基于生物质谱技术的HIV-1 Tat蛋白生物活性的代谢组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
HIV-1Tat蛋白是病毒产生的重要调控蛋白和致病因子,在HIV-1的复制、扩散和致病中起重要作用。HIV-1感染靶细胞后,细胞质中合成的Tat可进入细胞核反式激活HIV-1RNA的转录,从而激活HIV-1的增殖。此外,Tat还可被感染细胞分泌到胞外发挥多种细胞外功能在致病中起重要作用,如抑制免疫细胞的增值、分化、诱导其凋亡;促进病毒播散;促进卡波式肉瘤肿瘤细胞的生长;诱发神经损伤等。鉴于其多种生物学活性,Tat被认为是“病毒毒素”,是药物干预和治疗性疫苗的重要靶标。
     多个研究发现,在HIV感染者中代谢紊乱综合症的发生率显著高于正常人群,如脂代谢异常、胰岛素抵抗、心脏代谢紊乱、磷酸代谢异常和损伤的葡萄糖耐受等。尽管已有研究发现多种危险因素,但其病因仍然不清楚。而有多种生物学功能的HIV-1Tat蛋白在其中所起的作用值得研究和探讨。
     代谢组学是自上而下的系统生物学方法,它是对一个生物体系中所有小分子代谢物进行定性定量分析的整体性方法,已广泛应用于疾病诊断及作用机理、药物毒理学、药效评价、基因功能及中药质量控制等领域。相对于转录组和蛋白组来说,其分析对象的理化性质更加多样,是一个非常复杂的分析体系。代谢物组中的化合物在性质(从强极性到非极性)和浓度(从mM到pM)上的巨大差异对现有的分析技术是一个重大的挑战。在当前的技术条件下仅凭一种分析技术很难建立无偏的全局的代谢组学分析方法。因此为了获得更加广泛的代谢物信息,近年来多种互补的分析方法相结合广泛应用到代谢组学研究中,如质谱(MS)和核磁共振(NMR)结合;气相色谱-质谱(GC-MS)和液相色谱-质谱结合(LC-MS);亲水相互作用色谱-质谱(HILIC-MS)和反相液相色谱-质谱(RPLC-MS)相结合等。本研究以GC–MS、RPLC-MS和HILIC–MS联用技术结合化学计量学多元方法为手段,以HIV-1Tat为研究对象,从整体动物和细胞水平阐明代谢组学方法在HIV-1Tat致病机制中的应用。主要内容如下:
     一、 HIV-1Tat在大肠杆菌中的表达、纯化及生物活性鉴定
     在本课题组构建的HIV-1HXB2株Tat质粒的基础上,通过PCR方法合成HIV-1IIIB株BH10克隆Tat DNA序列,并构建其原核表达质粒tat-pET21b,转化到表达宿主菌BL21(DE3)。经IPTG诱导,得到的重组蛋白的表达量占细菌总蛋白的约15%;重组表达的Tat蛋白经Ni-NTA亲和柱和SP-Sepharose离子交换柱纯化,得到了纯度约90%的Tat蛋白。经Western鉴定在约15kD得到阳性的蛋白表达条带。鲎试剂盒检测内毒素LPS的含量约为0.05EU/μg,满足LPS限量要求。细胞模型上鉴定纯化的Tat蛋白保留了生物学活性。
     二、基于GC-MS技术的HIV-1Tat诱导的ICR小鼠的血清代谢组学研究
     Tat蛋白由感染的细胞释放,发挥多种生物学作用如破坏免疫系统、促进病毒播散和致病性。目前Tat蛋白对代谢物的影响还未见报道。本课题以对照小鼠血清和HIV-1Tat处理的小鼠血清为分析对象,研究建立了内源性代谢物谱的GC-MS分析方法,并利用NIST2002质谱数据库对检测到的代谢物进行快速鉴定。在综合考察供试品制备方法、衍生化条件和色谱分析条件的基础上,获取了一个峰容量大、分离效果佳的GC-MS分析条件,并对其进行了方法学验证。研究结果表明,所建立的GC-MS方法可较好地表征生物样本的代谢物谱特征,分析结果稳定可靠,可用于代谢组学研究。采用建立的GC-MS联用技术检测Tat诱导的小鼠血清中的代谢物,并用主成分分析(PCA)和偏最小二乘法分析(PLS-DA)法对所获得的代谢组数据进行模式识别。研究结果显示,Tat可诱导小鼠血清16种代谢物显著变化,它们涉及氨基酸代谢、三羧酸循环、脂肪酸代谢等多条代谢通路,为Tat致病机制的阐释和艾滋病的治疗提供了新的线索。
     三、基于LC/GC-MS和定量PCR技术的HIV-1Tat诱导Jurkat细胞的代谢组学研究
     HIV-1Tat蛋白由感染的细胞释放,作用于邻近未感染的T淋巴细胞诱导多种病理效应。上一章我们已经在小鼠模型上用基于GC-MS的代谢组学方法揭示了Tat可诱导体内多种代谢物发生变化,为了深入研究其干扰机制,本章我们在体外以HIV-1Tat处理的Jurkat T淋巴细胞为研究对象,采用基于GC-MS、RPLC-MS和HILIC-MS相结合的代谢组学方法检测Tat处理的Jurkat T淋巴细胞胞内及胞外代谢物,并用PCA和PLS-DA对所获得的代谢组数据进行模式识别。通过信息处理得到了37种差异代谢物,根据标志物,我们构建了Tat调节网络示意图,并采用实时定量PCR的方法对代谢通路中关键调节酶进行了测定,得到了7种显著改变的调节酶且与代谢物变化相符,从酶的调控验证了Tat诱导的代谢变化。本研究结合上章的结果提示Tat可能是HIV相关的代谢综合症的重要致病因子。我们的研究结果为Tat药物靶点的发现和疫苗的设计提供科学依据。
     四、我国HIV感染者中抗Tat抗体的反应特点研究
     在HIV-1感染者中,Tat抗体的出现与艾滋病的发病及病呈进展的关系出现了两种相反的结论。因此,全面深入的Tat抗体检测有助于揭示Tat和HIV发病及病程的关系,对Tat的致病性研究及开发有效的Tat疫苗具有重要意义。为了鉴定Tat抗体反应类型,我们测定了326份HIV感染者中抗Tat抗体反应,100份健康献血员血浆作为阴性对照。我们首先用全长Tat作为检测抗原从326份HIV阳性血浆样本中筛选抗Tat抗体阳性样本,进一步用我们设计合成的6个Tat肽段作为分析抗原将抗体反应进行分类,并对每个样本的Tat反式激活的中和能力进行评价。结果显示,326份HIV阳性血浆样本检测出42份为抗Tat抗体阳性和6份Tat相关抗体,根据与不同分析抗原的反应特点将其分为以下6种反应类型:全阳性反应、综合的反应、N-特异性反应、C-特异性反应、全长Tat反应和Tat相关反应。中和实验显示Tat反式激活的中和能力与抗体反应类型及CD8+T细胞计数显著相关。我们的结果为更好地理解Tat在HIV致病中的重要作用和设计有效的Tat疫苗提供重要信息,也为进一步用代谢组学方法研究Tat在HIV感染者体内的生物活性奠定基础。
     本文是首次通过基于LC-MS和GC-MS相结合的代谢组学方法在整体动物和细胞水平对Tat活性进行系统的代谢组学研究,通过多变量数据分析得到了Tat活性相关的差异代谢物,涉及糖酵解、三羧酸循环、脂代谢和氨基酸代谢等多条代谢通路。这些发现有助于揭示Tat“病毒毒素”复杂的致病机制,提示Tat可能作为治疗性干预的重要靶标,阻断或修饰这些异常的代谢通路对于治疗由HIV感染引起的代谢紊乱综合症具有潜在的应用价值。此外,我们的结果表明基于整合的GC-MS和LC-MS的代谢组学方法在细胞代谢物组分析中发挥重要作用。
As one of the six accessory proteins of HIV-1, Tat is critical for viral replication andplays an important role in viral dissemination and pathogenesis. Intracellular Tat, recruitscellular proteins to relieve the repression of the viral long-terminal repeat (LTR), andthereby the viral promoter can induce the expression of viral genes. Extracellular Tat,secreted from infected cells, was found to play an important role in the pathogenesis ofproliferation inhibition and apoptosis of CD4+T cells, viral dissemination, AIDSassociated Kaposi's sarcoma (KS) and HIV-1associated dementia. These findings supportthe notion that Tat acts as a “viral toxin” and obligate it as an “important target” for drugintervention and therapeutic vaccines.
     A number of chronic metabolic abnormalities including disorders of lipid metabolismwith or without lipodystrophy, insulin resistance, cardiometabolic syndrome, alteredphosphate metabolism, and an increased prevalence of impaired glucose tolerance arefound prevalent in HIV patients with or without receiving highly active antiretroviraltherapy (HAART). Although multiple risk factors have been proposed, the etiology ofthese metabolic abnormalities remains unclear. It would be interesting to see whetherHIV-1Tat plays a critical role in HIV metabolic abnormalities.
     Metabonomics is a top-down systems biology approach whereby metabolic responsesto biological interventions or environmental factors are analyzed and modeled.Metabonomics provides insights into the global metabolic status of the entire organism bymonitoring the entire pattern of low molecular weight compounds rather than focusing onan individual metabolic intermediate (MI). It has been widely applied into diseasediagnosis, pathophysiology, toxicology, pharmacodynamic assessment, gene function andquality control of Traditional Chinese Medicines. Compared to the transcriptome andproteome, the physical and chemical properties of the objects are more complex andmetabolome are diverse in nature (range from highly polar to non-polar) and concentration(range from mM to pM). An extensive metabonomics study needs non-discriminatoryanalytical techniques with each analytical instrument being selective to certain metabolites,and therefore parallel use of multiple analytical methods would be advantageous in identifying a broader spectrum of metabolites relevant to physiopathological alteration.The objectives of this study are to determine how HIV-1Tat influences metabolicenvironments both in mice and CD4+T cells to elucidate its complex pathogenicmechanism using gas chromatography-mass spectrometry (GC-MS), reversed-phase liquidchromatography–mass spectrometry (RPLC-MS) and hydrophilic interaction liquidchromatography-mass spectrometry (HILIC-MS)-based metabonomic methods. The maincontents are:
     1、 Expression, purification and identification of bioactive Tat protein
     The DNA encoding for Tat protein (1–86aa) from the BH-10clone of the IIIB strainof HIV-1(clade B) was amplified by PCR and inserted into pET21b vector to constructprokaryotic expression plasmids tat-pET21b. The recombinant plasmid was transformedinto E.coli BL21(DE3) for expression. The fusion protein Tat was expressed with relativemolecular weight (MW)15kD under induction of IPTG, which accounts for about15%oftotal bacterial proteins. The expressed Tat protein was purified by Ni-NTA column and SPSepharose fast flow Ion-exchange chromatography, and the purity was about90%.Endotoxin level of purified recombinant Tat protein was determined using the Limulusamebocyte lysate test and the result showed the final concentration of endotoxin in theeluted Tat was approximately0.05EU/μg of protein which is within the acceptable limit.Then the purified endotoxin-free Tat protein was testified with specific anti-Tatmonoclonal antibody by Western-blot and was verified to be bioactive using theLTR-transactivation assay.
     2、 Metabolic profiling in HIV-1Tat induced ICR mice serum using GC-MS
     The HIV-1Tat protein is released by infected cells and has numerous biologicalactivities which might contribute either to the impairment of the immune response or toviral dissemination and pathogenesis. To date, the effects of Tat protein on metabolitesremain unclear. In this study, a metabolomic study on serum of HIV-1Tat-induced ICRmice was performed to research the pathologic mechanism of Tat protein by using gaschromatography coupled to mass spectrometry (GC-MS). NIST2002, a commercial massspectral database, was used for rapid identification of the detected metabolites. The procedures of sample preparation, derivatizative conditions and chromatographicconditions were optimized, and validation of the method was carried out. The resultsshowed that GC-MS analytical method was stable and reliable. It was capable to describethe biochemical composition of biological samples. The established GC-MS analyticalmethod was applied to the metabonomic study on Tat-induced mice serum. Principalcomponents analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) wereused for recognizing the different metabolic patterns between the Tat and control groups.Sixteen significantly changed metabolites in HIV-1Tat-induced mice were identified thatare involved in amino acid metabolism, tricarboxylic acid (TCA) cycle and lipidmetabolism, which contributed to the elucidation of the complex pathogenic mechanism ofTat protein and may shed new lights on future improvement of HIV-1therapy.
     3、 Combined LC/GC-MS and quantitative real-Time PCR analyses reveal systemsmetabolic changes in Jurkat T-cells induced by HIV-1Tat protein
     HIV-1Tat protein is released by infected cells and can affect bystander uninfected Tcells and induce numerous biological responses which contribute to its pathogenesis. Toelucidate the complex pathogenic mechanism, we conducted a comprehensiveinvestigation on Tat protein-related extracellular and intracellular metabolic changes inJurkat T-cells using combined gas chromatography-mass spectrometry (GC-MS),reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) and a hydrophilicinteraction liquid chromatography-mass spectrometry (HILIC-MS)-based metabonomicsapproach. Quantitative real-time PCR (qRT-PCR) analyses were further employed tomeasure expressions of several relevant enzymes together with perturbed metabolicpathways. Combined metabonomic and qRT-PCR analyses revealed that HIV-1Tat causedsignificant and comprehensive metabolic changes, as represented by significant changes of37metabolites and7relevant enzymes in HIV-1Tat-treated cells, which are mainlyinvolved in glycolysis, citrate cycle, lipid metabolism and amino acid metabolism. Theseresults provide metabolic evidence of the complex pathogenic mechanism of HIV-1Tatprotein as a “viral toxin”, and would help obligate Tat protein as “an important target” fortherapeutic intervention and vaccine development.
     4、 Characterization of Tat antibody responses in Chinese individuals infected withHIV-1
     There are two converse conclusions about the relationship between the anti-Tatantibody in HIV infected patients and the development and progression of AIDS. Therefore,wider and deeper anti-Tat responses analyses are very important. To define theseimmunoprofiles, we investigated Tat antibody responses in plasma samples from326Chinese individuals infected with HIV-1as well as100samples from healthy blood donorsas controls. We first screened for anti-Tat-seropositive samples using ELISA withrecombinant full-length Tat protein. Next, the immunoprofiles of the anti-Tat antibodyresponses were determined by ELISA using a synthetic N-terminal domain of Tat (Tat1-21)and six recombinant Tat peptides as the analytic antigens. The neutralizing activities of theanti-Tat-seropositive samples were evaluated using an LTR-transactivation neutralizingassay. Out of326HIV-1-seropositive individuals, only42were found to be positive foranti-Tat antibodies and6for Tat-related antibodies. Among the anti-Tat-seropositive andTat-related samples we found six different immunological profiles of anti-Tat antibodyresponses: full-potential response, combined response, N-specific response, C-specificresponse, full-length Tat-specific response and Tat-related response. These responses weredefined based on differential reactivity with several analytic antigens, and they representtwo types of anti-Tat responses—the major complete response and the alternative C-proneresponse. The anti-Tat-seropositive samples showed significantly higher Tat-neutralizingactivities compared with samples from both anti-Tat-negative HIV-1patients or healthyblood-donor samples. Tat-neutralizing activities were found to significantly correlate withthe reactivities of antibodies against specific Tat antigens and the CD8cell counts. Siximmunoprofiles of anti-Tat responses in Chinese patients infected with HIV-1were definedand were found to have significant Tat-neutralizing activities. The data we present herecould contribute to a better understanding of the significance of anti-Tat responses inpreventing HIV pathogenesis and could be useful for designing more effective vaccines inthe future. It also provided important information for studying the role of Tat in HIVinfected patients using metabonomic approach.
     In conclusion, this is the first metabonomic study to determine HIV-1Tat-induced biochemical alterations both in ICR mice and Jurkat T-cells using combined LC-MS andGC-MS. We identified16and37significantly changed metabolites in Tat-induced miceserum and Jurkat T-cells, respectively, which are mainly involved in glycolysis, citratecycle, lipid metabolism and amino acid metabolism, which were helpful for revealing thecomplex pathogenic mechanism of HIV-1Tat as a “viral toxin” and may present importanttargets for therapeutic intervention. Blocking or modifying these points of HIV-1Tatperturbed pathways are attractive approaches to the treatment of HIV-related chronicmetabolic abnormalities. Further studies are needed to deepen the understanding about thebiological function and regulation mechanism of HIV-1Tat protein. In addition, ourfindings suggest that metabonomics based on integration of GC-MS and LC-MStechniques could be a potent tool for cell metabolomes.
引文
[1] Johri, M. K.; Mishra, R.; Chhatbar, C.; Unni, S. K.; Singh, S. K., Tits and bits of HIV Tat protein.Expert Opin Biol Ther2011,11,(3),269-83.
    [2] Apolloni, A.; Hooker, C. W.; Mak, J.; Harrich, D., Human immunodeficiency virus type1proteaseregulation of tat activity is essential for efficient reverse transcription and replication. J Virol2003,77,(18),9912-21.
    [3] Westendorp, M. O.; Frank, R.; Ochsenbauer, C.; Stricker, K.; Dhein, J.; Walczak, H.; Debatin, K.M.; Krammer, P. H., Sensitization of T cells to CD95-mediated apoptosis by HIV-1Tat and gp120.Nature1995,375,(6531),497-500.
    [4] Li, C. J.; Friedman, D. J.; Wang, C.; Metelev, V.; Pardee, A. B., Induction of apoptosis inuninfected lymphocytes by HIV-1Tat protein. Science1995,268,(5209),429-31.
    [5] Huang, L. M.; Joshi, A.; Willey, R.; Orenstein, J.; Jeang, K. T., Human immunodeficiency virusesregulated by alternative trans-activators: genetic evidence for a novel non-transcriptional function of Tatin virion infectivity. Embo J1994,13,(12),2886-96.
    [6] Marchio, S.; Alfano, M.; Primo, L.; Gramaglia, D.; Butini, L.; Gennero, L.; De Vivo, E.; Arap, W.;Giacca, M.; Pasqualini, R.; Bussolino, F., Cell surface-associated Tat modulates HIV-1infection andspreading through a specific interaction with gp120viral envelope protein. Blood2005,105,(7),2802-11.
    [7] Smith, S. M.; Pentlicky, S.; Klase, Z.; Singh, M.; Neuveut, C.; Lu, C. Y.; Reitz, M. S., Jr.; Yarchoan,R.; Marx, P. A.; Jeang, K. T., An in vivo replication-important function in the second coding exon of Tatis constrained against mutation despite cytotoxic T lymphocyte selection. J Biol Chem2003,278,(45),44816-25.
    [8] Aoki, Y.; Tosato, G., HIV-1Tat enhances Kaposi sarcoma-associated herpesvirus (KSHV)infectivity. Blood2004,104,(3),810-4.
    [9] Li, W.; Galey, D.; Mattson, M. P.; Nath, A., Molecular and cellular mechanisms of neuronal celldeath in HIV dementia. Neurotox Res2005,8,(1-2),119-34.
    [10] Ross, M. J.; Klotman, P. E., HIV-associated nephropathy. Aids2004,18,(8),1089-99.
    [11] Doublier, S.; Zennaro, C.; Spatola, T.; Lupia, E.; Bottelli, A.; Deregibus, M. C.; Carraro, M.;Conaldi, P. G.; Camussi, G., HIV-1Tat reduces nephrin in human podocytes: a potential mechanism forenhanced glomerular permeability in HIV-associated nephropathy. Aids2007,21,(4),423-32.
    [12] Gallo, R. C., Tat as one key to HIV-induced immune pathogenesis and Pat toroid as an importantcomponent of a vaccine. Proceedings of the National Academy of Sciences of the United States ofAmerica1999,96,(15),8324-8326.
    [13] Nazih, H.; Raffi, F.; Taieb, A.; Reynes, J.; Choutet, P.; Cassuto, J. P.; Ferry, T.; Chene, G.; Leport,C.; Bard For The Aproco-Copilote Anrs Co08Study Group, J. M., Peroxisome Proliferator ActivatingReceptor (PPAR) Alpha and Gamma Polymorphisms and Metabolic Abnormalities in HIV-InfectedPatients Receiving Highly Active Antiretroviral Therapy: The ANRS CO8APROCO-COPILOTE Study.AIDS Res Hum Retroviruses2011.
    [14] Bevilacqua, M.; Dominguez, L. J.; Barbagallo, M., Insulin Resistance and the cardiometabolicsyndrome in HIV infection. J Cardiometab Syndr2009,4,(1),40-3.
    [15] Grima, P.; Guido, M.; Chiavaroli, R.; Stano, F.; Tundo, P.; Tana, M.; de Donno, A.; Zizza, A.,Altered phosphate metabolism in HIV-1-infected patients with metabolic syndrome. Scand J Infect Dis2011.
    [16]Howard, A. A.; Floris-Moore, M.; Arnsten, J. H.; Santoro, N.; Fleischer, N.; Lo, Y.; Schoenbaum, E.E., Disorders of glucose metabolism among HIV-infected women. Clin Infect Dis2005,40,(10),1492-9.
    [17] Howard, A. A.; Floris-Moore, M.; Lo, Y.; Arnsten, J. H.; Fleischer, N.; Klein, R. S., Abnormalglucose metabolism among older men with or at risk of HIV infection. HIV Med2006,7,(6),389-96.
    [18] Gutierrez, A. D.; Balasubramanyam, A., Dysregulation of glucose metabolism in HIV patients:epidemiology, mechanisms, and management. Endocrine2011.
    [19] Brey, W. W.; Edison, A. S.; Nast, R. E.; Rocca, J. R.; Saha, S.; Withers, R. S., Design, construction,and validation of a1-mm triple-resonance high-temperature-superconducting probe for NMR. J MagnReson2006,179,(2),290-3.
    [20] Bart, J.; Kolkman, A. J.; Oosthoek-de Vries, A. J.; Koch, K.; Nieuwland, P. J.; Janssen, H. J.; vanBentum, J. P.; Ampt, K. A.; Rutjes, F. P.; Wijmenga, S. S.; Gardeniers, H. J.; Kentgens, A. P., Amicrofluidic high-resolution NMR flow probe. J Am Chem Soc2009,131,(14),5014-5.
    [21] Bart, J.; Janssen, J. W.; van Bentum, P. J.; Kentgens, A. P.; Gardeniers, J. G., Optimization ofstripline-based microfluidic chips for high-resolution NMR. J Magn Reson2009,201,(2),175-85.
    [22] Han, J.; Datla, R.; Chan, S.; Borchers, C. H., Mass spectrometry-based technologies forhigh-throughput metabolomics. Bioanalysis2009,1,(9),1665-84.
    [23] Li Da Han; Qiong Lin Liang;, Y. M. W.; Ping Hu; Luo, G. A., A new metabonomics method forsimultaneous determination of EFAs and NEFAs in plasma using GC-MS and its application. ChineseChemical Letters2009,20,(9),1103-1106.
    [24] Tao, X.; Liu, Y.; Wang, Y.; Qiu, Y.; Lin, J.; Zhao, A.; Su, M.; Jia, W., GC-MS with ethylchloroformate derivatization for comprehensive analysis of metabolites in serum and its application tohuman uremia. Anal Bioanal Chem2008,391,(8),2881-9.
    [25] Asres DD; H., P., Monosaccharide permethylation products for gas chromatography-massspectrometry: how reaction conditions call influence isomeric ratios. Canadian Journal of Chemistry1997,75,1385-1392.
    [26] Lee, R.; Britz-McKibbin, P., Metabolomic studies of radiation-induced apoptosis of humanleukocytes by capillary electrophoresis-mass spectrometry and flow cytometry: adaptive cellularresponses to ionizing radiation. Electrophoresis2010,31,(14),2328-37.
    [27] Sugimoto, M.; Wong, D. T.; Hirayama, A.; Soga, T.; Tomita, M., Capillary electrophoresis massspectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles.Metabolomics2010,6,(1),78-95.
    [28] Nevedomskaya, E.; Ramautar, R.; Derks, R.; Westbroek, I.; Zondag, G.; van der Pluijm, I.; Deelder,A. M.; Mayboroda, O. A., CE-MS for metabolic profiling of volume-limited urine samples: applicationto accelerated aging TTD mice. J Proteome Res2010,9,(9),4869-74.
    [29] Ellis, D. I.; Goodacre, R., Metabolic fingerprinting in disease diagnosis: biomedical applications ofinfrared and Raman spectroscopy. Analyst2006,131,(8),875-85.
    [30] van der Werf, M. J.; Jellema, R. H.; Hankemeier, T., Microbial metabolomics: replacingtrial-and-error by the unbiased selection and ranking of targets. J Ind Microbiol Biotechnol2005,32,(6),234-52.
    [31] Ghannoum, M. A.; Mukherjee, P. K.; Jurevic, R. J.; Retuerto, M.; Brown, R. E.; Sikaroodi, M.;Webster-Cyriaque, J.; Gillevet, P. M., Metabolomics Reveals Differential Levels of Oral Metabolites inHIV-Infected Patients: Toward Novel Diagnostic Targets. Omics2011.
    [32]Ruiz-Aracama, A.; Peijnenburg, A.; Kleinjans, J.; Jennen, D.; van Delft, J.; Hellfrisch, C.; Lommen,A., An untargeted multi-technique metabolomics approach to studying intracellular metabolites ofHepG2cells exposed to2,3,7,8-tetrachlorodibenzo-p-dioxin. BMC Genomics2011,12,251.
    [33] Lin, L.; Huang, Z.; Gao, Y.; Yan, X.; Xing, J.; Hang, W., LC-MS based serum metabonomicanalysis for renal cell carcinoma diagnosis, staging, and biomarker discovery. J Proteome Res2011,10,(3),1396-405.
    [34] Wu, Z.; Li, M.; Zhao, C.; Zhou, J.; Chang, Y.; Li, X.; Gao, P.; Lu, X.; Li, Y.; Xu, G., Urinarymetabonomics study in a rat model in response to protein-energy malnutrition by using gaschromatography-mass spectrometry and liquid chromatography-mass spectrometry. Mol Biosyst2010,6,(11),2157-63.
    [35] Lanza, I. R.; Zhang, S.; Ward, L. E.; Karakelides, H.; Raftery, D.; Nair, K. S., Quantitativemetabolomics by H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes. PLoS One2010,5,(5), e10538.
    [36] Maher, A. D.; Cysique, L. A.; Brew, B. J.; Rae, C. D., Statistical integration of1H NMR and MRSdata from different biofluids and tissues enhances recovery of biological information from individualswith HIV-1infection. J Proteome Res2011,10,(4),1737-45.
    [37] Arbona, V.; Iglesias, D. J.; Talon, M.; Gomez-Cadenas, A., Plant phenotype demarcation usingnontargeted LC-MS and GC-MS metabolite profiling. J Agric Food Chem2009,57,(16),7338-47.
    [38] Gao, P.; Lu, C.; Zhang, F.; Sang, P.; Yang, D.; Li, X.; Kong, H.; Yin, P.; Tian, J.; Lu, X.; Lu, A.; Xu,G., Integrated GC-MS and LC-MS plasma metabonomics analysis of ankylosing spondylitis. Analyst2008,133,(9),1214-20.
    [39] Ni, Y.; Su, M.; Qiu, Y.; Chen, M.; Liu, Y.; Zhao, A.; Jia, W., Metabolic profiling using combinedGC-MS and LC-MS provides a systems understanding of aristolochic acid-induced nephrotoxicity in rat.FEBS Lett2007,581,(4),707-11.
    [40] Tan, G.; Lou, Z.; Liao, W.; Dong, X.; Zhu, Z.; Li, W.; Chai, Y., Hydrophilic interaction andreversed-phase ultraperformance liquid chromatography TOF-MS for serum metabonomic analysis ofmyocardial infarction in rats and its applications. Mol Biosyst2012,8,(2),548-56.
    [41] Spagou, K.; Wilson, I. D.; Masson, P.; Theodoridis, G.; Raikos, N.; Coen, M.; Holmes, E.; Lindon,J. C.; Plumb, R. S.; Nicholson, J. K.; Want, E. J., HILIC-UPLC-MS for Exploratory Urinary MetabolicProfiling in Toxicological Studies. Anal Chem2011,83,(1),382-390.
    [42] Wang, Y.; Wang, J. S.; Yao, M.; Zhao, X. J.; Fritsche, J.; Schmitt-Kopplin, P.; Cai, Z. W.; Wan, D.F.; Lu, X.; Yang, S. L.; Gu, J. R.; Haring, H. U.; Schleicher, E. D.; Lehmann, R.; Xu, G. W.,Metabonomics study on the effects of the ginsenoside Rg3in a beta-cyclodextrin-based formulation ontumor-bearing rats by a fully automatic hydrophilic interaction/reversed-phase column-switchingHPLC-ESI-MS approach. Anal Chem2008,80,(12),4680-4688.
    [43] Yin, P.; Wan, D.; Zhao, C.; Chen, J.; Zhao, X.; Wang, W.; Lu, X.; Yang, S.; Gu, J.; Xu, G., Ametabonomic study of hepatitis B-induced liver cirrhosis and hepatocellular carcinoma by using RP-LCand HILIC coupled with mass spectrometry. Mol Biosyst2009,5,(8),868-76.
    [44] Lin, L.; Huang, Z. Z.; Gao, Y.; Yan, X. M.; Xing, J. C.; Hang, W., LC-MS based serummetabonomic analysis for renal cell carcinoma diagnosis, staging, and biomarker discovery. J ProteomeRes2011,10,(3),1396-1405.
    [45] van den Berg, R. A.; Hoefsloot, H. C.; Westerhuis, J. A.; Smilde, A. K.; van der Werf, M. J.,Centering, scaling, and transformations: improving the biological information content of metabolomicsdata. BMC Genomics2006,7,142.
    [46] Mahadevan, S.; Shah, S. L.; Marrie, T. J.; Slupsky, C. M., Analysis of metabolomic data usingsupport vector machines. Analytical Chemistry2008,80,(19),7562-7570.
    [47]Pasikanti, K. K.; Esuvaranathan, K.; Ho, P. C.; Mahendran, R.; Kamaraj, R.; Wu, Q. H.; Chiong, E.;Chan, E. C. Y., Noninvasive Urinary Metabonomic Diagnosis of Human Bladder Cancer. Journal ofProteome Research2010,9,(6),2988-2995.
    [48] Fan, T. W.; Lorkiewicz, P. K.; Sellers, K.; Moseley, H. N.; Higashi, R. M.; Lane, A. N., Stableisotope-resolved metabolomics and applications for drug development. Pharmacol Ther2012,133,(3),366-91.
    [49] Boudonck, K. J.; Rose, D. J.; Karoly, E. D.; Lee, D. P.; Lawton, K. A.; Lapinskas, P. J.,Metabolomics for early detection of drug-induced kidney injury: review of the current status.Bioanalysis2009,1,(9),1645-63.
    [50] Wei, R., Metabolomics and its practical value in pharmaceutical industry. Curr Drug Metab2011,12,(4),345-58.
    [51] Waters, N. J., The role of metabonomics at the interface between drug metabolism and safetyassessment. Curr Drug Metab2010,11,(8),686-92.
    [52] Lindon, J. C.; Keun, H. C.; Ebbels, T. M.; Pearce, J. M.; Holmes, E.; Nicholson, J. K., TheConsortium for Metabonomic Toxicology (COMET): aims, activities and achievements.Pharmacogenomics2005,6,(7),691-9.
    [53] Perez-Trujillo, M.; Lindon, J. C.; Parella, T.; Keun, H. C.; Nicholson, J. K.; Athersuch, T. J., ChiralMetabonomics:1H NMR-Based Enantiospecific Differentiation of Metabolites in Human Urine viaDirect Co-Solvation with beta-Cyclodextrin. Anal Chem2012.
    [54] Chen, M.; Ni, Y.; Duan, H.; Qiu, Y.; Guo, C.; Jiao, Y.; Shi, H.; Su, M.; Jia, W., Massspectrometry-based metabolic profiling of rat urine associated with general toxicity induced by themultiglycoside of Tripterygium wilfordii Hook. f. Chem Res Toxicol2008,21,(2),288-94.
    [55] Wang, Q.; Jiang, Y.; Wu, C.; Zhao, J.; Yu, S.; Yuan, B.; Yan, X.; Liao, M., Study of a novelindolin-2-ketone compound Z24induced hepatotoxicity by NMR-spectroscopy-based metabonomics ofrat urine, blood plasma, and liver extracts. Toxicol Appl Pharmacol2006,215,(1),71-82.
    [56] Vincent, D.; LA, D. U. F.; Livk, A.; Mathesius, U.; Lipscombe, R. J.; Oliver, R. P.; Friesen, T. L.;Solomon, P. S., A functional genomics approach to dissect the mode of action of the Stagonosporanodorum effector protein SnToxA in wheat. Mol Plant Pathol2012.
    [57] Tohge, T.; Nishiyama, Y.; Hirai, M. Y.; Yano, M.; Nakajima, J.; Awazuhara, M.; Inoue, E.;Takahashi, H.; Goodenowe, D. B.; Kitayama, M.; Noji, M.; Yamazaki, M.; Saito, K., Functionalgenomics by integrated analysis of metabolome and transcriptome of Arabidopsis plantsover-expressing an MYB transcription factor. Plant J2005,42,(2),218-35.
    [58] Hewer, R.; Vorster, J.; Steffens, F. E.; Meyer, D., Applying biofluid1H NMR-based metabonomictechniques to distinguish between HIV-1positive/AIDS patients on antiretroviral treatment and HIV-1negative individuals. J Pharm Biomed Anal2006,41,(4),1442-6.
    [59] Pendyala, G.; Fox, H. S., Proteomic and metabolomic strategies to investigate HIV-associatedneurocognitive disorders. Genome Med2010,2,(3),22.
    [60] Wikoff, W. R.; Pendyala, G.; Siuzdak, G.; Fox, H. S., Metabolomic analysis of the cerebrospinalfluid reveals changes in phospholipase expression in the CNS of SIV-infected macaques. J Clin Invest2008,118,(7),2661-9.
    [1] Siddappa, N. B.; Venkatramanan, M.; Venkatesh, P.; Janki, M. V.; Jayasuryan, N.; Desai, A.; Ravi,V.; Ranga, U., Transactivation and signaling functions of Tat are not correlated: biological andimmunological characterization of HIV-1subtype-C Tat protein. Retrovirology2006,3.
    [2] Beutler, B.; Rietschel, E. T., Innate immune sensing and its roots: the story of endotoxin. Nat RevImmunol2003,3,(2),169-76.
    [3] Petsch, D.; Anspach, F. B., Endotoxin removal from protein solutions. Journal of Biotechnology2000,76,(2-3),97-119.
    [1] Apolloni, A.; Hooker, C. W.; Mak, J.; Harrich, D., Human immunodeficiency virus type1proteaseregulation of tat activity is essential for efficient reverse transcription and replication. J Virol2003,77,(18),9912-21.
    [2] Westendorp, M. O.; Frank, R.; Ochsenbauer, C.; Stricker, K.; Dhein, J.; Walczak, H.; Debatin, K.M.; Krammer, P. H., Sensitization of T cells to CD95-mediated apoptosis by HIV-1Tat and gp120.Nature1995,375,(6531),497-500.
    [3] Li, C. J.; Friedman, D. J.; Wang, C.; Metelev, V.; Pardee, A. B., Induction of apoptosis inuninfected lymphocytes by HIV-1Tat protein. Science1995,268,(5209),429-31.
    [4] Huang, L. M.; Joshi, A.; Willey, R.; Orenstein, J.; Jeang, K. T., Human immunodeficiency virusesregulated by alternative trans-activators: genetic evidence for a novel non-transcriptional function of Tatin virion infectivity. Embo J1994,13,(12),2886-96.
    [5] Marchio, S.; Alfano, M.; Primo, L.; Gramaglia, D.; Butini, L.; Gennero, L.; De Vivo, E.; Arap, W.;Giacca, M.; Pasqualini, R.; Bussolino, F., Cell surface-associated Tat modulates HIV-1infection andspreading through a specific interaction with gp120viral envelope protein. Blood2005,105,(7),2802-11.
    [6] Smith, S. M.; Pentlicky, S.; Klase, Z.; Singh, M.; Neuveut, C.; Lu, C. Y.; Reitz, M. S., Jr.; Yarchoan,R.; Marx, P. A.; Jeang, K. T., An in vivo replication-important function in the second coding exon of Tatis constrained against mutation despite cytotoxic T lymphocyte selection. J Biol Chem2003,278,(45),44816-25.
    [7] Aoki, Y.; Tosato, G., HIV-1Tat enhances Kaposi sarcoma-associated herpesvirus (KSHV)infectivity. Blood2004,104,(3),810-4.
    [8] Li, W.; Galey, D.; Mattson, M. P.; Nath, A., Molecular and cellular mechanisms of neuronal celldeath in HIV dementia. Neurotox Res2005,8,(1-2),119-34.
    [9] Gallo, R. C., Tat as one key to HIV-induced immune pathogenesis and Pat toroid as an importantcomponent of a vaccine. Proceedings of the National Academy of Sciences of the United States ofAmerica1999,96,(15),8324-8326.
    [10] Want, E. J.; Nordstrom, A.; Morita, H.; Siuzdak, G., From exogenous to endogenous: Theinevitable imprint of mass spectrometry in metabolomics. Journal of Proteome Research2007,6,459-468.
    [11] Jonsson, P.; Gullberg, J.; Nordstrom, A.; Kusano, M.; Kowalczyk, M.; Sjostrom, M.; Moritz, T., Astrategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. AnalChem2004,76,(6),1738-45.
    [12] Jonsson, P.; Johansson, A. I.; Gullberg, J.; Trygg, J.; A, J.; Grung, B.; Marklund, S.; Sjostrom, M.;Antti, H.; Moritz, T., High-throughput data analysis for detecting and identifying differences betweensamples in GC/MS-based metabolomic analyses. Anal Chem2005,77,(17),5635-42.
    [13] Banerjee, A.; Zhang, X. S.; Manda, K. R.; Banks, W. A.; Ercal, N., HIV proteins (gp120and Tat)and methamphetamine in oxidative stress-induced damage in the brain: Potential role of the thiolantioxidant N-acetylcysteine amide. Free Radical Biology and Medicine2010,48,(10),1388-1398.
    [14] Sangster, T.; Major, H.; Plumb, R.; Wilson, A. J.; Wilson, I. D., A pragmatic and readilyimplemented quality control strategy for HPLC-MS and GC-MS-based metabonomic analysis. Analyst2006,131,(10),1075-8.
    [15] Bruce, S. J.; Tavazzi, I.; Parisod, V.; Rezzi, S.; Kochhar, S.; Guy, P. A., Investigation of humanblood plasma sample preparation for performing metabolomics using ultrahigh performance liquidchromatography/mass spectrometry. Anal Chem2009,81,(9),3285-96.
    [16] Smith, C. A.; Want, E. J.; O'Maille, G.; Abagyan, R.; Siuzdak, G., XCMS: processing massspectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification.Anal Chem2006,78,(3),779-87.
    [17] Bijlsma, S.; Bobeldijk, I.; Verheij, E. R.; Ramaker, R.; Kochhar, S.; Macdonald, I. A.; van Ommen,B.; Smilde, A. K., Large-scale human metabolomics studies: a strategy for data (pre-) processing andvalidation. Anal Chem2006,78,(2),567-74.
    [18] Yao, H.; Shi, P.; Zhang, L.; Fan, X.; Shao, Q.; Cheng, Y., Untargeted metabolic profiling revealspotential biomarkers in myocardial infarction and its application. Mol Biosyst2010,6,(6),1061-70.
    [19] Mahadevan, S.; Shah, S. L.; Marrie, T. J.; Slupsky, C. M., Analysis of metabolomic data usingsupport vector machines. Analytical Chemistry2008,80,(19),7562-7570.
    [20]Pasikanti, K. K.; Esuvaranathan, K.; Ho, P. C.; Mahendran, R.; Kamaraj, R.; Wu, Q. H.; Chiong, E.;Chan, E. C. Y., Noninvasive Urinary Metabonomic Diagnosis of Human Bladder Cancer. Journal ofProteome Research2010,9,(6),2988-2995.
    [21] Giunta, B.; Hou, H.; Zhu, Y.; Rrapo, E.; Tian, J.; Takashi, M.; Commins, D.; Singer, E.; He, J.;Fernandez, F.; Tan, J., HIV-1Tat contributes to Alzheimer's disease-like pathology in PSAPP mice. Int JClin Exp Pathol2009,2,(5),433-43.
    [22] Kim, B. O.; Liu, Y.; Ruan, Y.; Xu, Z. C.; Schantz, L.; He, J. J., Neuropathologies in transgenic miceexpressing human immunodeficiency virus type1Tat protein under the regulation of theastrocyte-specific glial fibrillary acidic protein promoter and doxycycline. Am J Pathol2003,162,(5),1693-707.
    [23] Prakash, O.; Teng, S.; Ali, M.; Zhu, X. Z.; Coleman, R.; Dabdoub, R. A.; Chambers, R.; Aw, T. Y.;Flores, S. C.; Joshi, B. H., The human immunodeficiency virus type1Tat protein potentiateszidovudine-induced cellular toxicity in transgenic mice. Archives of Biochemistry and Biophysics1997,343,(2),173-180.
    [24] Larsson, M.; Hagberg, L.; Norkrans, G.; Forsman, A., Indole amine deficiency in blood andcerebrospinal fluid from patients with human immunodeficiency virus infection. J Neurosci Res1989,23,(4),441-6.
    [25] Werner, E. R.; Fuchs, D.; Hausen, A.; Jaeger, H.; Reibnegger, G.; Werner-Felmayer, G.; Dierich, M.P.; Wachter, H., Tryptophan degradation in patients infected by human immunodeficiency virus. BiolChem Hoppe Seyler1988,369,(5),337-40.
    [26] Murray, M. F., Tryptophan depletion and HIV infection: a metabolic link to pathogenesis. LancetInfect Dis2003,3,(10),644-52.
    [27] Ruddick, J. P.; Evans, A. K.; Nutt, D. J.; Lightman, S. L.; Rook, G. A.; Lowry, C. A., Tryptophanmetabolism in the central nervous system: medical implications. Expert Rev Mol Med2006,8,(20),1-27.
    [28] Samikkannu, T.; Rao, K. V.; Gandhi, N.; Saxena, S. K.; Nair, M. P., Human immunodeficiencyvirus type1clade B and C Tat differentially induce indoleamine2,3-dioxygenase and serotonin inimmature dendritic cells: Implications for neuroAIDS. J Neurovirol2010,16,(4),255-63.
    [29] Jiang, N.; Yan, X.; Zhou, W.; Zhang, Q.; Chen, H.; Zhang, Y.; Zhang, X., NMR-basedmetabonomic investigations into the metabolic profile of the senescence-accelerated mouse. J ProteomeRes2008,7,(9),3678-86.
    [30] Sekhar, R. V.; Jahoor, F.; White, A. C.; Pownall, H. J.; Visnegarwala, F.; Rodriguez-Barradas, M.C.; Sharma, M.; Reeds, P. J.; Balasubramanyam, A., Metabolic basis of HIV-lipodystrophy syndrome.Am J Physiol Endocrinol Metab2002,283,(2), E332-7.
    [31] Slama, L.; Le Camus, C.; Serfaty, L.; Pialoux, G.; Capeau, J.; Gharakhanian, S., Metabolicdisorders and chronic viral disease: the case of HIV and HCV. Diabetes Metab2009,35,(1),1-11.
    [32] Shrivastav, S.; Kino, T.; Cunningham, T.; Ichijo, T.; Schubert, U.; Heinklein, P.; Chrousos, G. P.;Kopp, J. B., Human immunodeficiency virus (HIV)-1viral protein R suppresses transcriptional activityof peroxisome proliferator-activated receptor {gamma} and inhibits adipocyte differentiation:implications for HIV-associated lipodystrophy. Mol Endocrinol2008,22,(2),234-47.
    [33] Khan, W. A.; Blobe, G. C.; Hannun, Y. A., Arachidonic acid and free fatty acids as secondmessengers and the role of protein kinase C. Cellular Signalling1995,7,(3),171-184.
    [34] Jiang, M.-C.; Lin, J.-K.; Chen, S. S. L., Inhibition of HIV-1Tat-Mediated Transactivation byQuinacrine and Chloroquine. Biochemical and Biophysical Research Communications1996,226,(1),1-7.
    [35] Sabatine, M. S.; Liu, E.; Morrow, D. A.; Heller, E.; McCarroll, R.; Wiegand, R.; Berriz, G. F.; Roth,F. P.; Gerszten, R. E., Metabolomic identification of novel biomarkers of myocardial ischemia.Circulation2005,112,(25),3868-75.
    [36] Prasada Rao, P. V.; Gardner, D. E., Effects of cadmium inhalation on mitochondrial enzymes in rattissues. J Toxicol Environ Health1986,17,(2-3),191-9.
    [37] Pocernich, C. B.; Sultana, R.; Mohmmad-Abdul, H.; Nath, A.; Butterfield, D. A., HIV-dementia,Tat-induced oxidative stress, and antioxidant therapeutic considerations. Brain Res Brain Res Rev2005,50,(1),14-26.
    [38] Huang, X.; Shao, L.; Gong, Y.; Mao, Y.; Liu, C.; Qu, H.; Cheng, Y., A metabonomiccharacterization of CCl4-induced acute liver failure using partial least square regression based on theGC/MS metabolic profiles of plasma in mice. J Chromatogr B Analyt Technol Biomed Life Sci2008,870,(2),178-85.
    [39] Schousboe, A., Role of astrocytes in the maintenance and modulation of glutamatergic andGABAergic neurotransmission. Neurochem Res2003,28,(2),347-52.
    [40] Silvers, J. M.; Aksenova, M. V.; Aksenov, M. Y.; Mactutus, C. F.; Booze, R. M., Neurotoxicity ofHIV-1tat protein: Involvement of D1dopamine receptor. Neurotoxicology2007,28,(6),1184-1190.
    [41] Holden, C. P.; Haughey, N. J.; Nath, A.; Geiger, J. D., Role of Na+/H+exchangers, excitatoryamino acid receptors and voltage-operated Ca2+channels in human immunodeficiency virus type1gp120-mediated increases in intracellular Ca2+in human neurons and astrocytes. Neuroscience1999,91,(4),1369-78.
    [42] Perez, A.; Probert, A. W.; Wang, K. K.; Sharmeen, L., Evaluation of HIV-1Tat inducedneurotoxicity in rat cortical cell culture. J Neurovirol2001,7,(1),1-10.
    [43] Ramonet, D.; Rodriguez, M. J.; Fredriksson, K.; Bernal, F.; Mahy, N., In vivo neuroprotectiveadaptation of the glutamate/glutamine cycle to neuronal death. Hippocampus2004,14,(5),586-94.
    [44] Tabucchi, A.; Carlucci, F.; Ramazzotti, E.; Re, M. C.; Marinello, F.; Rubino, M.; Pagani, R.,Analysis of purine nucleotides in lymphocytes from healthy subjects and AIDS patients. BiomedPharmacother1992,46,(1),25-9.
    [45] Tabucchi, A.; Carlucci, F.; Re, M. C.; Furlini, G.; Consolmagno, E.; Leoncini, R.; Pizzichini, M.;Marinello, E.; Rubino, M.; Pagani, R., The behavior of free purine nucleotides in lymphocytes infectedwith HIV-1virus. Biochim Biophys Acta1993,1182,(3),317-22.
    [46] Carlucci, F.; Tabucchi, A.; Perrett, D.; Pizzichini, M.; Rosi, F.; Pagani, R.; Marinello, E., Purinemetabolism in HIV-1virus-infected T lymphocyte population. Biomed Pharmacother1996,50,(10),505-9.
    [47] Pendyala, G.; Trauger, S. A.; Siuzdak, G.; Fox, H. S., Quantitative plasma proteomic profilingidentifies the vitamin E binding protein afamin as a potential pathogenic factor in SIV induced CNSdisease. J Proteome Res2010,9,(1),352-8.
    [1] Blankson, J. N.; Persaud, D.; Siliciano, R. F., The challenge of viral reservoirs in HIV-1infection.Annu Rev Med2002,53,557-93.
    [2] Fauci, A. S., Host factors and the pathogenesis of HIV-induced disease. Nature1996,384,(6609),529-34.
    [3] Westendorp, M. O.; Frank, R.; Ochsenbauer, C.; Stricker, K.; Dhein, J.; Walczak, H.; Debatin, K.M.; Krammer, P. H., Sensitization of T cells to CD95-mediated apoptosis by HIV-1Tat and gp120.Nature1995,375,(6531),497-500.
    [4] Li, C. J.; Friedman, D. J.; Wang, C.; Metelev, V.; Pardee, A. B., Induction of apoptosis inuninfected lymphocytes by HIV-1Tat protein. Science1995,268,(5209),429-31.
    [5] Secchiero, P.; Zella, D.; Capitani, S.; Gallo, R. C.; Zauli, G., Extracellular HIV-1tat proteinup-regulates the expression of surface CXC-chemokine receptor4in resting CD4+T cells. J Immunol1999,162,(4),2427-31.
    [6] Campbell, G. R.; Loret, E. P.; Spector, S. A., HIV-1Clade B Tat, but Not Clade C Tat, IncreasesX4HIV-1Entry into Resting but Not Activated CD4(+) T Cells. Journal of Biological Chemistry2010,285,(3),1681-1691.
    [7] Nazih, H.; Raffi, F.; Taieb, A.; Reynes, J.; Choutet, P.; Cassuto, J. P.; Ferry, T.; Chene, G.; Leport,C.; Bard For The Aproco-Copilote Anrs Co08Study Group, J. M., Peroxisome Proliferator ActivatingReceptor (PPAR) Alpha and Gamma Polymorphisms and Metabolic Abnormalities in HIV-InfectedPatients Receiving Highly Active Antiretroviral Therapy: The ANRS CO8APROCO-COPILOTE Study.AIDS Res Hum Retroviruses2011.
    [8] Bevilacqua, M.; Dominguez, L. J.; Barbagallo, M., Insulin Resistance and the cardiometabolicsyndrome in HIV infection. J Cardiometab Syndr2009,4,(1),40-3.
    [9] Grima, P.; Guido, M.; Chiavaroli, R.; Stano, F.; Tundo, P.; Tana, M.; de Donno, A.; Zizza, A.,Altered phosphate metabolism in HIV-1-infected patients with metabolic syndrome. Scand J Infect Dis2011.
    [10]Howard, A. A.; Floris-Moore, M.; Arnsten, J. H.; Santoro, N.; Fleischer, N.; Lo, Y.; Schoenbaum, E.E., Disorders of glucose metabolism among HIV-infected women. Clin Infect Dis2005,40,(10),1492-9.
    [11] Howard, A. A.; Floris-Moore, M.; Lo, Y.; Arnsten, J. H.; Fleischer, N.; Klein, R. S., Abnormalglucose metabolism among older men with or at risk of HIV infection. HIV Med2006,7,(6),389-96.
    [12] Gutierrez, A. D.; Balasubramanyam, A., Dysregulation of glucose metabolism in HIV patients:epidemiology, mechanisms, and management. Endocrine2011.
    [13] Chen, M.; Ni, Y.; Duan, H.; Qiu, Y.; Guo, C.; Jiao, Y.; Shi, H.; Su, M.; Jia, W., Massspectrometry-based metabolic profiling of rat urine associated with general toxicity induced by themultiglycoside of Tripterygium wilfordii Hook. f. Chem Res Toxicol2008,21,(2),288-94.
    [14] Gao, P.; Lu, C.; Zhang, F.; Sang, P.; Yang, D.; Li, X.; Kong, H.; Yin, P.; Tian, J.; Lu, X.; Lu, A.; Xu,G., Integrated GC-MS and LC-MS plasma metabonomics analysis of ankylosing spondylitis. Analyst2008,133,(9),1214-20.
    [15] Wu, Z.; Li, M.; Zhao, C.; Zhou, J.; Chang, Y.; Li, X.; Gao, P.; Lu, X.; Li, Y.; Xu, G., Urinarymetabonomics study in a rat model in response to protein-energy malnutrition by using gaschromatography-mass spectrometry and liquid chromatography-mass spectrometry. Mol Biosyst2010,6,(11),2157-63.
    [16] Liao, W.; Tan, G.; Zhu, Z.; Chen, Q.; Lou, Z.; Dong, X.; Zhang, W.; Pan, W.; Chai, Y., HIV-1Tatinduces biochemical changes in the serum of mice. Virology2012,422,(2),288-96.
    [17] Ensoli, B.; Buonaguro, L.; Barillari, G.; Fiorelli, V.; Gendelman, R.; Morgan, R. A.; Wingfield, P.;Gallo, R. C., Release, uptake, and effects of extracellular human immunodeficiency virus type1Tatprotein on cell growth and viral transactivation. J Virol1993,67,(1),277-87.
    [18] Avraham, H. K.; Jiang, S.; Lee, T. H.; Prakash, O.; Avraham, S., HIV-1Tat-mediated effects onfocal adhesion assembly and permeability in brain microvascular endothelial cells. J Immunol2004,173,(10),6228-33.
    [19] Perry, S. W.; Barbieri, J.; Tong, N.; Polesskaya, O.; Pudasaini, S.; Stout, A.; Lu, R.; Kiebala, M.;Maggirwar, S. B.; Gelbard, H. A., Human immunodeficiency virus-1Tat activates calpain proteases viathe ryanodine receptor to enhance surface dopamine transporter levels and increase transporter-specificuptake and Vmax. J Neurosci2010,30,(42),14153-64.
    [20] Chi, X.; Amet, T.; Byrd, D.; Chang, K.-H.; Shah, K.; Hu, N.; Grantham, A.; Hu, S.; Duan, J.; Tao,F.; Nicol, G.; Yu, Q., Direct Effects of HIV-1Tat on Excitability and Survival of Primary Dorsal RootGanglion Neurons: Possible Contribution to HIV-1-Associated Pain. PLoS ONE2011,6,(9), e24412.
    [21] Dietmair, S.; Timmins, N. E.; Gray, P. P.; Nielsen, L. K.; Kromer, J. O., Towards quantitativemetabolomics of mammalian cells: development of a metabolite extraction protocol. Anal Biochem2010,404,(2),155-64.
    [22] Hollenbaugh, J. A.; Munger, J.; Kim, B., Metabolite profiles of human immunodeficiency virusinfected CD4+T cells and macrophages using LC-MS/MS analysis. Virology2011.
    [23] Smith, C. A.; Want, E. J.; O'Maille, G.; Abagyan, R.; Siuzdak, G., XCMS: processing massspectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification.Anal Chem2006,78,(3),779-87.
    [24] Bijlsma, S.; Bobeldijk, I.; Verheij, E. R.; Ramaker, R.; Kochhar, S.; Macdonald, I. A.; van Ommen,B.; Smilde, A. K., Large-scale human metabolomics studies: a strategy for data (pre-) processing andvalidation. Anal Chem2006,78,(2),567-74.
    [25] Yao, H.; Shi, P.; Zhang, L.; Fan, X.; Shao, Q.; Cheng, Y., Untargeted metabolic profiling revealspotential biomarkers in myocardial infarction and its application. Mol Biosyst2010,6,(6),1061-70.
    [26] Livak, K. J.; Schmittgen, T. D., Analysis of relative gene expression data using real-timequantitative PCR and the2(-Delta Delta C(T)) Method. Methods2001,25,(4),402-8.
    [27] Mahadevan, S.; Shah, S. L.; Marrie, T. J.; Slupsky, C. M., Analysis of metabolomic data usingsupport vector machines. Analytical Chemistry2008,80,(19),7562-7570.
    [28]Pasikanti, K. K.; Esuvaranathan, K.; Ho, P. C.; Mahendran, R.; Kamaraj, R.; Wu, Q. H.; Chiong, E.;Chan, E. C. Y., Noninvasive Urinary Metabonomic Diagnosis of Human Bladder Cancer. Journal ofProteome Research2010,9,(6),2988-2995.
    [29] Roe, B.; Kensicki, E.; Mohney, R.; Hall, W. W., Metabolomic profile of hepatitis C virus-infectedhepatocytes. PLoS One2011,6,(8), e23641.
    [30] van der Werf, M. J.; Jellema, R. H.; Hankemeier, T., Microbial metabolomics: replacingtrial-and-error by the unbiased selection and ranking of targets. J Ind Microbiol Biotechnol2005,32,(6),234-52.
    [31] Cuperlovic-Culf, M.; Barnett, D. A.; Culf, A. S.; Chute, I., Cell culture metabolomics: applicationsand future directions. Drug Discov Today2010,15,(15-16),610-21.
    [32] Kino, T.; Mirani, M.; Alesci, S.; Chrousos, G. P., AIDS-related lipodystrophy/insulin resistancesyndrome. Horm Metab Res2003,35,(3),129-36.
    [33] Brown, T. T.; Tassiopoulos, K.; Bosch, R. J.; Shikuma, C.; McComsey, G. A., Association betweensystemic inflammation and incident diabetes in HIV-infected patients after initiation of antiretroviraltherapy. Diabetes Care2010,33,(10),2244-9.
    [34] Sabatine, M. S.; Liu, E.; Morrow, D. A.; Heller, E.; McCarroll, R.; Wiegand, R.; Berriz, G. F.; Roth,F. P.; Gerszten, R. E., Metabolomic identification of novel biomarkers of myocardial ischemia.Circulation2005,112,(25),3868-75.
    [35] Cifone, M. G.; Alesse, E.; Di Marzio, L.; Ruggeri, B.; Zazzeroni, F.; Moretti, S.; Famularo, G.;Steinberg, S. M.; Vullo, E.; De Simone, C., Effect of L-carnitine treatment in vivo on apoptosis andceramide generation in peripheral blood lymphocytes from AIDS patients. Proc Assoc Am Physicians1997,109,(2),146-53.
    [36] Moretti, S.; Alesse, E.; Di Marzio, L.; Zazzeroni, F.; Ruggeri, B.; Marcellini, S.; Famularo, G.;Steinberg, S. M.; Boschini, A.; Cifone, M. G.; De Simone, C., Effect of L-carnitine on humanimmunodeficiency virus-1infection-associated apoptosis: a pilot study. Blood1998,91,(10),3817-24.
    [37] Di Marzio, L.; Alesse, E.; Roncaioli, P.; Muzi, P.; Moretti, S.; Marcellini, S.; Amicosante, G.; DeSimone, C.; Cifone, M. G., Influence of L-carnitine on CD95cross-lining-induced apoptosis andceramide generation in human cell lines: correlation with its effects on purified acidic and neutralsphingomyelinases in vitro. Proc Assoc Am Physicians1997,109,(2),154-63.
    [38] Duong, C. Q.; Bared, S. M.; Abu-Khader, A.; Buechler, C.; Schmitz, A.; Schmitz, G., Expression ofthe lysophospholipid receptor family and investigation of lysophospholipid-mediated responses inhuman macrophages. Biochim Biophys Acta2004,1682,(1-3),112-9.
    [39] Kabarowski, J. H., G2A and LPC: regulatory functions in immunity. Prostaglandins Other LipidMediat2009,89,(3-4),73-81.
    [40] Oestvang, J.; Johansen, B., PhospholipaseA2: a key regulator of inflammatory signalling and aconnector to fibrosis development in atherosclerosis. Biochim Biophys Acta2006,1761,(11),1309-16.
    [41] Aoki, J.; Nagai, Y.; Hosono, H.; Inoue, K.; Arai, H., Structure and function ofphosphatidylserine-specific phospholipase A1. Biochim Biophys Acta2002,1582,(1-3),26-32.
    [42] Stewart, A.; Ghosh, M.; Spencer, D. M.; Leslie, C. C., Enzymatic properties of human cytosolicphospholipase A(2)gamma. J Biol Chem2002,277,(33),29526-36.
    [43] Han, K. H.; Hong, K. H.; Ko, J.; Rhee, K. S.; Hong, M. K.; Kim, J. J.; Kim, Y. H.; Park, S. J.,Lysophosphatidylcholine up-regulates CXCR4chemokine receptor expression in human CD4T cells. JLeukoc Biol2004,76,(1),195-202.
    [44] Yopp, A. C.; Randolph, G. J.; Bromberg, J. S., Leukotrienes, sphingolipids, and leukocytetrafficking. J Immunol2003,171,(1),5-10.
    [45] Olivera, A.; Rivera, J., Sphingolipids and the balancing of immune cell function: lessons from themast cell. J Immunol2005,174,(3),1153-8.
    [46] Pavoine, C.; Pecker, F., Sphingomyelinases: their regulation and roles in cardiovascularpathophysiology. Cardiovasc Res2009,82,(2),175-83.
    [47] Steinbrecher, U. P.; Gomez-Munoz, A.; Duronio, V., Acid sphingomyelinase in macrophageapoptosis. Curr Opin Lipidol2004,15,(5),531-7.
    [48] Liang WS, M. A., Teslovich TM, de la Fuente C, Agbottah E, Dadgar S, Kehn K, Hautaniemi S,Pumfery A, Stephan DA, Kashanchi F., Therapeutic targets for HIV-1infection in the host proteome.Retrovirology..2005, Mar21;2:20.
    [49] Campbell, G. R.; Pasquier, E.; Watkins, J.; Bourgarel-Rey, V.; Peyrot, V.; Esquieu, D.; Barbier, P.;de Mareuil, J.; Braguer, D.; Kaleebu, P.; Yirrell, D. L.; Loret, E. P., The glutamine-rich region of theHIV-1Tat protein is involved in T-cell apoptosis. J Biol Chem2004,279,(46),48197-204.
    [50] Samikkannu, T.; Rao, K. V.; Gandhi, N.; Saxena, S. K.; Nair, M. P., Human immunodeficiencyvirus type1clade B and C Tat differentially induce indoleamine2,3-dioxygenase and serotonin inimmature dendritic cells: Implications for neuroAIDS. J Neurovirol2010,16,(4),255-63.
    [51]Boasso, A.; Herbeuval, J. P.; Hardy, A. W.; Anderson, S. A.; Dolan, M. J.; Fuchs, D.; Shearer, G. M.,HIV inhibits CD4+T-cell proliferation by inducing indoleamine2,3-dioxygenase in plasmacytoiddendritic cells. Blood2007,109,(8),3351-9.
    1. Lorey, S.; Stockel-Maschek, A.; Faust, J.; Brandt, W.; Stiebitz, B.; Gorrell, M. D.; Kahne, T.;Mrestani-Klaus, C.; Wrenger, S.; Reinhold, D.; Ansorge, S.; Neubert, K., Different modes of dipeptidylpeptidase IV (CD26) inhibition by oligopeptides derived from the N-terminus of HIV-1Tat indicate atleast two inhibitor binding sites. Eur J Biochem2003,270,(10),2147-56.
    2. Gutheil, W. G.; Subramanyam, M.; Flentke, G. R.; Sanford, D. G.; Munoz, E.; Huber, B. T.;Bachovchin, W. W., Human immunodeficiency virus1Tat binds to dipeptidyl aminopeptidase IV(CD26): a possible mechanism for Tat's immunosuppressive activity. Proc Natl Acad Sci U S A1994,91,(14),6594-8.
    3. Wrenger, S.; Faust, J.; Mrestani-Klaus, C.; Fengler, A.; Stockel-Maschek, A.; Lorey, S.; Kahne, T.;Brandt, W.; Neubert, K.; Ansorge, S.; Reinhold, D., Down-regulation of T cell activation followinginhibition of dipeptidyl peptidase IV/CD26by the N-terminal part of the thromboxane A2receptor. JBiol Chem2000,275,(29),22180-6.
    4. Tahirov, T. H.; Babayeva, N. D.; Varzavand, K.; Cooper, J. J.; Sedore, S. C.; Price, D. H., Crystalstructure of HIV-1Tat complexed with human P-TEFb. Nature2009,465,(7299),747-51.
    5. Anand, K.; Schulte, A.; Vogel-Bachmayr, K.; Scheffzek, K.; Geyer, M., Structural insights into thecyclin T1-Tat-TAR RNA transcription activation complex from EIAV. Nat Struct Mol Biol2008,15,(12),1287-92.
    6. Ruben, S.; Perkins, A.; Purcell, R.; Joung, K.; Sia, R.; Burghoff, R.; Haseltine, W. A.; Rosen, C. A.,Structural and functional characterization of human immunodeficiency virus tat protein. J Virol1989,63,(1),1-8.
    7. Vives, E.; Brodin, P.; Lebleu, B., A truncated HIV-1Tat protein basic domain rapidly translocatesthrough the plasma membrane and accumulates in the cell nucleus. J Biol Chem1997,272,(25),16010-7.
    8. Chang, H. C.; Samaniego, F.; Nair, B. C.; Buonaguro, L.; Ensoli, B., HIV-1Tat protein exits fromcells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfateproteoglycans through its basic region. AIDS1997,11,(12),1421-31.
    9. Ensoli, B.; Buonaguro, L.; Barillari, G.; Fiorelli, V.; Gendelman, R.; Morgan, R. A.; Wingfield, P.;Gallo, R. C., Release, uptake, and effects of extracellular human immunodeficiency virus type1Tatprotein on cell growth and viral transactivation. J Virol1993,67,(1),277-87.
    10. Demirhan, I.; Chandra, A.; Mueller, F.; Mueller, H.; Biberfeld, P.; Hasselmayer, O.; Chandra, P.,Antibody spectrum against the viral transactivator protein in patients with human immunodeficiencyvirus type1infection and Kaposi's sarcoma. Journal of Human Virology2000,3,(3),137-143.
    11. Krone, W. J. A.; Debouck, C.; Epstein, L. G.; Heutink, P.; Meloen, R.; Goudsmit, J., NaturalAntibodies to Hiv-Tat Epitopes and Expression of Hiv-1Genes Invivo. Journal of Medical Virology1988,26,(3),261-270.
    12. Zagury, J. F.; Sill, A.; Blattner, W.; Lachgar, A.; Le Buanec, H.; Richardson, M.; Rappaport, J.;Hendel, H.; Bizzini, B.; Gringeri, A.; Carcagno, M.; Criscuolo, M.; Burny, A.; Gallo, R. C.; Zagury, D.,Antibodies to the HIV-1Tat protein correlated with nonprogression to AIDS: a rationale for the use ofTat toxoid as an HIV-1vaccine. J Hum Virol1998,1,(4),282-92.
    13. Butto, S.; Fiorelli, V.; Tripiciano, A.; Ruiz-Alvarez, M. J.; Scoglio, A.; Ensoli, F.; Ciccozzi, M.;Collacchi, B.; Sabbatucci, M.; Cafaro, A.; Guzman, C. A.; Borsetti, A.; Caputo, A.; Vardas, E.; Colvin,M.; Lukwiya, M.; Rezza, G.; Ensoli, B., Sequence conservation and antibody cross-recognition of cladeB human immunodeficiency virus (HIV) type1Tat protein in HIV-1-infected Italians, Ugandans, andSouth Africans. J Infect Dis2003,188,(8),1171-80.
    14. Rezza, G.; Fiorelli, V.; Dorrucci, M.; Ciccozzi, M.; Tripiciano, A.; Scoglio, A.; Collacchi, B.;Ruiz-Alvarez, M.; Giannetto, C.; Caputo, A.; Tomasoni, L.; Castelli, F.; Sciandra, M.; Sinicco, A.;Ensoli, F.; Butto, S.; Ensoli, B., The presence of anti-Tat antibodies is predictive of long-termnonprogression to AIDS or severe immunodeficiency: findings in a cohort of HIV-1seroconverters. JInfect Dis2005,191,(8),1321-4.
    15. Senkaali, D.; Kebba, A.; Shafer, L. A.; Campbell, G. R.; Loret, E. P.; Van Der Paal, L.; Grosskurth,H.; Yirrell, D.; Kaleebu, P., Tat-specific binding IgG and disease progression in HIV type1-infectedUgandans. AIDS Res Hum Retroviruses2008,24,(4),587-94.
    16. Re, M. C.; Gibellini, D.; Furlini, G.; Vignoli, M.; Vitone, F.; Bon, I.; La Placa, M., Relationshipsbetween the presence of anti-Tat antibody, DNA and RNA viral load. New Microbiol2001,24,(3),207-15.
    17. Gregoire, C.; Peloponese, J. M., Jr.; Esquieu, D.; Opi, S.; Campbell, G.; Solomiac, M.; Lebrun, E.;Lebreton, J.; Loret, E. P., Homonuclear (1)H-NMR assignment and structural characterization of humanimmunodeficiency virus type1Tat Mal protein. Biopolymers2001,62,(6),324-35.
    18. Peloponese, J. M., Jr.; Gregoire, C.; Opi, S.; Esquieu, D.; Sturgis, J.; Lebrun, E.; Meurs, E.;Collette, Y.; Olive, D.; Aubertin, A. M.; Witvrow, M.; Pannecouque, C.; De Clercq, E.; Bailly, C.;Lebreton, J.; Loret, E. P.,1H-13C nuclear magnetic resonance assignment and structuralcharacterization of HIV-1Tat protein. C R Acad Sci III2000,323,(10),883-94.
    19. Bayer, P.; Kraft, M.; Ejchart, A.; Westendorp, M.; Frank, R.; Rosch, P., Structural studies of HIV-1Tat protein. J Mol Biol1995,247,(4),529-35.
    20. Watkins, J. D.; Campbell, G. R.; Halimi, H.; Loret, E. P., Homonuclear1H NMR and circulardichroism study of the HIV-1Tat Eli variant. Retrovirology2008,5,83.
    21. Shojania, S.; O'Neil, J. D., HIV-1Tat is a natively unfolded protein: the solution conformation anddynamics of reduced HIV-1Tat-(1-72) by NMR spectroscopy. J Biol Chem2006,281,(13),8347-56.
    22. Watkins, J. D.; Lancelot, S.; Campbell, G. R.; Esquieu, D.; de Mareuil, J.; Opi, S.; Annappa, S.;Salles, J. P.; Loret, E. P., Reservoir cells no longer detectable after a heterologous SHIV challenge withthe synthetic HIV-1Tat Oyi vaccine. Retrovirology2006,3,8.
    23. Jiang, S. H.; Wang, J. F.; Xu, R.; Liu, Y. J.; Wang, X. N.; Cao, J.; Zhao, P.; Shen, Y. J.; Yang, T.;Yang, H.; Jia, J. A.; Chen, Q. L.; Pan, W., Alternate arrangement of PpL B3domain and SpA D domaincreates synergistic double-site binding to VH3and Vkappa regions of fab. DNA Cell Biol2008,27,(8),423-31.
    24. Kashi, V. P.; Jacob, R. A.; Paul, S.; Nayak, K.; Satish, B.; Swaminathan, S.; Satish, K. S.; Ranga,U., HIV-1Tat-specific IgG antibodies in high-responders target a B-cell epitope in the cysteine-richdomain and block extracellular Tat efficiently. Vaccine2009,27,(48),6739-6747.
    25. Siddappa, N. B.; Venkatramanan, M.; Venkatesh, P.; Janki, M. V.; Jayasuryan, N.; Desai, A.; Ravi,V.; Ranga, U., Transactivation and signaling functions of Tat are not correlated: biological andimmunological characterization of HIV-1subtype-C Tat protein. Retrovirology2006,3,53.
    26. Cao, J.; Chen, Q.; Zhang, H.; Qi, P.; Liu, C.; Yang, X.; Wang, N.; Qian, B.; Wang, J.; Jiang, S.;Yang, H.; Sun, S.; Pan, W., Novel evolved immunoglobulin (Ig)-binding molecules enhance thedetection of IgM against hepatitis C virus. PLoS One2011,6,(4), e18477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700