周期力场作用下矩形通道内流动与传热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当反应堆在受到周期性变化的外力场作用时,系统内的热工水力特性将受其影响而表现一系列变化,进而对反应堆运行特性产生影响。因此本文对竖直静止及摇摆状态周期力场作用下窄间隙矩形通道内的流动传热特性分别进行了理论分析、数值计算及实验研究。
     竖直静止状态下矩形通道内热工水力特性研究表明,矩形通道层流-湍流转捩雷诺数随高宽比增大而减小,而加热会导致层流-湍流转捩延迟。窄间隙矩形通道内的过冷沸腾传热特性与大尺寸流道经验关系式存在较大差异,本文通过引入流动沸腾-池式沸腾汽泡脱离直径比,建立了矩形通道过冷沸腾传热计算模型,并在实验基础上提出了矩形通道内单相及沸腾压降及传热计算关系式。
     摇摆状态周期力场作用下的单相流量脉动特性受驱动力、周期力场及阻力特性的影响,当驱动力大于10倍周期力场时,流量将不会出现显著的变化,而在驱动力足以引起流量出现变化条件下,当通过增加回路阻力减小流量时,流量脉动幅度随平均流量减小而减小,当通过降低驱动力减小流量时,流量脉动幅度随平均流量减小而增大。当流量没有出现显著变化时,径向周期力场引起二次流对矩形通道内流动传热特性的影响随窄边尺寸增加而增大,对于截面尺寸为2×40mm的矩形通道而言,数值计算及实验研究均表明径向周期力场引起二次流变化不足以引起宏观流动传热特性发生变化,因此其影响可以完全忽略,而实验研究也证实摇摆状态周期力场下矩形通道内的流动传热特性与竖直静止状态完全一致。此外,实验研究还表明当径向周期力场的作用可以忽略时,摇摆状态周期力场诱发的流量脉动与变驱动力引起的脉动流流动传热特性具有一致性,而流量脉动引起的速度径向分布改变将导致流动传热特性与竖直静止状态存在差异。在实验过程中还采用改变驱动力实现流量调节的方式下获得了当前实验回路流量脉动幅度与平均流量及摇摆运动参数的关系,分析了阻力传热脉动幅度与流量脉动幅度之间的关系,建立了摇摆状态周期力场作用下的脉动流阻力传热计算关系式。
     摇摆状态周期力场作用下沸腾压降及传热特性实验研究表明质量流速变化规律与实验段出口含气率密切相关,在低出口含气率区域,摇摆运动引起的周期性附加惯性力场并未引起沸腾压降及传热特性发生变化,因此该状态下的沸腾压降及传热特性与竖直静止状态相同;当出口含气率达到一定程度后,摇摆状态下系统空间位置改变引起浮升力在非惯性系中的作用方向及大小发生周期性变化,进而引起汽泡在冷凝器入口处周期性壅塞并引起流道内压力出现变化、沸腾强度及沸腾质量流速周期性的脉动;由于摩擦压降主要与质量含气率相关,因此竖直静止状态下的关系式仍具有适用性,但质量流量脉动导致饱和沸腾传热特性与竖直静止状态存在显著差异。
The thermal-hydraulic characteristics of nuclear reactor system are influenced bythe periodic force field under rolling motion conditions, and then the performancecharacteristic of nuclear reactor will be affected. In this paper, the flow and heat transfercharacteristics of rectangular channel in both static state and periodic force field thatinduced by rolling motion are investigated through theoretical, numerical andexperimental methods.
     Experimental studies of the thermal hydraulics for rectangular channel in static stateshow that the laminar to turbulent transition Reynolds number decreases with theincrease of channel aspect ratio, whereas the wall heating leads to the delay of thetransition. In addition, the experimental results also indicate that the subcooled boilingheat transfer in rectangular channel is different from that in large channels, thus a modifyfactor based on the ratio of bubble departure diameter in flow boiling and pool boiling isintroduced to develop the subcooled boiling heat transfer model in rectangular channel.Furthermore, a series of prediction correlations are developed to calculate the single andtwo-phase flow friction and heat transfer characteristics.
     Theoretical studies show that the single-phase flow rate pulsation characteristics inperiodic force field are influenced by driving force, additional periodic force andresistance characteristics. The flow rate will not affect by the periodic force field whenthe amplitude of the driven force is10times larger than the periodic force field. However,as the periodic force is large enough to make flow rate pulsate fiercely, the amplitude offlow rate pulsation decreases with the decrease of average flow rate if the flow rate isrestricted through increasing the loop’s resistance, furthermore, the tendency is oppositeif the flow rate is adjusted by decreasing the driving force. As the flow rate does notpulsate notably, the effect of the radial periodic force field on secondary flow andtemperature field increases with the increase of the size of narrow side. In addition, bothnumerical analysis and experimental study indicate that the variation of secondary flowand temperature field induced by the radial periodic force field will not change themacroscope friction and heat transfer characteristics of the narrow rectangular channelwith a cross section of2×40mm. Experimental results also show that the thermal hydraulic characteristics of pulsation flow that induced by rolling motion and periodicdriving force are the same as the influence of radical periodic force can be neglected. Therelationship among flow rate pulsation amplitude, average flow rate and rollingparameters are derived as the flow rate adjusted by changing the driving force, then thefriction and heat transfer calculation correlations are obtained in periodic force fieldcondition.
     The flow boiling heat transfer experiments in periodic force field indicate that thevariation of mass flow rate relates closely to the outlet mass quality. In low mass qualityexit region, the boiling pressure drop and heat transfer characteristics are not influencedby the periodic force field and the calculation correlations are the same as that in staticcondition. However, as the mass quality reaches a certain value, the variation ofbouyancy force quantity and operating direction which induced by the rolling motionwill introduce the bubble coalescence periodically at the condenser’s exit and then resultin the loop blocking. Therefore the pressure, the boiling intensity and the flow rate in thechannel also varies accordingly. The correlations for friction pressure drop applied to thesteady state are also valid for that under rolling motion conditions for it mainlydepending on the mass quality. However, the saturation boiling heat transfercharacteristics in periodic force field show notable difference with that in steady stateowing to the flow rate fluctuations.
引文
[1] John B W. I., Herman Merte J. Natural circulation experiments in anoscillating force field[R]. The University of Michigan,1965.
    [2] Isshiki N. Effects of heaving and listing upon thermo-hydraulicperformance and critical Heat flux of water-cooled marine reactors[J].Nuclear Engineering and Design,1966,4(2):138-162.
    [3] Nishihara H. Space-Dependent Behavior of a Boiling Water Reactor by anAdiabatic Mode[J]. Journal of Nuclear Science and Technology,1966,12(3):528-533.
    [4] Kurosawa A., Fujiie Y. Two Phase Flow Behavior Induced by Ship'sMotion[J]. Journal of Nuclear Science and Technology,1967,11(4):584-586.
    [5] Tomoo O., Akira K. Critical Heat flux of forced convection boiling inan oscillating acceleration field—I.General Trends[J]. NuclearEngineering and Design,1982,71:15-26.
    [6] Tomoo O., Akira K. Critical Heat flux of forced convection boiling inan oscillating acceleration field—II.Contribution of flow oscillation[J]. Nuclear Engineering and Design,1983,76:13-21.
    [7] Tomoo O., Akira K. Critical Heat flux of forced convection boiling inan oscillating acceleration field—III.Reduction mechanism of CHF insubcooled flow boiling[J]. Nuclear Engineering and Design,1984,79:19-30.
    [8]张金玲,郭玉君,秋穗正.船用核动力装置自然循环载热能力的分析与计算[J].西安交通大学学报,1994,28(6):35-42.
    [9]庞凤阁,高璞珍,王兆祥.海洋条件对自然循环影响的理论研究[J].核动力工程,1995,16(4):330-334.
    [10]苏光辉,张金玲,郭玉君.海洋条件对船用核动力堆余热排出系统特性的影响[J].原子能科学技术,1996,30(6):487-491.
    [11] Ishida T., Yao T., Teshima N. Experiments of Two-phase Flow Dynamicsof Marine Reactor Behavior under Heaving Motion[J]. Journal of NuclearScience and Technology,1997,34(8):771-782.
    [12]高璞珍,王兆祥,刘顺隆.起伏对强制循环和自然循环的影响[J].核科学与工程,1999,19(2):116-120.
    [13]姜春林,贾宝山.海洋条件对船用核动力装置冷却系统影响的计算[J].实验技术与管理,2003,20(3):51-55.
    [14] Pendyala R., Jayanti S., Balakrishnan A. R. Convective Heat transferin single-phase flow in a vertical tube subjected to axial low frequencyoscillations[J]. Heat and Mass Transfer,2008,44(7):857-864.
    [15] Pendyala R., Jayanti S., Balakrishnan A. R. Flow and pressure dropfluctuations in a vertical tube subject to low frequencyoscillations[J]. Nuclear Engineering and Design,2008,238:178-187.
    [16]姜胜耀,杨星团,宫厚军.起伏因素影响自然循环流动的机理分析[J].原子能科学技术,2009,43(增刊):92-96.
    [17] Hong G., Yan X., Yang Y., et al. Experimental study on onset of nucleateboiling in narrow rectangular channel under static and heavingconditions[J]. Annals of Nuclear Energy,2012,39(1):26-34.
    [18] Hong G., Yan X., Yang Y., et al. Experimental research of bubblecharacteristics in narrow rectangular channel under heaving motion[J].International Journal of Thermal Sciences,2012,51(0):42-50.
    [19] Hong G., Yan X., Yang Y., et al. Bubble departure size in forcedconvective subcooled boiling flow under static and heavingconditions[J]. Nuclear Engineering and Design,2012,247(0):202-211.
    [20] Aslam M., Godden W. G., Scalise D. T. Sloshing of water in toruspressure-suppression pool of boiling water reactors under earthquakeground motions[R]. California Univ., Berkeley (USA). Lawrence BerkeleyLab.,1978.
    [21] Ma D. C., Liu W. K., Gvildys J., et al. Seismically-induced sloshingphenomena in LMFBR reactor tanks[R]. Argonne National Lab., IL (USA);Northwestern Univ., Evanston, IL (USA). Dept. of Mechanical and NuclearEngineering,1982.
    [22] Wu T., Gvildys J., Seidensticker R. W. Sloshing of coolant in aseismically isolated reactor[R]. Argonne National Lab., IL (USA),1988.
    [23] Chen W. W. Seismic analysis of a sodium-filled tank[R]. WestinghouseHanford Co., Richland, WA (United States),1990.
    [24] Hirano M., Tamakoshi T. An analytical study on excitation ofnuclear-coupled thermal hydraulic instability due to seismicallyinduced resonance in BWR[J]. Nuclear Engineering and Design,1996,162(2–3):307-315.
    [25] Watanabe T. On the numerical approach for simulating reactor thermalhydraulics under seismic conditions[J]. Annals of Nuclear Energy,2012,49(0):200-206.
    [26] Ishida T., Kusunoki T., Murata H., et al. Thermal-hydraulic behaviorof a marine reactor during oscillations[J]. Nuclear Engineering andDesign,1990,120:213-225.
    [27] Ishida T., Kusunoki T., Ochai M. Effects by Sea Wave on ThermalHydraulics of Marine Reactor System[J]. Journal of Nuclear Science andTechnology,1995,32(8):740-751.
    [28] Ishida T., Yoritsune T. Effects of ship motions on natural circulationof deep sea research reactor DRX[J]. Nuclear Engineering and Design,2002,215:51-67.
    [29] Murata H., Iyori I., Kobayashi M. Natural circulation characteristicsof a marine reactor in rolling motion[J]. Nuclear Engineering and Design,1990,118:141-154.
    [30] Murata H., Sawada K., Kobayashi M. Experimental Investigation ofNatural Convection in a Core of a Marine Reactor in Rolling Motion[J].Journal of Nuclear and Technology,2000,37(6):509-517.
    [31] Murata H., Sawada K., Kobayashi M. Natural circulation characteristicsof a marine reactor in rolling motion and Heat transfer in the core[J].Nuclear Engineering and Design,2002,215:69-85.
    [32]高璞珍,庞凤阁,王兆祥.核动力装置一回路冷却剂受海洋条件影响的数学模型[J].哈尔滨工程大学学报,1997,18(1):24-27.
    [33]高璞珍,刘顺隆,王兆祥.纵摇和横摇对自然循环的影响[J].核动力工程,1999,20(3):228-231.
    [34]杨钰,贾宝山,俞冀阳.海洋条件下冷却剂系统自然循环仿真模型[J].核科学与工程,2002,22(2):125-129.
    [35]杨钰,贾宝山,俞冀阳.简谐海洋条件下堆芯冷却剂系统自然循环能力分析[J].核科学与工程,2002,22(3):199-209.
    [36]谭思超,张红岩,庞凤阁.摇摆运动下单相自然循环流动特点[J].核动力工程,2005,26(6):554-558.
    [37]谭思超,高璞珍,苏光辉.摇摆运动条件下自然循环流动的实验和理论研究[J].哈尔滨工程大学学报,2007,28(11):1213-1217.
    [38]谭思超,高璞珍,苏光辉.摇摆运动条件下自然循环温度波动特性[J].原子能科学技术,2008,42(8):673-677.
    [39]于雷,鄢炳火,陈玉清.海基核动力装置自然循环数学模型的建立与运行特性研究[J].原子能科学技术,2008,42(增刊):116-122.
    [40]贾辉,谭思超,高璞珍.摇摆引起的波动对单相自然循环换热的影响[J].核动力工程,2010,31(S1):44-48.
    [41]鄢炳火,李勇全,于雷.摇摆条件下非能动余热排出系统的实验研究[J].原子能科学与技术,2008,42(增刊):123-126.
    [42]鄢炳火,于雷,张杨伟.简谐海洋条件下自然循环运行特性[J].原子能科学与技术,2009,43(3):230-236.
    [43]鄢炳火,于雷,张杨伟.海洋条件下核动力装置自然循环流动特性的无量纲分析[J].核动力工程,2009,30(1):36-39.
    [44]卢冬华,肖泽军,陈炳德.运动状态下压水堆自然循环比例模拟方法研究[J].核动力工程,2009,30(6):28-37.
    [45]谭思超,高璞珍,苏光辉.摇摆运动下系统空间布置对自然循环流动特性的影响[J].西安交通大学学报,2008,42(11):1408-1412.
    [46]曹夏昕,阎昌琪,孙立成.摇摆状态下竖直管内单相水摩擦压降特性分析[J].哈尔滨工程大学学报,2006,27(6):834-838.
    [47]张金红,阎昌琪,曹夏昕.摇摆状态下水平管中单相水的摩擦阻力实验研究[J].核动力工程,2008,29(4):44-49.
    [48] Du S., Zhang H. Investigation on Friction Resistance of ForcedCirculation in a Circular Tube under Incline and Rolling Conditions[Z].Xi'an, China:2010.
    [49]幸奠川,阎昌琪,高璞珍.摇摆条件下矩形通道内单相水强制循环流动特性研究[J].核动力工程,2011,32(1):112-115.
    [50]幸奠川,阎昌琪,高璞珍.摇摆条件下单相水强制循环阻力特性实验研究[J].原子能科学技术,2011,45(6):672-676.
    [51]刘晓钟,黄彦平,马建.摇摆条件下矩形窄缝通道单相等温流动摩擦阻力特性研究[Z].云南,丽江:2011104-109.
    [52]贾辉,谭思超,高璞珍.不稳定条件下水平管单相水流动阻力特性实验研究[J].原子能科学技术,2011,45(2):168-173.
    [53]杜思佳,张虹.海洋条件对单相强迫流动影响的理论研究[J].核动力工程,2009(S1):60-64.
    [54]杜思佳,张虹,贾宝山.海洋条件下竖直圆管内单相传热特性实验研究[J].核动力工程,2011,32(3):92-96.
    [55]黄振,高璞珍,谭思超.摇摆对传热影响的机理分析[J].核动力工程,2010,31(3):50-54.
    [56] Yan B. H., Yu L., Yang Y. H. Effects of ship motions on laminar flowin tubes[J]. Annals of Nuclear Energy,2010,37(1):52-57.
    [57] Yan B. H., Yu L., Yang Y. H. Effects of rolling on laminar frictionalresistance in tubes[J]. Annals of Nuclear Energy,2010,37(3):295-301.
    [58] Yan B. H., Yu L., Yang Y. H. Heat transfer of laminar flow in a channelin rolling motion[J]. Progress in Nuclear Energy,2010,52(6):596-600.
    [59] Yan B. H., Yu L., Yang Y. H. Heat transfer with laminar pulsating flowin a channel or tube in rolling motion[J]. International Journal ofThermal Sciences,2010:1-7.
    [60] Yan B. H., Gu H. Y., Yang Y. H., et al. Theoretical models of turbulentflow in rolling motion[J]. Progress in Nuclear Energy,2010,52(6):563-568.
    [61]鄢炳火.海洋条件瞬变外力场下核反应堆热工水力特性研究[D].海军工程大学博士学位论文,2011.
    [62] Yan B. H., Gu H. Y., Yu L. CFD analysis of the loss coefficient for a90°bend in rolling motion[J]. Progress in Nuclear Energy,2012,56(0):1-6.
    [63] Chang S. W., Liou T., Liou J. S., et al. Turbulent Heat transfer in atube fitted with serrated twist tape under rolling and pitchingenvironments with applications to shipping machineries[J]. OceanEngineering,2008,35(16):1569-1577.
    [64] Chang S. W., Huang B. J. Thermal performances of corrugated channel withskewed wall waves at rolling and pitching conditions[J]. InternationalJournal of Heat and Mass Transfer,2012,55(17–18):4548-4565.
    [65]曹夏昕,阎昌琪,孙中宁.摇摆状态下竖直管内环状流摩擦压降计算[J].核动力工程,2007,28(2):24-27.
    [66]曹夏昕,阎昌琪,孙中宁.摇摆状态下竖直管内弹状流单元物理模型解析[J].核动力工程,2007,28(3):47-50.
    [67]曹夏昕,阎昌琪,孙中宁.气-液两相泡状流在摇摆状态下的摩擦压降计算[J].核动力工程,2007,28(1):72-77.
    [68]栾峰,阎昌琪.摇摆状态下水平管内气-水两相流流型的判定方法[J].核动力工程,2008,29(4):39-43.
    [69]阎昌琪,于凯秋,栾峰,等.摇摆对气-液两相流流型及空泡份额的影响[J].核动力工程,2008,29(4):35-38.
    [70]于凯秋,曹夏昕,阎昌琪,等.摇摆状态下两相流空泡份额变化规律分析[J].哈尔滨工程大学学报,2008,29(11):1250-1254.
    [71]张金红,阎昌琪,孙中宁.摇摆状态下水平管内气液两相流流型转换研究[J].哈尔滨工程大学学报,2008,29(10):1050-1053.
    [72]谭思超,高璞珍,苏光辉.摇摆运动条件下自然循环复合型脉动的实验研究[J].原子能科学技术,2008,42(11):63-68.
    [73]谭思超,高文杰,高璞珍.摇摆运动对自然循环流动不稳定性的影响[J].核动力工程,2007,28(5):42-45.
    [74]谭思超,庞凤阁.摇摆运动引起的波动与自然循环密度波型脉动的叠加[J].核动力工程,2005,26(2):140-143.
    [75] Yun G., Qiu S. Z., Su G. H., et al. The influence of ocean conditionson two-phase flow instability in a parallel multi-channel system[J].Annals of Nuclear Energy,2008,36(1):103-113.
    [76]郭赟,巩成,曾和义,等.信号分析技术在海洋条件下并联双通道两相流不稳定性研究中的应用[J].核动力工程,2011,32(2):97-102.
    [77]郭赟,秋穗正,苏光辉.摇摆状态下入口段和上升段对两相流动不稳定性的影响[J].核动力工程,2007,28(6):58-61.
    [78]秦胜杰,高璞珍.摇摆运动对过冷沸腾流体中汽泡受力的影响[J].核动力工程,2008,29(2):20-23.
    [79] Wei J., Pan L., Chen D., et al. Numerical simulation of bubble behaviorsin subcooled flow boiling under swing motion[J]. Nuclear Engineeringand Design,2011,241:2898-2908.
    [80]曹夏昕,阎昌琪,孙立成.摇摆状态下竖直管内单相水阻力特性实验研究[J].核动力工程,2007,28(3):51-55.
    [81]幸奠川,阎昌琪,曹夏昕.摇摆对矩形窄通道内单相水流动特性的影响[Z].云南,丽江:201141-46.
    [82] Tan S., G H Su., Gao P. Experimental and theoretical study on singlephase natural circulation flow and Heat transfer under rolling motioncondition[J]. Applied Thermal Engineering,2009,29:3160-3168.
    [83] Tan S., G H Su., Gao P. Experimental study on two-phase flow instabilityof natural circulation under rolling motion condition[J]. Annals ofNuclear Energy,2009,36:103-113.
    [84] Tan S., G H Su., Gao P. Heat transfer model of single-phase naturalcirculation flow under a rolling motion condition[J]. NuclearEngineering and Design,2009,239:2212-2216.
    [85] Hwang J., Lee Y., Park G. Characteristics of critical Heat flux underrolling condition for flow boiling in vertical tube[J]. NuclearEngineering and Design,2012,252(0):153-162.
    [86]高璞珍.核动力装置用泵[G].哈尔滨:哈尔滨工程大学出版社,2004.
    [87] Moschandreou T., Zamir M. Heat transfer in a tube with pulsating flowand constant Heat flux[J]. International Journal of Heat and MassTransfer,1997,40(10):2461-2466.
    [88]王畅,高璞珍,谭思超.窄环隙内层流脉动流动特性分析[J].中国电机工程学报,2012,32(23):64-69.
    [89] Spiga M., Morino G. L. A symmetric solution for velocity profile inlaminar flow through rectangular ducts[J]. InternationalCommunications in Heat and Mass Transfer,1994,21(4):469-475.
    [90] Hartnett J. P., Kostic M. Heat transfer to newtonian and non-newtonianfluids in rectangular ducts[J]. Adv.Heat Transfer,1989,19:247-356.
    [91] Leon T., Roman U. Two-phase gas-liquid flow in rectangular channels[J].Cherical Engineering Science,1984,39(4):751-765.
    [92] Lee H. J., Lee S. Y. Pressure drop correlations for two-phase flow withinhorizontal rectangular channels with small heights[J]. InternationalJournal of Multiphase Flow,2001,26(14):1506-1514.
    [93] Chen I. Y., Chen Y., Liaw J., et al. Two-phase frictional pressure dropin small rectangular channels[J]. Experimental Thermal and FluidScience,2007,29(7):1309-1318.
    [94] Kakac S., Yener Y. Convective Heat Transfer[M]. Boca Raton:CRCPress,1995.
    [95] Mishima K., Hibiki T., Nishihara H. Some characteristics of gas-liquidflow in narrow rectangular ducts[J]. International Journal ofMultiphase Flow,1993,19(1):115-124.
    [96] Bhatti M. S., Shah K. Turbulent and transition flow convective Heattransfer, in Kakac,R.K. Shah,W.Aung. Handbook of single-phaseconvective Heat transfer[M]. New York:John Wiley and Sons,1987.
    [97] Qiu S. Z., Takahashi M. Heat Transfer and Friction Pressure Drop of WaterBoiling Two-Phase Flow in Narrow Horizontal Rectangular Channel at LowQuality[J].www.nr.titech.ac.jp/~mtakahas/english/research/r3.html,2004.
    [98] Ma J., Li L. J., Huang Y. P., et al. Experimental studies on single-phaseflow and Heat transfer in a narrow rectangular channel[J]. NuclearEngineering and Design,2011,241(8):2865-2873.
    [99] Soupremanien U., Le Person S., Favre-Marinet M., et al. Influence ofthe aspect ratio on boiling flows in rectangular mini-channels[J].Experimental Thermal and Fluid Science,2011,35(5):797-809.
    [100] Wambsganss M., Jendrzejczyk J., France D., et al. Frictional pressuregradients in two-phase flow in a small horizontal rectangularchannel[J]. Experimental Thermal and Fluid Science,1992,5(1):40-56.
    [101]秦文波,程惠尔,牛禄.大高宽比微小宽度矩形通道内的水力特性实验研究[J].热科学与技术,2002,1(1):38-41.
    [102] Agostini B., Watel B., Bontemps A., et al. Friction factor and Heattransfer coefficient of R134a liquid flow in mini-channels[J]. AppliedThermal Engineering,2002,22(16):1821-1834.
    [103] Harms T. M., Kazmierczak M. J., Gerner F. M. Developing convective heattransfer in deep rectangular microchannels[J]. International Journalof Heat and Fluid Flow,1999,48(14):2943-2954.
    [104] Dou H. S. Mechanism of flow instability and transition to turbulence[J].International Journal of Non-Linear Mechanics,2006,41(4):512-517.
    [105] Dou H. S., Khoo B. C. Energy gradient method for turbulent transitionwith consideration of effect of disturbance frequency[J]. Journal ofHydrodynamics,2010,22(5):23-28.
    [106] Chang W., Puzhen G., Sichao T. Effect of Aspect Ratio on the Laminarto Turbulent Transition in Rectangular Channe[J]. Annals of NuclearEnergy,2012,8(46):90-96.
    [107] Nishioka M., Iida S., Ichikawa Y. An experimental investigation of thestability of plane Poiseuille flow[J]. J. Fluid Mech,1975,75:731-751.
    [108] Dou H. S., Khoo B. C., Tsai H. M. Determining the critical conditionfor turbulent transition in a full-developed annulus flow[J]. Journalof Petroleum Science and Engineering,2010,73(1-2):41-47.
    [109] Harms T. M., Kazmierczak M. J., Gerner F. M. Developing convective Heattransfer in deep rectangular microchannels[J]. International Journalof Heat and Fluid Flow,1999,20(2):149-157.
    [110] Agostini B., Watel B., Bontemps A., et al. Liquid flow friction factorand Heat transfer coefficient in small channels: an experimentalinvestigation[J]. Experimental Thermal and Fluid Science,2004,28(2):97-103.
    [111] Peng X. F., Wang B. X., Peterson G. P. Experimental investigation ofHeat transfer in flat plates with rectangular microchannels[J].International Journal of Heat and Mass Transfer,1995,38(4):755-758.
    [112] C P. Fluid Dynamics:Theory,Computation, and Numerical Simulation[M].Springer,2009.
    [113] Kays M., Crawford M., Weigand B. Convective Heat and Mass Transfer[M].McGraw-Hill Higher Education,2004.
    [114]钱兴华,贾力,方肇洪.高等传热学[M].北京:高等教育出版社,2003.
    [115]程俊国,张洪济,张慕瑾.高等传热学[M].重庆大学出版社,1991.
    [116] Warren M R., James P H. Handbook of Heat Transfer[M]. MCGRAW-HILL,1998.
    [117] Liu D., Lee P. S., Garimella S. V. Prediction of the onset of nucleateboiling in microchannel flow[J]. International Journal of Heat and MassTransfer,2005,48(25-26):5134-5149.
    [118] Sobierska E., Kulenovic R., Mertz R. Heat transfer mechanism and flowpattern during flow boiling of water in a vertical narrow channel—experimental results[J]. International Journal of Thermal Sciences,2007,46(11):1172-1181.
    [119] M. M S. A general correlation for Heat transfer during subcooled boilingin pipes and annuli[J]. ASHRAE Trans,1977,83:202-217.
    [120] Lin K. W., Lee C. H., Hourng L. W., et al. A theoretical and experimentalstudy on subcooled flow boiling at high Heat flux[J]. Wrme-undStoffbertragung,1994,29(5):319-327.
    [121] Lee J., Mudawar I. Fluid flow and Heat transfer characteristics of lowtemperature two-phase micro-channel Heat sinks-Part2. Subcooledboiling pressure drop and Heat transfer[J]. International Journal ofHeat and Mass Transfer,2008,51(17-18):4327-4341.
    [122] Steiner H., Kobor A., Gebhard L. A wall Heat transfer model for subcooledboiling flow[J]. International Journal of Heat and Mass Transfer,2005,48(19-20):4161.
    [123] Thorncroft G. E., Klausnera J. F., Mei R. An experimental investigationof bubble growth and detachment in vertical upflow and downflowboiling[J]. International Journal of Heat and Mass Transfer,1998,41(23):3857-3871.
    [124]潘良明,陈德奇,袁德文,等.竖直加热壁面上汽泡脱离及浮升点汽泡直径预测模型[J].化工学报,2007,58(2):347-352.
    [125] Ozer A. B., Oncel A. F., Hollingsworth D. K., et al. The effect of slidingbubbles on nucleate boiling of a subcooled liquid flowing in a narrowchannel[J]. International Journal of Heat and Mass Transfer,2011,54(9-10):1930-1940.
    [126] Lee C. H., Mudawwar I. A. A mechanistic critical Heat flux model forsubcooled flow boiling based on local bulk flow conditions[J].International Journal of Multiphase Flow,1988,14(6):711-728.
    [127] Weisman J., Pei B. S. Prediction of critical Heat flux in flow boilingat low qualities[J]. International Journal of Heat and Mass Transfer,1983,26:1463-1477.
    [128] Yeoh G. H., Tu J. Y. A unified model considering force balances fordeparting vapour bubbles and population balance in subcooled boilingflow[J]. Nuclear Engineering and Design,2005,235(10-12):1251.
    [129] Cho Y., Yum S., Lee J., et al. Development of bubble departure andlift-off diameter models in low Heat flux and low flow velocityconditions[J]. International Journal of Heat and Mass Transfer,2011,54(15–16):3234-3244.
    [130] Zuber N. The dynamics of vapor bubbles in nonuniform temperaturefields[J]. International Journal of Heat and Mass Transfer,1961,2(1–2):83-98.
    [131] Sateesh G., Das S. K., Balakrishnan A. R. Analysis of pool boiling Heattransfer: effect of bubbles sliding on the Heating surface[J].International Journal of Heat and Mass Transfer,2005,48(8):1543-1553.
    [132] Sun L., Mishima K. An evaluation of prediction methods for saturatedflow boiling Heat transfer in mini-channels[J]. International Journalof Heat and Mass Transfer,2009,52(23–24):5323-5329.
    [133] Lee J., Mudawar I. Two-phase flow in high-Heat-flux micro-channel Heatsink for refrigeration cooling applications: Part II Heat transfercharacteristics[J]. International Journal of Heat and Mass Transfer,2005,48(5):941-955.
    [134] Cooper M. G. Flow boiling—the ‘apparently nucleate’ regime[J].International Journal of Heat and Mass Transfer,1989,32(3):459-464.
    [135] Liu Z., R. H. S W. A general correlation for saturated and subcooledflow boiling in tubes and annuli, based on a nucleate pool boilingequation[J]. International Journal of Heat and Mass Transfer,1991,34:2759-2766.
    [136] Lee H. J., Lee S. Y. Heat transfer correlation for boiling flows in smallrectangular horizontal channels with low aspect ratios[J].International Journal of Multiphase Flow,2001,27(12):2043-2062.
    [137] A. S D., S L., S W. Effect of void fraction models on the two-phasefriction factor of R134a during condensation in vertical downward flowin a smooth tube[J]. International Journal of Heat and Mass Transfer,2008,35:921-927.
    [138] Sun L., Mishima K. Evaluation analysis of prediction methods fortwo-phase flow pressure drop in mini-channels[J]. InternationalJournal of Multiphase Flow,2009,35(1):47-54.
    [139]贾辉,谭思超,高璞珍.简谐脉动流中极点摩擦压降特性实验研究[J].核动力工程,2011,32(3):102-105.
    [140] Weilin Q., Seok-Mann Y., Issam M. Two-Phase Flow and Heat transfer inrectangular micro-channels[J]. Journal of Electronic Packaging,2004,126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700