-N,N-dimethyldithiocarbamoylethoxy)calyx [4]arene and 25,26,27,28-(2-methylthioethoxy)calix[4]arene [J]. Inorganica Chimica Acta, 1998, 270(1-2): 216-220.
    [23] NIE R, CHANG X J, HE Q, et al. Preparation of p-tert[(dimethylamino)methyl]-calix[4]arene functionalized aminopropyl- polysiloxane resin for selective solid-Phase extraction and preconcentration of metal ions [J]. Journal of Hazard Materials, 2009, 169(1-3): 203-209.
    [24] Pacheco P H, Olsina R, Polla G, et al. Adsorption behaviour of cadmium on L-methionine immobilized on controlled pore glass [J]. Microchemical Journal, 2009, 91(2): 159-164.
    [25] Ohto K, Higuchi H, Inoue K. solvent extraction of silver ion with pyridino calix[4] arenes [J]. Solvent Extraction Research and Development-japan, 2001, 8: 37-46.
    [26] He W W, Liao W P, Wang W W, et al. Mass transfer kinetics of neodymium(III) extraction by calix[4]arene carboxylic acid using a constant interfacial area cell with laminar flow [J]. Journal of Chemical Technology and Biotechnology, 2008, 83(9): 1314-1320.
    [27] Chen D H, Hu B, He M, Huang C Z. Microchemical Journal, doi:10.1016/j.microc. 2009. 10. 13
    [28] Jia Q, Kong X F, Zhou W H, Bi L H. Flow injection on-line preconcentration with an ion-exchange resin coupled with microwave plasma torch-atomic emission spectrometry for the determination of trace rare earth elements [J]. Microchemical Journal, 2008, 89(1): 82-87.
    [1] W ILHELM S W, JEFFREY W H, SUTTLE C A, et al. Estimation of biologically damaging UV levels in marine surface waters with DNA and viral dosimeters [J]. Photochemistry and Photobiology, 2002, 76(3): 268-273.
    [2] L IU Q, CALLAGHAN TV, ZUO Y. Effects of elevated solarUV - B radiation from ozone dep letion on terrestrial ecosystems [ J ]. Journal of Mountain Science, 2004, 1 (3): 276–288.
    [3] BRANDLE J R, CAMPBELL W F, SISSON W B, et al. Net Photosynthesis,electron-transport capacity, and ultrastructure of pisum sativuml exposed to ultraviolet-B radiation.[J] Plant Physiology, 1977, 60(1): 165–168.
    [4] ZHAO D, REDDY K R, KAKAN IV G, et al. Leaf and canopy photosynthetic characteristics of cotton (Gossypium hirsutum ) under elevated CO2 concentration and UV-B radiation [J]. Journal of Plant Physiology, 2004, 161(5): 581–590.
    [5] TURCS NYI E, VASS I. Inhibition of photosynthetic electron transport by UV-A radiation targets the PSⅡcomplex [J]. Photochemistry and Photobiology, 2000, 72(4): 513– 520.
    [6]薛虎平.光合作用的科学前沿[J].生命世界, 2008, 4: 56-59.
    [7] NABIEV I, RAKOVICH A, SUKHANOVA A, et al. Fluorescent quantum dots as artificial antennas for enhanced light harvesting and energy transfer to photosynthetic reaction centers [J]. Journal of Angewandte Chemie International Edition, 2010, 49: 7217–7221.
    [8] BLANKENSHIP R E, Molecular mechanisms of photosynthesis[M]. Blackwell Science, Oxford, 2002.
    [9] GUST D A. MOORE T L, MOORE A. Mimicking photosynthetic solar energy transduction [J]. Accounts of Chemical Research, 2001, 34(1), 40–48.
    [10] BALZANI V, CREDI A, VENTURI M, Photochemical conversion of solar energy [J]. ChemSusChem, 2008, 1(1–2): 26–58.
    [11] GOVOROV A O. Enhanced optical properties of a photosynthetic system conjugated with semiconductor nanoparticles: the role of forster transfer [J]. Advanced Materials, 2008, 20(22): 4330–4335.
    [12] FRANZL T, SHAVEL A, ROGACH A L, et al. High-rate unidirectional energy transfer in directly assembled cdte nanocrystal bilayers [J]. Small, 2005, 1(4): 392–395.
    [13] GOVOROV A O, CARME I. Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect [J]. Nano Letters, 2007, 7(3): 620–625.
    [14] WARGNIER R, BARANOV A V, MASLOV V G, et al. Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nano gold assemblies [J]. Nano Letters, 2004, 4 (3): 451–457.
    [15] Lin S, Bhattacharya P, Rajapakse N C, et al. Effects of quantum dots adsorption on Algal photosynthesis [J]. The Journal of Physical Chemistry, 2009, 113(25): 10962–10966.
    [16] LU C M, Zhang C Y, Wen J Q et al. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism [J]. Soybean Science, 2002, 21(3), 168-171.
    [17] ZHENG L, HONG F, LU S, LIU C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach [J]. Biological Trace Element Research, 2005 104(1): 83–91.
    [18] YANG L, WATTS D. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles [J]. Toxicology Letters, 2005, 158(2): 122–132.
    [19] REMEDIOS C G D, MOENS P D J. Fluorescence resonance energy transfer spectroscopy is a reliable“ruler”for measuring structural changes in proteins [J]. Journal of Structural Biology, 1995, 115(2): 175–185.
    [20] CHAPPELLE E W, et al. Laser-Induced Fluorescence of green plants: a technique for the remote detection of plant stress and species differentiation [J]. Applied Optics, 1984, 23(1): 134–138
    [21] LEE J, GOVOROV A O, KOTOV N A. Bioconjugated superstructures of CdTe nanowires and nanoparticles multistep cascade forster resonance energy transfer and energy channeling [J]. Nano Letters, 2005, 5(10): 2063–2069.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700