碳纳米管修饰电极在典型偶氮化合物测定及反应机理研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了典型偶氮化合物——苏丹红I号在碳纳米管膜修饰电极上的电化学行为,建立了一种高灵敏度的测定苏丹红I号的方法,并且对苏丹红I号在碳纳米管膜修饰电极上的电化学反应机理进行了详细的研究。本文的具体研究分为以下两个部分:
     (1)对比玻碳电极研究了苏丹红I号在碳纳米管膜修饰电极表面的氧化行为,证明碳纳米管对苏丹红I号在电极上的氧化具有极高的催化能力。详细考查了包括溶液pH值、极化电位等影响催化氧化响应的因素,得到了该修饰电极催化氧化苏丹红I号的最佳实验条件,并以此为基础建立了一种灵敏度(21.56μA mM-1)高,选择性好,线性范围(1.01×10-6—1.22×10-4 M)宽,检出限(12.7μM)低的测定苏丹红I号的方法。而且,该修饰电极对于苏丹红I号的测定具有很好的稳定性,能够显著降低电极的钝化程度。
     (2)通过循环伏安法、恒电位电解等电化学手段,并辅以紫外-可见光谱法等光学手段详细的研究了苏丹红I号偶氮(─N=N─)基团在碳纳米管膜修饰电极上的电化学反应过程。计算出了参加反应的电子数及质子数,以及溶液中发生的均相化学反应的动力学常数。通过实验现象的总结和数据的处理得到了苏丹红I号在碳纳米管膜修饰电极上的电化学反应机理:根据溶液pH值的不同苏丹红I号的反应经历两个不同的过程,它们在电极反应步骤、参与反应的电子和质子数及反应产物方面都有明显的区别。此前,从未有关于苏丹红I号的电化学反应机理研究的报道。
In this dissertation, a multiwall carbon nanotubes (MWCNT) modified glassy carbon electrode (GCE) was prepared by casting MWCNT suspension on the surface of the GCE. Evaporation of solvent from such a solution yielded robust surface film contained MWCNT. The MWCNT/GCE can greatly catalyze the oxidation of–OH in Sudan I. Consequently, an amperometric sensor for Sudan I was proposed. The amperometric sensor has excellent performance associated with high sensitivity (21.56μA mM-1), low detection limit (3.46×10-8 M) and wide linear range (1.01×10-6~1.22×10-4 M). The MWCNT/GCE can also minimize the fouling effect of the electrode surface and showed very good short-time stability
     Additionally, the electrochemical reaction mechanism of Sudan I has been investigated at the MWCNT modified GCE (MWCNT/GCE) in phosphate buffer solution (PBS) with various pH values. Cyclic voltammetry, controlled-potential electrolysis and UV-vis spectrophotometry studies showed that the reduction of–N=N– group in Sudan I yields aniline andα-amino naphthol through the intermediate product hydrazo. The whole reaction processes were proved to be the ECE mechanism. When the pH was above 5, another process took place and the ultimate products were same as in acidic solution.
引文
[1] Zoran Mandi′c, Biljana Nigovi′c, Branimir ?imuni′c, The mechanism and kinetics of the electrochemical cleavage of azo bond of 2-hydroxy-5-sulfophenyl-azo-benzoic acids[J]. Electrochimica Acta, 2004, 49: 607–615.
    [2] J.H. Baxter, Differences in serum albumins reflected in absorption spectra of a bound dye[J]. Arch. Biochem. Biophys., 1964, 108: 375-383.
    [3] R.N. Goyal, V. Bansal, Electrochemical behaviour of 2-(4'-hydroxybenzeneazo)benzoic-acid at pyrolytic graphite electrodes[J]. Journal of Electroanalytical Chemistry, 1995, 385: 25-32
    [4] Hamada E, Fujii T, Tomizawa Y, Iimura S., High density optical recording on dye material disc: An approach for achieving 4.7 GB density[J], Jpn J Appl Phys 1997, 36: 593-594.
    [5] Suzuki Y, Okamoto Y, Kurose Y, Maeda S., Current Developments in Optical Data Storage with Organic Dyes[J]. Jpn J Appl Phys, 1999, 38:1669-1674.
    [6] Nakazumi H, Hamada E, Ishiguro T, Shiozaki H, Kitao T., The influence of dithiolato nickel complexes on the light fastness of a thin layer of a near-infra-red absorbing cyanine dye[J]. J. Soc. Dyers Colour, 1989, 105: 26-29.
    [7] Nejati K, Rezvani Z, Massoumi B., Syntheses and investigation of thermal properties of copper complexes with azo-containing Schiff-base dyes[J]. Dyes and Pigments, 2007, 75: 653-657.
    [8] Esin Ispir, The synthesis, characterization, electrochemical character, catalytic and antimicrobial activity of novel, azo-containing Schiff bases and their metal complexes[J]. Dyes and Pigments, 2009, 82: 13–19.
    [9] Biswas N, Umapathy S. Structures, vibrational frequencies, and normal modes of substituted azo dyes: infrared, Raman, and density functional calculations[J]. Journal of Physical Chemistry A, 2000, 104: 2734-2745.
    [10] Willner I, Rubin S., Control of the structure and functions of biomaterials by light[J]. Angewandte Chemie International Edition England, 1996, 35(4): 367-385.
    [11] S.A. Parsons, B. Jeffersons, Introduction to Potable Water Treatment Process, Blackwell Publishing, 2006, p. 145.
    [12] D. Brown, B. Hamburger, The degradation of dyestuffs: Part III—Investigations of their ultimate degradability[J]. Chemosphere 1987, 16 (7): 1539–1553.
    [13] H.-Y. Shu, C.-R. Huang, M.-C. Chang, Decolorization of mono-azo dyes in wastewater by advanced oxidation process: a case study of Acid Red 1 and Acid Yellow 23[J]. Chemosphere 1994, 29 (12): 2597–2607.
    [14] H.-Y. Shu, C.-R. Huang, Degradation of commercial azo dyes in water using ozonation and UV enhanced ozonation process[J]. Chemosphere 1995, 31 (8): 3813-3825.
    [15] A. Gürses, Do?gar, M. Yalc, M. Ac ?ky?ld?z, R. Bayrak, S. Karaca, The adsorption kinetics of the cationic dye, methylene blue, onto clay[J]. J. Hazard. Mater. 2006, 131: 217–228.
    [16] C. Allègre, P. Moulin, M. Maisseu, F. Charbit, Treatment and reuse of reactive dyeing effluents[J]. J. Membr. Sci. 2006, 269: 15–34.
    [17] U. Pagga, K. Taeger, Development of a method for adsorption of dyestuffs on activated sludge[J]. Water Res. 1994, 28 (5): 1051–1057.
    [18] K. Santhy, P. Selvapathy, Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon[J]. Bioresour. Technol., 2006, 97: 1329–1336.
    [19] T. Robinson, B. Chandran, P. Nigam, Studies on desorption of individual textile dyes and a synthetic dye effluent fromdye-adsorbed agricultural residues using solvents[J]. Bioresour. Technol., 2002, 84: 299–301.
    [20] V.K. Gupta, I. Ali, Removal of DDD and DDDE from waste water using bagasse fly-ash–sugar industry waste[J]. Water Res., 2001, 35 (1): 33–40.
    [21] F. Perineu, J. Molinier, A. Gaset, Adsorption of ionic dyes on wool carbonizing waste[J], Water Res., 1983, 17 (5): 559–567.
    [22] S.K. Shrivastava, R. Tyagi, Competitive adsorption of substituted phenols by activatedcarbon developedfromfertilizerwaste slurry[J]. Water Res., 1995, 29 (2): 483–488.
    [23] Z. Al-Qodah, Adsorption of dyes using shale oil ash[J]. Water Res., 2000, 34 (17): 4295–4303.
    [24] K. Srinivasan, N. Balasubramanian, T.V. Ramakrishna, Studies of chromium removal by rice husk carbon[J]. Indian J. Environ. Health, 1988, 30: 376–387.
    [25] S.H. Gharaibeh, W.Y. Abu-el-Shar, M.M. Al-Kofahi, Removal of selected heavy metals from aqueous solutions using processed solid residue of olive mill products[J]. Water Res. 1998, 32 (2): 498–502.
    [26] V.K. Gupta, M. Gupta, S. Sharma, Process development for the removal of lead and chromium from aqueous solutions using redmud—an aluminium industry waste[J]. Water Res. 2001, 35 (5): 1125–1134.
    [27] A. Bhatnagar, Removal of bromophenols from water using industrial wastes as low cost adsorbents[J]. J. Hazard. Mater. 2007, 139 (1): 93–102.
    [28] V.K. Gupta, I. Ali, V.K. Saini, T.V. Gerven, B.V. Bruggen, C. Vandecasteele, Removal of dyes from wastewater using bottom ash[J]. Ind. Eng. Chem. Res., 2005, 44: 3655–3664.
    [29] V.K. Gupta, A. Mittal, R. Jain, M. Mathur, S. Sikarwar, Adsorption of Safranin-T from wastewater using waste materials—activated carbon and activated rice husk[J]. J. Colloid Interface Sci., 2006, 303: 80–86.
    [30] V.K. Gupta, Suhas, I. Ali, V.K. Saini, Removal of rhodamine B, fast green and methylene blue fromwastewater using redmud—an aluminum industrywaste[J]. Ind. Eng. Chem. Res., 2004, 43: 1740–1747.
    [31] V.K.Gupta, D.Mohan, S. Sharma, M. Sharma, Removal of basic dyes (rhodamine-B and methylene blue) from aqueous solutions using bagasse fly ash[J], Sep. Sci. Technol. 2000, 35: 2097–2113.
    [32] V.K. Gupta, R. Jain, S. Varshney, Removal of Reactofix golden yellow 3 Rfn from aqueous solution using wheat husk—an agricultural waste[J]. J. Hazard. Mater., 2007, 142: 443–448.
    [33] V.K. Gupta, R. Jain, S. Varshney, V.K. Saini, Removal of Reactofix Navy Blue 2Gfn from aqueous solutions using adsorption techniques[J]. J. Colloid Interface Sci. 2007, 307: 326–332.
    [34] V.K. Gupta, I. Ali, Removal of endosulfan and methoxychlor from water on carbon slurry[J]. Environ. Sci. Technol., 2008, 42: 766–770.
    [35] V.K. Gupta, A.Mittal, V. Gajbe, J. Mittal, Adsorption of basic fuchsin usingwaste materials—bottom ash and de-oiled soya as adsorbents[J]. J. Colloid Interface Sci. 2008, 319: 30–39.
    [36] V.K. Gupta, I. Ali, V.K. Saini, Adsorption studies on the removal of vertigo blue49 and orange DNA13 from aqueous solutions using carbon slurry developed from a waste material[J]. J. Colloid Interface Sci., 2007, 315: 87–93.
    [37] V.K. Gupta, R. Jain, S. Varshney, Electrochemical removal of hazardous dye Reactofix Red 3 Bfn from industrial effluents[J]. J. Colloid Interface Sci., 2007, 31: 2292–2296.
    [38] Uygur A., An overview of oxidative and photooxidative decolorization treatments of textile waste waters[J]. Journal of the Society of Dyers and Colourists, 1997, 113:211-217.
    [39] Aplin R, Waite TD. Comparison of three advanced oxidation processes for degradation of textile dyes[J]. Water Science and Technology, 2000, 42(5):345-354.
    [40] Moraes SG, Freire RS, Duran N. Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes[J]. Chemosphere 2000, 40(4):369-373.
    [41] Masten SJ, Davies SHR. The use of ozonation to degrade organic contaminants in wastewaters[J]. Water Science and Technology, 1994, 28(4):180-185.
    [42] Du M., Han X., Zhou Z., Wu S., Determination of Sudan I in hot chili powder by using an activated glassy carbon electrode[J]. Food Chemistry, 2007, 105: 883-888.
    [43] Lin H., Li G., Wu K., Electrochemical determination of Sudan I using montmorillonite calcium modified carbon paste electrode[J]. Food Chemistry, 2008, 107: 531-536.
    [44] E. Ertas, H. Ozer, C. Alasalvar, A rapid HPLC method for determination of Sudan dyes and Para Red in red chilli pepper[J]. Food Chemistry, 2007, 105: 756-760.
    [45] Gan T., Li K., Wu K., Multi-wall carbon nanotube-based electrochemical sensor for sensitive determination of Sudan I[J] Sensors & Actuators B: Chem., 2008, 132: 134-139.
    [46] Zhang J., Tse Y., Pietro W. J., Lever A.B.P., Electrocatalytic activity of N, N', N", N"-tetramethyl-tetra-3,4-pyridoporphyrazinocobalt(II) adsorbed on a graphite electrode towards the oxidation of hydrazine and hydroxylamine[J]. Journal of Electroanalytical Chemistry, 1996, 406: 203-211
    [47] R. Ryoo, S. H. Joo, Nanostructured carbon materials synthesized from mesoporous silica crystals by replication[J]. Stud. Surf. Sci. Catal., 2004, 148: 241-260.
    [48] Rao C.N.R, Satishkumar B.C, Govindaraj A, Nath M. Nanotubes[J]. Chemphyschem, 2001, 2: 78-105.
    [49] Sun Y.P., Fu K.F, Lin Y. Huang W.J. Functionalized Carbon Nanotubes: Properties and Applications[J]. Acc. Chem. Res, 2002, 35: 1096-1104.
    [50] Rodriguez N M,M.S, Kim.Baker R T K. Carbon nanofibers: a unique catalyst support medium[J]. J Phys Chem, 1994, 98: 13108-13111.
    [51]朱宏伟,慈立志,梁吉, et al.浮游催化法半连续制取碳纳米管的研究[J].新型碳材料, 2000, 15: 48-51.
    [52] Cheng H,Li F,Su G, et al. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons[J]. Appl Phys Chem., 1994, 72: 3282-3284.
    [53] Li Y L, Liang Y,Xiao K s, et al. Low-cost high-yield synthesis of nanosize powders of Si-based nitrides and carbides by CO2 laser induced gas phase reactions[J]. Mater Lett, 1995, 22: 87-92.
    [54] Hsu W K,Terrones M,Hare J P, et al, Electrolytic formation of carbon nanostructures[J]. Chem Phys, 1996, 262: 161-166.
    [55] Li Y L,.Yu Y D.Liang Y J, A novel method for synthesis of carbon nanotubes:Low temperature solid pyrolysis[J]. J Mater Res, 1997, 12: 1678-1680.
    [56] Huang J Y, Yasuda H.Mori H. Highly curved carbon nanostructures produced by ball-milling[J]. Chem Phys Lett, 1999, 303: 130-130.
    [57] Wal R L V, Ticich T M, Curtis V E. Diffusion flame synthesis of single-walled carbon nanotubes[J]. Chem Phys Lett, 2000, 323: 217-223.
    [58] G.S.Duesberg,Blau W,Byrne H J, et al, Chromatography of carbon nanotubes[J]. Synth Metal, 1999, 103: 2484-2485.
    [59]成会明,纳米碳管制备、结构、物性及应用[M].北京:化学工业出版社, 2002.
    [60] Ajayan P M,WEbbesen T.Ichihashi T, Opening carbon nanotubes with oxygen and implication for filling[J]. Nature, 1993, 362: 522-525.
    [61] Ebbesen T W.M.Ajayan P, Purification of the nanotubes[J]. Nature, 1994, 367: 519.
    [62] Tsang S C,FHarris P.HGreen M L, Thinning and opening of carbon nanotubes by oxidation using carbon dioxide[J]. Nature, 1993, 362: 520-522.
    [63] Chen C,Chen M.Leu F, Purification of multi-walled carbon nanotubes by microwave digestion method[J]. Dia Rela Mater, 2004, 13: 1182-1186.
    [64]王世敏,许祖勋.傅晶,纳米材料的制备技术[J].北京:化学工业出版社, 2002.
    [65] Raymundo-pinero E, Cacciaguerra t.Simon P, A single step process for t he simultaneous purification and opening of multiwalled carbon nanotubes[J]. Chem Phys Lett, 2005, 412: 184-189.
    [66] Huang W,Wang Y.Luo G, 99. 9 % purity multi2 walled carbon nanotubes by vacuum high-temperature annealing[J]. Carbon, 2003, 41: 2585-2590.
    [67] Yu M F, Kowalewski T.S.Ruoff R, Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force[J]. Phys Rev Lett, 2000, 85: 1456-1459.
    [68] Martel R, Shea H R.Ph.Avouris, Ring formation in single-wall carbon nanotubes[J]. J Phys Chem B, 1999, 103: 7551-7556.
    [69] Vasilescu A,Noguer T,Andreescu S, et al, Strategies for developing NADH detectors based on Meldola Blue and screen-printed electrodes: a comparative study[J]. Talanta, 2003, 59: 751-765.
    [70] Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature, 1997, 381:678-680.
    [71] Yakason B I, R E Smalley. Fullerene nanotubes: C1, 000, 000 and beyond[J]. Am Sci, 1997, 85:324-337.
    [72] Wong E W, Sheehan P E.M.Lieber C, Nanobeam Mechanics: Elasticity, Strength and Toughness of Nanorods and Nanotubes[J]. Science, 1997, 277: 1971-1975.
    [73] Britton P J, Santhanam K S V.Ajayan P M. Carbon nanotube electrode for oxidation of dopamine[J]. Bioelectrochem. Bioenerg, 1996, 41: 121-125.
    [74] Davis J, Richard J C,Allen H, et al. Protein electrochemistry at carbon nanotube electrodes[J]. J Electroanal Chem, 1997, 440: 279-282.
    [75] Valentini F, Amine A, Orlanducci S, et al. Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes[J]. Anal Chem, 2003, 75: 5413-5421.
    [76] Rubianes M D, Rivas G A. Carbon nanotubes paste electrode[J]. Electrochem Commun, 2003, 5: 689-694.
    [77] Antiochia R, Lavagnini I, Valentini F, et al. Single-wall carbon nanotube paste electrodes: a comparison with carbon paste, platinum and glassy carbon electrodes via cyclic voltammetric data[J]. Electroanal, 2004, 16: 1451-1458.
    [78] Chicharro M., Bermejo E, Moreno M, et al. Carbon nanotubes paste electrode[J]. Electroanal, 2004, 17: 476-482.
    [79] Lawrence N.S, Deo R.P, Wang J. Detection of homocysteine at carbon nanotube paste electrodes[J]. Talanta, 2004, 63: 443-449.
    [80] Pedano M.L, Rivas G.A. Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes[J]. Electrochem Commun, 2004, 6: 10-16.
    [81] He J, Liu X. Pan J. Multi-wall arbon nanotube paste electrode for adsorptive stripping determination of Quercetin: A comparison with graphite paste electrode via voltammertry and chronopotentiometry[J]. Electroanal, 2005, 17: 1681-1686.
    [82] Ly S Y. Detection of dopamine in the pharmacy with a carbon nanotube paste electrode using voltammetry[J]. Bioelectrochemistry, 2006, 68: 227-231.
    [83] Liu P.J, Hu H. Carbon nanotube powder microelectrodes for nitrite detection[J]. Sens Actuators B, 2002, 84: 194-199.
    [84]王宗花,刘军,颜流水等,羧基化碳纳米管嵌入石墨修饰电极对多巴胺和抗坏血酸的电催化[J].分析化学, 2002, 30: 1053-1057.
    [85] Wu L., Zhang X., Ju H., Detection of NADH and Ethanol Based on Catalytic Activity of Soluble Carbon Nanofiber with Low Overpotential[J]. Anal. Chem. 2007, 79: 453-458.
    [86] Luo H X, Z.J.Shi, Li N Q, et al. Investigation of the electrochemical and electrocatalytic behavior ofsingle-wall carbon nanotube film on a glassy carbon electrode[J]. Anal Chem, 2001, 73: 915-920.
    [87] Wang J, Li M,Shi Z, et al, Investigation of the electrocatalytic behavior of single-wall carbon nanotube films on an Au electrode[J]. Microchem. J, 2002, 73: 325-333.
    [88]罗红霞,施祖进,李南强, et al,羧基化单层碳纳米管修饰电极电化学表征及其电催化作用[J].高等学校化学学报, 2000, 21: 1372-1374.
    [89] Zhu L., Zhai J., Guo Y., Tian C., Yang R. Amperometric Glucose Biosensors Based on Integration of Glucose Oxidase onto Prussian Blue/Carbon Nanotubes Nanocomposite Electrodes[J]. Electroanalysis 2006, 18: 1842– 1846.
    [90] Wu F H, Zhao G C.Wei X W, Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode[J]. Electrochem Commun, 2002, 4: 690-694.
    [91] Wu F H, Zhao G C.Wei X W, Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode[J]. Electrochem Commun, 2002, 4: 690-694.
    [92] Musamech M, Wang J, Merkoci A, et al, Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes[J]. Electrochem Commun, 2002, 4: 743-746.
    [93] Zhu L., Yang R., Zhai J., Tian C., Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode[J]. Biosensors and Bioelectronics 2007, 23: 528–535.
    [94] Islam M F,Rojas E,Bergey D M, et al, High weight fraction surfactant solubilization of single-wall carbon nanotubes in water[J]. Nano Lett., 2003, 3: 269-273.
    [95]蔡称心.陈静.碳纳米管促进氧化还原蛋白质和酶的直接电子转移[J].电化学, 2004, 10: 159-167.
    [96]褚有群,马淳安.朱英红.纳米碳管电极上氧的电催化还原[J].物理化学学报Aca Phys. Chim.Sin, 2004, 20: 331-335.
    [97] Wang J, Musameh M.Lin Y. Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors[J]. J Am Chem Soc, 2003, 125: 2408-2409.
    [98] Tsai Y C,Chen J M, Li S C, et al. Electroanalytical thin film electrodes based on a Nafion -multi-walled carbon nanotube composite[J]. Electrochem Commun, 2004, 6: 917-922.
    [99] Frackowiak E, Khomenko V, Jurewicz K, et al. Supercapacitors based on conducting polymers/nanotubes composites [J]. J Pow Sour, 2006, 153: 413-418.
    [100] Xiao Q. Zhou X. The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor [J]. Electrochimica Acta, 2003, 48: 575-580.
    [101] Wang J, Dai J. Yarlagadda T. Carbon Nanotube-Conducting-Polymer Composite Nanowires[J]. Langmuir, 2005, 21: 9-12.
    [102] Guo M, Chen J, Li J, et al. Fabrication of polyaniline/carbon nanotube composite modified electrode and its electrocatalytic property to the reduction of nitrite[J]. Anal Chim Acta, 2004, 532: 71-77.
    [103] Wang J. Musameh M. Carbon-nanotubes doped polypyrrole glucose biosensor[J]. Anal Chim Acta, 2005, 539: 209-213.
    [104] Hama H T,Choib Y S, Jeongc N, et al. Singlewall carbon nanotubes covered with polypyrrole nanoparticles by the miniemulsion polymerization[J]. Polymer, 2005, 46: 6308-6315.
    [105] Coche-Guerente L, Cosnier S, Labbe P. Sol-Gel Derived Composite Materials for the Construction of Oxidase/Peroxidase Mediatorless Biosensors[J]. Chem Mater, 1997, 9: 1348–1352.
    [106] De Benedetto, G E, Palmisano F,et al. One-step fabrication of a bienzyme glucose sensor based on glucose oxidase and peroxidase immobilized onto a poly(pyrrole) modified glassy carbon electrode[J]. Biosens Bioelectron, 1996, 11: 1001–1008.
    [107] Wang B X, Liu Y Q, Qiu W F, et al. Immobilization of tetra-tert -butylphthalocyanines on carbon nanotubes: a first step towards the development of new nanomaterials[J]. Mater Chem, 2002, 12: 1636-1639.
    [108] Cao L, Chen H Z, Zhou H B, et al. Carbon-Nanotube-Templated Assembly of Rare-Earth Phthalocyanine Nanowires[J]. Adv Mater, 2003, 15: 909-913.
    [109] Gavalas V G, Andrews R, Bhattacharyya D, et al. Carbon Nanotube Sol-Gel Composite Materials[J]. Nano Lett, 2001, 1: 719-721.
    [110] Tan X, Li M, Cai P. An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite film[J]. Anal Biochem, 2005, 337: 111-120.
    [111] Gong K, Zhang M, Yan Y, et al. Sol-Gel-Derived Ceramic-Carbon Nanotube Nanocomposite Electrodes: Tunable Electrode Dimension and Potential Electrochemical Applications[J]. Anal Chem, 2004, 76: 6500-6505.
    [112]田春媛.碳纳米管修饰电极在电化学传感器中的应用研究[D]:[硕士学位论文].长春:东北师范大学化学学院,2008.
    [113] Liu J, Chou A, Rahmat W, et al. Achieving Direct Electrical Connection to Glucose Oxidase Using Aligned Single Walled Carbon Nanotube Arrays[J]. Electroanal, 2005, 17: 38-46.
    [114] Guo M, Chen J, Li J, et al. Carbon anotubes-Based Amperometric Cholesterol BiosensorFabricated Through Layer-by-Layer Technique[J]. Electroanal, 2004, 16: 1992-1998.
    [115] Sotiropoulou S. Chaniotakis N A. Carbon nanotube array-based biosensor [J]. Anal Bioanal Chem, 2003, 375: 103-105.
    [116] Li J, Ng H T, Cassell A, et al. Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection[J]. Nano Lett, 2003, 3: 597-602.
    [117] Kim B, Park H. Sigmund W M. Electrostatic Interactions between Shortened Multiwall Carbon Nanotubes and Polyelectrolytes[J]. Langmuir, 2003, 19: 2525-2527.
    [118] Kim B. Sigmund W M. Self-Alignment of Shortened Multiwall Carbon Nanotubes on Polyelectrolyte Layers[J]. Langmuir, 2003, 19: 4848-4851.
    [119] Meining Z, Yiming Y. Kuanping G. Electrostatic layer-by-layer assembled carbon nanotube multilayer film and its electrocatalytic activity for O2 reduction[J]. Langmuir, 2004, 20: 8781-8785.
    [120] Jianxiu Wang, Meixian Li, Zujin Shi, Nanqiang Li, Zhennan Gu, Direct Electrochemistry of Cytochrome C at a Glassy Carbon Electrode Modified with Single-Wall Carbon Nanotubes[J]. Anal. Chem. 2002, 74: 1993-1997.
    [121] Joseph Wang, Mustafa Musameh, Carbon Nanotube/Teflon Composite Electrochemical Sensors and Biosensors[J]. Anal. Chem. 2003, 75: 2075-2079.
    [122] Hankil Boo, Ran-A Jeong, Sejin Park, Keun Soo Kim, Kay Hyeok An, Young Hee Lee, Ji Hyung Han, Hee Chan Kim, and Taek Dong Chung, Electrochemical Sensing Based on Redox Mediation at Carbon Nanotubes[J]. Anal. Chem. 2005, 77: 3960-3965.
    [123] Vicky Vamvakaki, Katerina Tsagaraki, and Nikos Chaniotakis, Carbon Nanofiber-Based Glucose Biosensor[J]. Anal. Chem. 2006, 78: 5538-5542.
    [124] Sabahudin Hrapovic, Yali Liu, Keith B. Male, and John H. T. Luong, Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes[J]. Anal. Chem. 2004, 76: 1083-1088
    [125] Chetna Dhanda,b, S.P. Singha, Sunil K. Aryaa,b, Monika Dattab, B.D. Malhotra, Cholesterol biosensor based on electrophoretically deposited conducting polymer film derived from nano-structured polyaniline colloidal suspension[J]. Analytica Chimica Acta, 2007, 602: 244–251.
    [126] Longhua Tang, Yihua Zhu, Lihuan Xu, Xiaoling Yang, Chunzhong Li, Amperometric glutamate biosensor based on self-assembling glutamatedehydrogenase and dendrimer-encapsulated platinum nanoparticles onto carbon nanotubes[J]. Talanta, 2007, 73: 438–443
    [127] Kuanping Gong, Supriya Chakrabarti, and Liming Dai, Electrochemistry at Carbon Nanotube Electrodes: Is the Nanotube Tip More Active Than the Sidewall[J]. Angew. Chem. Int. Ed., 2008, 47: 5446–5450.
    [128] Sang Nyon Kim, James F. Rusling, Fotios Papadimitrakopoulos, Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules[J]. Adv. Mater., 2007, 19: 3214–3228.
    [129] Yan-Li Yao, Kwok-Keung Shiu, Low potential detection of glucose at carbon nanotube modified glassy carbon electrode with electropolymerized poly(toluidine blue O) film[J]. Electrochimica Acta, 2007, 53: 278–284.
    [130] M. Valca′rcel, S. Ca′rdenas, and B. M. Simonet, Role of Carbon Nanotubes in Analytica Science[J]. Anal. Chem., 2007, 79: 4788-4797.
    [131] Maogen Zhang, Audrey Smith, Waldemar Gorski, Carbon Nanotube-Chitosan System for Electrochemical Sensing Based on DehydrogenaseEnzymes[J]. Anal. Chem., 2004, 76: 5045-5050.
    [132] Maogen Zhang and Waldemar Gorski, Electrochemical Sensing Based on Redox Mediation at Carbon Nanotubes[J]. Anal. Chem., 2005, 77: 3960-3965.
    [133] Lina Wu, Xueji Zhang, Huangxian Ju, Detection of NADH and Ethanol Based on Catalytic Activity of Soluble Carbon Nanofiber with Low Overpotential[J]. Anal. Chem. 2007, 79: 453-458.
    [134] BiljanaˇSljuki′c a, Craig E. Banks b, Alison Crossley c, Richard G. Comptona, Lead(IV) oxide–graphite composite electrodes:Application to sensing of ammonia, nitrite and phenols[J]. Analytica Chimica Acta 2007, 587: 240–246
    [135] C. Terashima, Tata N. Rao, B. V. Sarada, D. A. Tryk, and A. Fujishima Electrochemical Oxidation of Chlorophenols at a Boron-Doped Diamond Electrode and Their Determination by High-Performance Liquid Chromatography with Amperometric Detection[J]. Anal. Chem. 2002, 74: 895-902.
    [136] Juozas Kulys, Regina Vidziunaite, Amperometric biosensors based on recombinant laccases for phenols determination[J]. Biosensors and Bioelectronics 2003, 18: 319-325.
    [137] R.H. Carvalho, F. Lemos, M.A.N.D.A. Lemos, J.M.S. Cabral, F. Ramoa Ribeiro, Electro-oxidation of phenol on a new type of zeolite/graphite biocomposite electrode with horseradish peroxidase[J]. Journal of Molecular Catalysis A: Chemical 2007, 278: 47–52.
    [138] Yongnian Ni, Li Wang, Serge Kokot, Simultaneous determination of nitrobenzene and nitro-substituted phenols by differential pulse voltammetry and chemometrics[J]. Analytica Chimica Acta, 2001, 431: 101–113.
    [139] J.Wang, R. P. Deo, M. Musameh, Stable and Sensitive Electrochemical Detection of Phenolic Compounds at Carbon Nanotube Modified Glassy Carbon Electrodes[J]. Electroanalysis, 2003, 15: 1830-1834.
    [140] Zhao Q, Guan L, Gu Z, et al., Determination of Phenolic Compounds Based on the Tyrosinase- Single Walled Carbon Nanotubes Sensor[J]. Electroanal, 2005, 17: 85-88.
    [141] Carbon nanotube-based electrochemical sensors for quantifying the‘heat’of chilli peppers: the adsorptive stripping voltammetric determination of capsaicin, Roohollah Torabi Kachoosangi, Gregory G. Wildgoose and Richard G. Compton[J]. Analyst, 2008, 133: 888–895.
    [142] Orawon Chailapakul, Wanida Wonsawat, Weena Siangproh, Kate Grudpan, Yifang Zhao, Zhiwei Zhu, Analysis of sudan I, sudan II, sudan III, and sudan IV in food by HPLC with electrochemical detection: Comparison of glassy carbon electrode with carbon nanotube-ionic liquid gel modified electrode[J]. Food Chemistry, 2008, 109: 876–882.
    [143] Yueming Tan,Wenfang Deng, Bin Ge, Qingji Xie, Jinhua Huang, Shouzhuo Yao, Biofuel cell and phenolic biosensor based on acid-resistant laccase glutaraldehyde functionalized chitosan–multiwalled carbon nanotubes nanocomposite film[J]. Biosensors and Bioelectronics, 2009, 24: 2225–2231.
    [144] Dongdong Zhang, Yage Peng, Honglan Qi, Qiang Gao, Chengxiao Zhang, Application of multielectrode array modified with carbon nanotubes to simultaneous amperometric determination of dihydroxybenzene isomers[J]. Sensors and Actuators B 2009, 136: 113–121.
    [145] Li-qiang Luoa, Xue-lian Zoua, Ya-ping Dinga, Qing-shengWub, Derivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode[J]. Sensors and Actuators B, 2008, 135: 61–65.
    [146] Seyda Korkut, Bulent Keskinler, Elif Erhan, An amperometric biosensor based on multiwalled carbonnanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives[J]. Talanta, 2008, 76: 1147–1152.
    [147] J. Xu, B. Liu. Preconcentration and determination of lead ions at a chitosan-modified glassy carbonelectrode[J]. Analyst, 1994, 119: 1599-1601.
    [148] E. D. Jeong, M. S. Won, Y. B. Shim. Simultaneous determination of lead, copper, and mercury at a modified carbon paste electrode containing humic acid[J]. Elecctroanalysis, 1994, 6: 887-893.
    [149] T. Molina-Holgado, J. M. Pinilla-Macias, L. Hernandez-Hernandez. Voltammetric determination of lead with a chemically modified carbon paste electrode with diphenylthiocarbazon[J]. Anal. Chim. Acta 1995, 309: 117-122.
    [150] S. S. Huang, Y. D. Cheng, B. F. Li, G. D. Liu. Simultaneous anodic stripping voltammetric determination of lead and cadmium with a carbon paste electrode modified by tributyl phosphate[J]. Mikrochim. Acta, 1998, 130: 97-103.
    [151] J. H. Santos, M. R. Smyth, R. Blanc. Mercury-free anodic stripping voltammetry of lead ions using a PVS-doped polyaniline modified glassy carbon electrode[J]. Anal. Commun. 1998, 35: 345-348.
    [152] J. Qu, M. Liu, K. Liu., Simultaneous determination of lead and copper by carbon paste electrode modified with pyruvaidehyde bis (N, N’-Dibutyl Thiosemicarbazone)[J]. Anal. Lett. 1999, 32: 1991-1995.
    [153] Wu K. B. , Hu S. S. , Fei J. J. , Bai W, Mercury - free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi - wall carbon nanotubes[J]. Anal. Chim.Acta , 2003, 489: 215-219.
    [154] Chuang C L, Wang T J., Lan H L, Amperometric glucose sensors based on ferrocene-containing B-polyeth-ylenimine and immobilized glucose oxidase[J]. Anal Chim Acta, 1997, 353: 37-44.
    [155] Yoshiro T.Soichiro Y, Fluorescence measurement of glucose by pyrene-modified oxidase[J]. J Mol Cata B: Enzy, 2002, 17: 203-206.
    [156] Ghindilis A L,Atanasov P.Wilkins E, Enzyme Catalyzed Direct Electron Transfer: Fundamentals andAnalytical Applications[J]. Electroanal, 1997, 9: 661-674.
    [157] Mano N,Mao F.Heller A, A Miniature Biofuel Cell Operating in A Physiological Buffer[J]. J Am Chem Soc, 2002, 124: 12962-12963.
    [158] Frew J E.Hill H, Direct and indirect electron transfer: between electrodes and redox proteins[J]. EUr J Biochem, 1988, 172: 261-269.
    [159] Santucci R,Picciau A.Campanella L, Electrochemistry of metalloproteins[J]. Curr Top Electrochem, 1994, 3: 313-328.
    [160] Armstrong F A, Insights from protein film voltammetry into mechanisms of complex biological electron-transfer reactions[J]. J Chem Soc Dalton Trans, 2002, 5: 661-671.
    [161] Aguey-Zinsou K F,Bernhardt P V.Kappler U, Direct electrochemistry of a bacterial sulfite dehydrogenase[J]. J Am Chem Soc, 2003, 125: 530-535.
    [162] CAI C-X.CHEN J,碳纳米管电极上辣根过氧化物酶的直接电化学[J]. Huaxue Xuebao (Acta Chim. Sin), 2004, 62: 335-340.
    [163] Chen X,Hu Y.Wilson G S, Glucose microbiosensor based on alumina sol-gel matrix/electropolymerized composit membrane[J]. Biosens Bioelectron, 2002, 17: 1005-1013.
    [164] Niu J., Lee J Y, Reagentless mediated biosensors based on polyelectrolyte and sol-gel derived silica matrix[J]. Sens Actuators B, 2002, 82: 250-258.
    [165] Zhu L,Li Y.Tian F, Eletrochemiluminescent determination of glucose with a sol-gel derived ceramic-carbon composite electrode as a renewable optical fiber biosensor[J]. Sens Actuators B, 2002, 84: 265-270.
    [166] Chen X.Dong S, Sol-gel-derived titanium oxide/copolymer composite based glucose biosensor[J]. Biosens Bioelectron, 2003, 18: 999-1004.
    [167] Xu J J,Yu Z H.Chen H Y, Glucose biosensors prepared by electropolymerization of p-chlorophenylamine with and without Nafion[J]. Anal Chim Acta, 2002, 463: 239-247.
    [168] Reiter S,Habermuller K.Schuhrmann W, A reagentless glucose biosensor based on glucose oxidase entrapped into osmium-complex modified polypyrrole films[J]. Sens Actuators B, 2001, 79: 150-156.
    [169] Piro B,Dang L A.Pham M C, A glucose biosensor based on modified-enzyme incorporated within electropolymerised poly(3,4-ethylenedioxythiophene) (PEDT)[J]. J Electroanal Chem, 2001, 512: 101-109.
    [170] Garjonyte R.Malinauskas A, Amperometric Glucose.biosensors based on Prussian blue-and polyaniline-glucose oxidase modified electrodes[J]. Biosens Bioelectron, 2000, 15:445-451.
    [171] Beh S K,Moody G J.Thomas J D R, Studies on Spacer Molecules and Coupling Agents for Immobilising Glucose Oxidase on Nylon Mesh for Glucose Oxidase Electrodes[J]. Analyst, 1989, 114: 1421-1425.
    [172] Xiao Y,Patolsky F.Katz E, "Plugging into enzymes": Nanowiring of redox enzymes by a gold nanoparticle[J]. Science, 2003, 299: 1877-1881.
    [173] Azamian B R,Davis J J.Coleman K S, Bioelectrochemical single-walled carbon nanotubes[J]. J Am Chem Soc, 2002, 124: 12664-12665.
    [174] Jiang L,McNeil C J.Cooper J M, Direct electron transfer reaction of glucose oxidase immobilized at a self-assembled monolayer[J]. Chem Commun, 1995: 1293-1295.
    [175] Ban K,Ueki T.Tamada Y, Electrical communication between glucose oxidase and electrodes mediated by phenothiazine-labeled polyethylene oxide) bonded to lysine residues on the enzyme surface[J]. Anal Chem, 2003, 75: 910-917.
    [176] Britto P J, Santhanam K.S.V, Ajayan P M, Carbon nanotube electrode for oxidation of dopamine[J]. Bioelectrochem. Bioenerg, 1996, 41:121-125.
    [177] Wang Z.H., Wang Y.M., Luo G.A. Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid[J]. Analyst 2002, 127: 653-658.
    [178] Rubianes M.D, Rivas G.A. Carbon nanotubes paste electrode[J]. Electrochem. Commun. 2003, 5, 689-693.
    [179] Ye J.S., Wen Y, Zhang W. D, Gan L.M, Xu G.Q. Sheu F.S. Selective Voltammetric Detection of Uric Acid in the Presence of Ascorbic Acid at Well-Aligned Carbon Nanotube Electrode[J]. Electroanalysis 2003, 15: 1693-1698.
    [180]孙延一,尿酸在多壁炭纳米管修饰电极上的伏安法测定[J].理化检验—化学分册[M], 2003, 39(7): 381-383.
    [181] Moore R.R., Banks C.E., Compton R.G. Basal Plane Pyrolytic Graphite Modified Electrodes: Comparison of Carbon Nanotubes and Graphite Powder as Electrocatalysts[J]. Anal. Chem. 2004, 76: 2677-2682.
    [182] Valentini F., Amine A., Orlanducci S., et al. Carbon Nanotube Purification: Preparation and Characterization of Carbon Nanotube Paste Electrodes[J]. Anal. Chem., 2003,75:5413-5421.
    [183] Wang J., Musameh M. Carbon Nanotube/Teflon Composite Electrochemical Sensors and Biosensors[J]. Anal Chem., 2003, 75: 2075-2079.
    [184] Wang J., Musameh M, Lin Y H. Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors[J]. J. Am. Chem. Soc., 2003,125, 2408-2409.
    [185] Z. Gaius, "Fundamentals of Electrochemical Analysis," 2nd ed., Wiley, New York, 1994.
    [186] P. Delahay, "New Instrumental Methods inElectrochemistry," Wiley-Interscience, New York, 1954.
    [187] I. M. Kolthoff and J. J. Lingane, "Polarography," 2nd ed., Wiley-Interscience, New York, 1952.
    [188] D. D. Macdonald, "Transient Techniques in Electrochemistry," Plenum, New York, 1977.
    [189] D. Pletcher, The application of electrochemical techniques to the study of homogeneous chemical reactions[J]. Chem. Soc Rev., 1975, 4: 471-495.
    [190] D. H. Evans, Steric effects of phosphorus figands in organometalhc chemistry and homogeneous catalysis[J]. Accts. Chem. Res., 1977, 10: 313-348.
    [191] A. C. Testa and W. H. Reinmuth, Stepwise Reactions in Chronopotentiometry[J]. Anal. Chem., 33, 1961: 1320-1324.
    [192] A. C. Testa and W. H. Reinmuth, Chronopotentiometry with Current Reversal. Application to p-Benzoquinone Imine Hydrolysis[J]. Anal. Chem., 1960, 32: 1512-1514.
    [193] H. B. Herman and A. J. Bard, Electrode Reactions of Aromatic Compounds in Strong Acid Solutions. Chronopotentiometric and Spectrometric Studies of the p-Hydroquinone-H2SO4 System at Platinum Electrodes[J]. Anal Chem., 1964, 36: 510-514.
    [194] L. R. Faulkner in "Physical Methods in Modern Chemical Analysis," Vol.3, T. Kuwana, Ed., Academic, New York, 1983, 137-248
    [195] P. Delahay, "New Instrumental Methods in Electrochemistry," Wiley-Interscience, New York, 1954, p. 92 ff.
    [196] L. Meites and S. A. Moros, Background Corrections in Controlled-Potential Coulometric Analysis[J]. Anal. Chem., 1959 31: 23-28.
    [197] G. A. Rechnitz and H. A. Laitinen, A Study of the Molybdenum Catalyzed Reduction of PerchlorateAnal.Chem., 1961, 33: 1473-1477.
    [198] L. Meites in "Techniques of Chemistry," A.Weissberger and B. W. Rossiter, Eds., Wiley-Interscience, New York, 1971, Part IIA, Vol. I, Chap. IX
    [1] M.R.V.S. Murty, N. Sridhara Chary, S. Prabhakar, N. Prasada Raju, M. Vairamani, Simultaneous quantitative determination of Sudan dyes using liquid chromatography–atmospheric pressure phot oionization–tandem mass spectrometry[J] Food Chemistry, 2009, 115(4), 1556-1562.
    [2] Olga Pardo, Vicent Yusà, Nuria León, Agustín Pastor, Development of a method for the analysis of seven banned azo-dyes in chilli and hot chilli food samples by pressurised liquid extraction and liquid chromatography with electrospray ionization-tandem mass spectrometry[J] Talanta, 2009, 78(1), 178-186.
    [3] Fan Yunchang, Chen Meilan, Chao Shentu, Fawzi El-Sepai, Wang Kaixiong, Zhu Yan, Ye Mingli, Ionic liquids extraction of Para Red and Sudan dyes from chilli powder, chilli oil and food additive combined with high performance liquid chromatography[J]. Analytica Chimica Acta, In Press.
    [4] Orawon Chailapakul, Wanida Wonsawat, Weena Siangproh, Kate Grudpan, Yifang Zhao, Zhiwei Zhu, Analysis of sudan I, sudan II, sudan III, and sudan IV in food by HPLC with electrochemical detection: Comparison of glassy carbon electrode with carbon nanotube-ionic liquid gel modified electrode[J]. Food Chemistry, 2008, 109(4), 876-882.
    [5] Erdal Ertas, Hayrettin Ozer, Cesarettin Alasalvar, A rapid HPLC method for determination of Sudan dyes and Para Red in red chilli pepper[J]. Food Chemistry 2007, 105: 756–776.
    [6] Han-wen Suna, Feng-chi Wang, Lian-feng Ai, Determination of banned 10 azo-dyes in hot chili products by gel permeation chromatography–liquid chromatography–electrospray ionization-tandem mass spectrometry[J]. Journal of Chromatography A, 2007, 1164: 120–128.
    [7] Du Meiju, Han Xiaogang, Zhou Zihao, Wu Shouguo, Determination of Sudan I in hot chili powder by using an activated glassy carbon electrode[J]. Food Chemistry 2007, 105: 883–888.
    [8] Huogang Lin, Gang Li, Kangbing Wu, Electrochemical determination of Sudan I using montmorillonite calcium modified carbon paste electrode[J]. Food Chemistry 2008, 107: 531–536.
    [9] Sumlo Iijima. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56- 87.
    [10] Sumlo Iijima, Toshinarilchlhashl Ichihashi. Single-shell carbon nanotubes of 1nm diameter[J]. Nature, 1993, 363: 603-615.
    [11] Dai H J. Carbon Nanotubes: Synthesis, Integration, and Properties[J]. Acc Chem Res, 2002, 35: 1035-1044.
    [12] Zhou Otto, Shimoda Hideo, Gao Bo, et al. Materials Science of Carbon Nanotubes: Fabrication, Integration, and Properties of Macroscopic Structures of Carbon Nanotubes[J]. Acc Chem Res, 2002, 35: 1045-1053.
    [13] Chen Shen Ming, Wen Yan Chzo. Simultaneous voltammetric detection of dopamine and ascorbicacid using didodecyldimethylammonium bromide (DDAB) film-modified electrodes[J]. Journal of Electroanalytical Chemistry, 2006, 587: 226-234.
    [14] Yu Aimin, Chen Hongyuan. Electrocatalytic oxidation and determination of ascorbic acid at poly(glutamic acid) chemically modified electrode[J]. Analytica Chimica Acta,1997, 344: 181-185.
    [15]袁倬斌,王月伶,张君,等.碳纳米管在电分析中的应用[J].化学通报,2004, 7: 473-476.
    [16]王宗花,罗国安.碳纳米管在分析化学领域的研究进展[J].分析化学评述与进展, 2003, 31(8): 1004-1009.
    [17] Joseph Wang, Mustafa Musameh, Carbon Nanotube/Teflon Composite Electrochemical Sensors and Biosensors[J]. Anal. Chem. 2003, 75: 2075-2079.
    [18] Zhao Q,Guan L,Gu Z, et al, Determination of Phenolic Compounds Based on the Tyrosinase- Single Walled Carbon Nanotubes Sensor[J]. Electroanal, 2005, 17: 85-88.
    [19] Roohollah Torabi Kachoosangi, Gregory G. Wildgoose and Richard G. Compton, Carbon nanotube-based electrochemical sensors for quantifying the‘heat’of chilli peppers: the adsorptive stripping voltammetric determination of capsaicin[J]. Analyst, 2008, 133: 888–895.
    [20] Orawon Chailapakul, Wanida Wonsawat, Weena Siangproh, Kate Grudpan, Yifang Zhao, Zhiwei Zhu, Analysis of sudan I, sudan II, sudan III, and sudan IV in food by HPLC with electrochemical detection: Comparison of glassy carbon electrode with carbon nanotube-ionic liquid gel modified electrode[J]. Food Chemistry, 2008, 109: 876–882.
    [21] Yueming Tan,Wenfang Deng, Bin Ge, Qingji Xie, Jinhua Huang, Shouzhuo Yao, Biofuel cell and phenolic biosensor based on acid-resistant laccase glutaraldehyde functionalized chitosan–multiwalled carbon nanotubes nanocomposite film[J]. Biosensors and Bioelectronics 2009, 24: 2225–2231.
    [22] Dongdong Zhang, Yage Peng, Honglan Qi, Qiang Gao, Chengxiao Zhang, Application of multielectrode array modified with carbon nanotubes to simultaneous amperometric determination of dihydroxybenzene isomers[J]. Sensors and Actuators B, 2009, 136: 113–121.
    [23] Li-qiang Luoa, Xue-lian Zoua, Ya-ping Dinga, Qing-shengWub, Derivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode[J]. Sensors and Actuators B, 2008, 135: 61–65.
    [24] Seyda Korkut, Bulent Keskinler, Elif Erhan, An amperometric biosensor based on multiwalled carbonnanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives[J]. Talanta, 2008, 76: 1147–1152.
    [25] M. Zhang, C. Mullens, W. Gorski, Coimmobilization of Dehydrogenases and Their Cofactors in Electrochemical Biosensors[J]. Anal. Chem., 2007, 79: 2446-2451.
    [26] M. Zhang, W. Gorski, Electrochemical Sensing Based on Redox Mediation at Carbon Nanotubes[J]. Anal. Chem. 2005, 77: 3960-3964.
    [27] J. Wang, M. Jiang, Electrochemical quartz crystal microbalance investigation of surface fouling due to phenol oxidation[J]. J. Electroanal. Chem. 1998, 444: 127-131.
    [1]苏丹红的毒性机理及检测,安庆师范学院学报,2005年11月第4期,53-54
    [2] G.G. McKcown and J.L. Thomson, The Polarographic Reduction Of Amaranth[J]. Can. J. Chem., 1954, 32: 1025-1032.
    [3] M.K. Saikina and K.Z. Fakhurdinova, lzv. Fiz. Khim. lzuch.Neorg. Seod., (1976) 22.
    [4] N. Menek et al., Polarographic and voltammetric investigation of 3-allyl-4-hydroxyazobenzene[J]. Dyes and Pigments 2004, 61: 85–91.
    [5] N. Menek, Y. Karaman, Polarographic and voltammetric investigation of 8-hydroxy-7-(4-sulfo-1-naphthylazo)-5-quinoline sulfonic acid[J]. Dyes and Pigments 2005, 67: 9-14.
    [6] M.M. Ghoneim, H.S. El-Desoky, S.A. Amer, H.F. Rizk, A.D. Habazy, Electroreduction and spectrophotometric studies of some pyrazolyl-azo dyes derived from 3-acetylamino-1-phenyl-5-pyrazolone in buffered solutions[J]. 2008, 77(3): 493-501.
    [7] Alf Eriksson, Leif Nyholm, A comparison of the electrochemical properties of some azosalicylic acids at glassy carbon electrodes by cyclic and hydrodynamic voltammetry[J]. Electrochimica Acta 1999, 44: 4029-4040.
    [8] Z. Mandi′c et al., The mechanism and kinetics of the electrochemical cleavage of azo bond of 2-hydroxy-5-sulfophenyl-azo-benzoic acids[J]. Electrochimica Acta 2004, 49: 607–615.
    [9] R. N. Goyal, V. Bansal, Electrochemical behaviour of 2-(4′-hydroxybenzeneazo)benzoic-acid at pyrolytic graphite electrodes[J]. Journal of Electroanalytical Chemistry 385 (1995) 25-32.
    [10] Du Meiju, Han Xiaogang, Zhou Zihao, Wu Shouguo, Determination of Sudan I in hot chili powder by using an activated glassy carbon electrode[J]. Food Chemistry 2007, 105: 883–888.
    [11] Huogang Lin, Gang Li, Kangbing Wu, Electrochemical determination of Sudan I using montmorillonite calcium modified carbon paste electrode[J]. Food Chemistry 2008, 107: 531–536.
    [12] Zuman P, Perin CL. Organic polarography. New York: John Wiley & Sons; 1965.
    [13] Meites L. Polarographic techniques. New York: John Wiley & Sons; 1965.
    [14] J Strandis, V. Glezer. In: A. J. Bard, H. Lund, editors, Encylopedia of the electrochemistry of the elements, vol. 13. New York: Dekker; 1979.
    [15] T. M. Florence, Polarography of azo compounds and their metal complexes[J]. J. Electroanal. Chem. 1974, 52: 115-132.
    [16] T. M. Florence, D. A. Johnson, G. E. Batley, Polarography of heterocyclic azo compounds and their metal complexes[J]. J. Electroanal. Chem. 1974, 50: 113-127.
    [17] M. Ucar, A. O. Solak, N. Menek, Electrochemical behavior of 2'-halogenated derivatives of N,N-dimethyl-4-aminoazobenzene at mercury electrode[J]. Anal. Sci. 2002, 18: 997-1002.
    [18] M. Ucar, M. L. Aksu, A. O. Solak, N. Menek, Electrochemical investigation of 4′-haloderivatives of 4-aminoazobenzene[J]. Bull. of Electrochem. 2002, 18: 223-230.
    [19] L. Dubenska, H. Levytska, N. Poperechna., Polarographic investigation of reduction process of some azodyes and their complexes with rare earths[J]. Talanta 2001, 54: 221-231.
    [20] N. Menek. Polarographic and voltammetric behaviour of some azo dyes. PhD Thesis, Ondokuz May?s University, Institue of Science, Samsun, Turkey; 1994.
    [21] N. Menek, S. Topcu, M. Ucar, Voltammetric and spectrophotometric studies of 2-(5-bromo-2-pyridylazo)-5-(diethylamino)phenol copper(II) complex[J]. Anal. Lett. 2001, 34: 1733-1740.
    [22] N. Menek, Polarographic and voltammetric behaviour of 2- hydroxyl -3– methoxy -5 - (2-propenyl) azobenzene[J]. Anal. Lett. 1998, 31: 275-282.
    [23] N. Menek, O. Cak?r, H. Kocaokutgen, Polarographic and voltammetric behaviour of 2-hydroxy-3-tert-butyl-5-methylazobenzene[J]. Mikrochim. Acta 1996, 122: 203-207.
    [24] B. Nigovi, Z. Mandi, B. ?imuni, I. Fistri, Voltammetric studies of 2-hydroxy-5-[(4-sulfophenyl)azo]benzoic acid as a novel prodrug of 5-aminosalicylic acid[J]. J. Pharm. Biomed. Anal. 2001, 26: 987-994.
    [25] R.K. Palsmeier, D.M. Radzik, C.E. Lunte, Investigation of the degradation mechanism of 5-aminosalicylic acid in aqueous solution[J]. Pharm. Res. 1992, 9: 933-938.
    [26] A. Eriksson, L. Nyholm, A Comparative Study of the Oxidation of 3-, 4- and 5-Aminosalicylic Acids at Glassy Carbon Electrodes[J]. Electroanalysis, 1998, 10: 198-203.
    [27] A. Bard, L. Faulkner, Electrochemical Methods, Fundamentals and Applications, Wiley, New York, 1980.
    [28] J.M. Saveant, Ece mechanisms as studied by polarography and linear sweep voltammetry[J]. Electochim. Acta, 1967, 12: 753-766.
    [29] A. G. Fogg, A. Rahim, H. M. Yusoff, R. Ahmad, Cathodic stripping voltammetry of copper-complexed reactive dyes at a hanging mercury drop electrode: Reactive violet 5[J]. Talanta 1997, 44: 125-129.
    [30] A. Fogg, M. Zanoni, A. Yusoff, R. Ahmad, J. Barek, J. Zima, Polarographic and voltammetric determination of triazine-based reactive azo dyes with 4-carboxypyridyl and 1,4-diazabicyclo[2,2,2]octanyl (DABCO) leaving groups[J]. Anal. Chim. Acta 1998, 362: 235-240.
    [31] Z. Mandic, B. Nigovi, B. ?imuni, The mechanism and kinetics of the electrochemical cleavage of azo bond of 2-hydroxy-5-sulfophenyl-azo-benzoic acids[J]. Electrochim. Acta 2004, 49: 607-615.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700