石墨/铝复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨增强铝基复合材料是一种性能优良的自润滑材料,与目前广泛使用的铝锡、铝铅、锡青铜自润滑合金相比,具有优良的耐摩擦性、较高的比强度、较好的环保性,因此有广阔的发展前景。由于石墨颗粒密度较小、与铝熔体润湿性差,目前制备方法主要集中在粉末冶金法和挤压铸造法,存在制件小、成本较高的缺点,液态搅拌铸造法与之相比工艺简单、成本较低廉,越来越受到重视。本文研究了利用搅拌铸造法制备纳米级氧化膜包覆石墨颗粒铝基复合材料技术和其性能。
     本文首先对石墨颗粒表面包覆氧化物进行了研究,以解决石墨与铝基体之间的润湿性问题,在对不同无机盐水解过程和氧化物对石墨包覆过程机理分析的基础上,研究了硅酸钠、硝酸亚铈、氧氯化锆等无机盐作为前驱体制备氧化硅、氧化铈、氧化锆和氧化铈锆包覆石墨的试验条件,通过测量石墨表面的氧化物含量和高温氧化失重率分析了各种制备条件对包覆效果的影响。研究发现,利用硝酸亚铈水解在石墨颗粒包覆上一层连续的二氧化铈纳米膜,其成核机理为异相非均匀成核,包覆于石墨表面的氧化铈与基体之间形成了C-O-Ce键,具有化学反应的特征。
     利用正交实验研究了以硝酸亚铈、氧氯化锆为前驱物包覆石墨颗粒工艺,得出氧化铈锆包覆石墨工艺适宜条件为,pH值为6,反应温度为80℃,陈化时间为1h,前驱物浓度为0.2M,石墨粉粒度为50μm。
     本文在搅拌铸造法制备复合材料工艺中采用真空除气法以降低复合材料的气孔率率,制备出气孔率较低,机械性能较好的复合材料。得到熔体搅拌铸造法制备铝基/氧化物包覆石墨复合材料适宜的主要工艺条件为,搅拌温度:560℃-600℃;搅拌时间:5-8min;搅拌速度:1000-1200r/min;真空炉温度:600℃-630℃;真空度:40kPa-60kPa;真空除气时间:3-5min;
     采用X射线衍射对复合材料中氧化物包覆石墨颗粒与铝熔体之间的界面进行了研究,表明包覆在石墨表面的氧化硅与铝熔体发生了微弱的反应性润湿,包覆在石墨表面的氧化铈与铝熔体发生了强烈的反应性润湿,包覆在石墨表面的氧化锆与铝熔体发生了微弱的反应性润湿,证明采用氧化铈锆复合包覆既可以与铝熔体发生反应性润湿,改善石墨与铝熔体之间的润湿性,又可以保证石墨不被铝熔体侵蚀。
     对不同氧化物包覆和不同石墨添加量的铝基/石墨复合材料的抗拉性能、摩擦性能和腐蚀性能进行的检测结果表明,铝基复合材料的抗拉强度、摩擦系数和摩擦磨损量都随石墨含量的增加而逐渐降低,表面包覆氧化铈、氧化锆的石墨铝基复合材料的耐蚀性能优于基体合金和氧化硅包覆石墨铝基复合材料,复合材料的耐蚀性随着石墨含量的增加而下降,石墨的增加提高了点蚀的可能性。
     摩擦测试结果表明,铝基/氧化物包覆石墨复合材料与基体合金相比,在干摩擦条件下具有良好的自润滑性能,铝基/氧化物包覆石墨复合材料的摩擦系数与摩擦磨损量随石墨的增加而减小,但当石墨超过6%(mass%)时摩擦系数增大。石墨含量为6%(masa%)的复合材料的适用范围为:滑动速度不超过2.6m/s,载荷不超过60N。
     采用纳米氧化铈锆复合包覆石墨颗粒制备的铝基复合材料,由于氧化铈锆与石墨之间属于化学结合,且氧化铈锆与铝基体之间属于反应性润湿,生成的微量界面化合物有益于提高铝基体的性能,因此所制备的复合材料有较好的力学性能和耐蚀性能。
Graphite-particle-reinforced aluminum matrix composite was a good self-lubricating material compared with the Sn-Pb, Cul-Sn, and Al-Pb alloys. It is an environment friendly material with excellent ntifrictional performance and high specific strength, so it can be applied in many fields in the future. But the low density of the graphite particles and the poor wettability with aluminum lead to a main study of fabricated technique focused on the powder metallurgic method and extrusion-casting method. But the obvious shortcomings of these two methods were higher cost and relatively small-scale production. The liquid mechanical stirring technique was paid more and more attention due to its simpler process and lower cost. In this paper, a new graphite-particle-reinforced aluminum matrix composite was fabricated by liquid mechanical stirring technique, in which the graphite was coated by a layer of nano-oxide film, and the basic performance of the composite was systemic studied.
     To improve the wettability of graphite and molten aluminum, the coating method and mechanism of oxide/graphite were studied firstly. Based on a detailed analysis of the mechanism for oxide coated reaction process and the hydrolyzation process of the inorganic salts, the preparation condition was studied by using the Na2Si03, Ce (NO3) 3 and ZrOCl2 as precursors. The influence of several factors on the characters of oxide/graphite was analyzed by study of the coating ratio and oxidation ratio.
     By the analysis of oxidation ratio, micrograph of composite particle, it was found out that factors such as pH value, coating temperature, concentration of premonitory matter solution mainly were the dominate factors that affect the coating layer forming. With the optimum parameters, the obtained composite particles had many changes compared with uncoated graphite, such as the decrease oxidation ratio. And a C-O-M bond was confirmed between oxide and the graphite.
     The preparation process of coated graphite with CeNO3 and ZrOCl2 as precursor was studied with orthogonal experiment. The suitable condition was:pH=6, reaction temperature was 80℃, aging time was 1h, concentration of precursor was 0.2M. particle size of graphite was 50μm.
     In order to decrease the porosity of the composite material, the vacuum condition was used during the stirring technique process. So material with lower porosity and better mechanical performance could be fabricated. The optimistic processing parameters were:stirring temperature was 560℃-600℃, stirring time was 5-8min, stirring speed was 1000-1200r/min, temperature of the vacuum furnace was 600℃-630℃, degree of vacuum was -0.02 MPa--0.04MPa, time for vacuum was≥3min.
     XRD was used to investigate the interface of oxide/graphite and the Al-matrix. The results showed a weak reactive wettability between SiO2 and Al, a strong reactive wettability between CeO2 and Al and also a weak reactive wettability between ZrO2 and Al, which proved that two oxides of CeO2 and ZrO2 could improve the wettability between graphite and molten aluminum and during fabrication process without corrosion of graphite by molten aluminum.
     The wear resistance, tensile strength and corrosive characteristics of the composites materials with different content and kinds of oxide/graphite particle were measured. The result showed that the tensile strength, the friction factor and the weight loss after wearing test descended along with the increase of graphite content. The anti-corrosion performance of CeO2 graphite and ZrO2 graphite reinforced composite materials was higher than that of alloy and SiO2 graphite reinforced composite materials. There showed a decreasing tendency of anti-corrosion performance with the increase of graphite content. The addition of graphite particles improve the possibility of pitting in composite materials.
     The results of wearing test showed that the oxide/graphite composite materials presented a higher self-lubricating performance comparing with Al alloy. The friction factor and the weight loss descended along with the increase of graphite content. But the friction factor increased when the content exceed 6%.
     Due to the chemical bond of CeO2/graphite/ZrO2 and reactive wettability with Al matrix, trace compounds were formed in the interface between Al-matrix and oxide. These compounds lead to an improvement of the mechanical and the anti-corrosion performance for the composite materials.
引文
1.吴人洁.金属基复合材料的研究进展[J],复合材料学报,1987,4(3):1-9.
    2.高技术新材料要览》编辑委员会.高技术新材料要览[M],北京:中国科学技术出版社,1993.499-599.
    3.肯尼思·G·克雷德主编,温仲元等译.金属基复合材料[M],北京:国防工业出版社,11982,9-29,405-406.
    4.黄伯云,肖鹏,陈康华.复合材料研究新进展(上)[J],金属世界,2007,2:46-48.
    5.张淑英,孟繁琴,陈玉勇等.颗粒增强金属基复合材料的研究与发展[J],材料导报,1996,10(2):66-71.
    6.朱和祥,黎柞坚,陈国平.碳化硅颗粒增强铝基复合材料的发展概况[J],材料导报,1995,(3):73-78.
    7.GE.Christophe, A.I.Jacqueline, PC.Jole. MMCs for automotive egine applications[J], JOM, 1996,(2):49-51.
    8.吴人洁.金属基复合材料的发展现状与应用前景[J],航空制造技术.2001,4(3):19-21.
    9.王祝堂,卢载浩.铝基复合材料在交通运输中工具中的应用[J],轻合金加工技术,1998,(8):1-3.
    10.姜世和等.金属基复合材料的特性及其技术在工程中的应用前景[J],工艺与材料,2002,(6):21-24.
    11.颜长舒,徐国富,刘楚明.熔铸法是石墨-铝硅复合材料产业化的重要途径[J],湖南有色金属,1999,15(2):39-42.
    12.曹同坤,邓建新.自润滑材料及其摩擦特性的影响因素[J],材料导报,2004,18(12):80-82.
    13.耿浩然,丁宏升,张景德,陈广立等.铸造钛、轴承合金[M],北京:化学工业出版社,2007,136-137.
    14.Hiroshi Ito, SojiKamiya, YoshioKumada. The Transition ofPlain BearingMaterials [J], Journal of Japanese Society of Tribologists,2003,48 (3):10-15.
    15. YoshioKumada. TechnologicalTransition ofCrankshaftBearings in ReciprocatingEngines[J], Journaloflapanese Society of Tribologists,2001,46 (11):21-26.
    16.梁炬仁.汽车发动机滑动轴承合金材料发展动态[J],汽车与配件,1989,(9):23-25.
    17.李绍中.自润滑减摩材料的发展、特性分析与选择[J],汽车科技,2001,(1):11-15.
    18.姚贵升.汽车金属材料应用手册(下)[M],北京:北京理工大学出版社,2002,6,579-599.
    19.张乐山.薄壁轴瓦的几个新国际标准简介[J],内燃机配件,2002,(1):25-28.
    20.ф.и.科瓦索夫,и.H.弗里德良捷尔,韩秉诚,蒋香泉等译.工业铝合金[M],北京:冶金工业出版社,1981,392-399.
    21.李建明,耐磨与减摩材料[M],北京:机械工业出版社,1987,26-149,
    22.徐瑞.铝合金轴承材料[J].阜新矿业学院学报,1991,10(2):59-63.
    23.陈玉明,揭晓华,吴锋,李黎明.铝基滑动轴承合金材料的研究进展[J],材料研究与应 用,2007,1(2):95:98.
    24.朱欣庆,钱鼎.新型铸铝轴承材料[J],机械科学与技术,1990,(1):16-18.
    25.李顺林,王兴业.复合材料结构设计基础[M],武汉:武汉工业大学出版社,1993,1-3.
    27.王成焘,姚振强,陈铭.汽车摩擦学[M],上海:上海交通大学出版社,2002:1-67.
    28.张国定,赵昌正.金属基复合材料[M],上海:上海交通大学出版社,1996:23-28.
    29姚广春,刘宜汉.先进复合材料制造技术手册[M],沈阳:东北大学出版社,2006,187-202.
    30.Donomoto T. D.,Funatani K.,Miura N.Ceramic fiber reinforced piston for high performance diesel engines SAE Paper[P],No.830252,Warrendale,1983.
    31.Ray S. Interfaces in cast metal-matrix composites[J],Mater.Sci.,1993,28:5397-5399.
    32.Chunfeng Deng, XueXi Zhang, Dezun Wang, Qiang Lin, Aibin Li. Preparation and characterization of carbon nanotubes/aluminum matrix composites [J],Materials Letters,2007(61):1725-1728.
    33.Deng Chunfeng, Zhang Xuexi, Wang Dezun. Chemical stability of carbon nanotubes in the 2024A1 matrix[J],Materials Letters 2007(61):904-907.
    34.张素梅.石墨对SiCpGr2024Al复合材料尺寸稳定性和力学性能的影响[D],哈尔滨:哈尔滨工业大学,2006.
    35. Urguhart A. W Coastal movements of returning Atlantic salmon.Adv[J],Mater. Proc.,1991,39 (7):35-39.
    36. Aghajanian M. K.,Rocazella M. A.,Burke J.T.,Keck S. D. The fabrication of metal matrix composites by a pressureless infiltration technique[J],Mater. Sci.,1991,26,447-452.
    37.石子源.石墨颗粒铝基复合材料的研制[J],热加工工艺.1998(2):50-51.
    38.闵春燕.无压渗透法制备纳米碳管增强铝基复合材料及其性能研究[D],杭州:浙江大学2006.
    39.卢德宏,陈仕明,金燕苹,施忠良,顾明元.SiCp与Gr混杂增强Al基复合材料的制备和摩擦磨损性能[J],材料工程,1998(5):37-40.
    40.卢德宏,金燕苹,吴桢干,顾明元.Gr和SiC混杂增强铝蒸复合材料与铸铁的摩擦磨损性能对比[J].机械材料工程[J],2000,24(4):32-35.
    41.卢德宏,顾明元,施忠良,金燕苹,吴桢干.铝-石墨界面反应对石墨、碳化硅混杂增强铝基复合材料摩擦磨损性能的影响[J],稀有金属材料与工程,2000,29(1):35-38.
    42.张玉龙.先进复合材料制造技术手册[M],北京:机械工业出版社,2003,587-602.
    43.倪礼忠,陈麒.复合材料科学与工程[M],北京:科学出版社,2002,P390-396.
    44. Badia E A.,Rohatgi P. K. Dispersion of graphite particles in alumninum castings through injection of the melt[J], AFS Trans.,1969:77:402.
    45.Surappa M K, Rohatgi P K 1981 Preparation and properties of aluminium alloy ceramic particle Composites[J], Mater. Sci.16:983-993.
    46.Agarwala V., Dixit D. Fabrication ofAluminium base composite by foundry technique[J], Trans. Japanlnst. Met.,1981,22:521-528.
    47.Komuro,Katsusuke,Aikawa, Kunihko.Process for Production of Graphite-cintaining Aluminum Alloys[J,U.S.Patent,4383970,1983.
    48.Skibo M. D.,Schuster D. M. Process for Production of Matrix Composites by Casting and Composite a therefrom[P],US Patent,4759995,1988,
    49.Skibo M. D.,Schuster D. M. Process for Production of Composite Materials Containing Nonmetallic Particles in aMatallic Matrix and Composite Materials Made thereby [P],U.S.Patent,4786467,1988.
    50.史家骅,张颂超.石墨铝复合铸件[J],机械制造,1981(4):39.
    51.张震寰,佟铭铎,崔永值.离心铸造铝—石墨复合材料轴瓦[J],特种铸造及有色合金,1985(2):46-49.
    52.李爱华,佟一夫.铝-石墨复合自润滑轴承的研制[J].摩擦学学报.1983(3):144-149.
    53.吴锦波,周邦昌,黄宪珪,陈忠宁.铝-石墨复合材料活塞的试验研究[J].汽车工艺与材料,1987(6):47-52,
    54.C.B.Lim,M.Gupta,W.B.Ng.Friction and Characteristics of AL-Cu/C Composites Synthsized Using Partial Liquid Phase Casiting Process[J],Materials & Design,1997,18 (3):165-167.
    55.黄来铀,王伟.铝基轴承复合材料研究[J],中国铸造装备与技术,1997,4:20-22.
    56.罗兵辉,李历历.铝硅合金-石墨复合材料的制备及阻尼性能[J],兵器材料科学与工程,1997,20(2):29-31.
    57.颜长舒,徐国富,黄继武,陈军.石墨与硅之比对石墨铝硅复合材料综合性能的影响[J],中南工业大学学报(自然科学版),1999,30(2):189-191.
    58.颜长舒,余琨,颜燕,谭敦强.重力铸造过共晶硅石墨铝复合材料的组织和性能[J],铸造,2000,49(6):353-355.
    59.张玉龙.先进复合材料制造技术手册[M],北京:机械工业出版社,2003,587-602.
    60.Lloyd D J.Particle Reinforced Aluminum and Magnesium Matrix Composites[J],International Materials Reviews,1994,139(1):1-23.
    61.李溪滨,刘如铁,杨慧敏.铝铅石墨固体自润滑复合材料的性能[J],中国有色金属学报,2003,13(2):462-468.
    62.刘晓新,唐仕英,李迅,文潮,涂江平,赵新兵.纳米石墨对铝基复合材料阻尼性能的影响[J],机械科学与技术,2006,25(12):1428-1430.
    63.Pai B. C.,Rohatgi P. K. Production of cast aluminium-graphite particle composites using a pellet method[J], Mater. Sci.1978,13 (2):329-335.
    64.中国科学院金属研究所流变铸造组.铸造石墨铝合金复合材料[J,机械工程材料,1981,(4):24-28.
    65.赵惠田,纪士辰,王国志,丁东生,刘占发.石墨铝合金铸造工艺的研究[J],特种铸造及有色合金,1984(3):15-18.
    66.纪士辰,王国志,赵惠田.流变铸造与铝基复合材料[J],机械工程材料,1984(4):53-57.
    67.郭可切,梁立达.铝-石墨复合材料的研制[J],大连理工大学学报,1982,23(1):23-30.
    68.梁立达.铸造铝-石墨材料性能的研究[J],大连理工大学学报,1985,24(3):109-112.
    69.张鹏,杜云慧,曾大本,崔建忠.铝-7石墨复合材料的半固态加工[C],特种铸造及有色合金(2001中国压铸、挤压铸造、半固态加工学术年会论文集):251-253.
    70.姜文标,刘友鹏,舒光冀.铝液对石墨润湿过程的研究[J],金属学报,988,24,(2):146-189.
    71.G.I.Eskin.Broad prospects for commercial application of the ultrasonic(cavitation)melt treatment of light alloys[J],Ultrasonics Sonochemistry,2001, (8):319-325.
    72.Schamm S,Fedou R,Rocher J P,Quenisset J M and Nsalain R.The K2ZrF6 wetting process:Effect of surface chemistry on the ability of a SiC-Fiber preform to be impregnated by aluminum[J], Metall Trans A, 1991,22A(9):2133-2161.
    73.梅志,崔昆,吴人洁,顾明元.颗粒增强体的表面处理方法[J],材料开发与应用,1997,12(4):32-34
    74.王艳辉,王明智,关长斌.金刚石表面镀镍工艺研究[J],表面技术,1993,22(1):12-14.
    75.Lee P K.High-current brush material development [J],IEEE transaction on components hybrids and manufacturing technology,1980,3(1):4-8.
    76.池上隆敏.石墨镀铜法[P],日本:昭58-8792,1983.
    77.Nath D.Coating copper on graphite fibers[J],Alta metallurgical silica,1991,82(10):763-765.
    78.朱满康,杨烨,陈延民.表面活性剂对铜镀覆石墨工艺的影响[J],武汉工业大学学报,1997,19(4):116-119.
    79.王贵青,孙加林,陈敬超.石墨颗粒表面化学镀铜研究[J]表面技术,2003,32(1):36-40.
    80.陈英秀,孙晓云,洪春,邝少林.石墨粉末镀铜[J],电镀与精饰,1983(3):1-6.
    81.杨连威,姚广春.石墨粉化学镀铜工艺的研究[J],材料保护,2004,37(6):20-21
    82.坂本敏等.含石墨不定型耐火材料[J],耐火物.1992,44(8):114-116
    83.Eva Liden, Homogeneous Distribution of Sintening Additives in Liquid-Phase Sintered Silicon Carbide[J],J.Am.Ceram.Soc,1995(7):1761-1768.
    84.张洪涛,徐重阳.Sol-gel法制备纳米硅碳膜的研究[J],陶瓷工程.2000,34(1):4-7.
    85.薛明俊,孙承绪,李雁.用Sol-Gel法制备氧化铝多孔陶瓷的研究[J],中国陶瓷,1999 35(3):6-10.
    86.张宗涛,SiC晶须表面涂覆Al203的溶胶—凝胶工艺及机理[J],硅酸盐学报,1991,(6):572-575.
    87.张巨先,侯耀永,高陇桥,李发.非均匀成核法涂覆改性纳米Sic粉体表面研究[J],硅酸盐学报,1998,26(6):762-767.
    88.张巨先,高陇桥.包覆型纳米SiC-Al2O3水悬浮液流变特性研究[J],材料科学与工程,1998,29(5):35-36.
    89. Garino T. Hetercoagution as an inclusion coating technique for ceramic composite processing[J],J Am Ceram Soc,1992,75(3):514-517.
    90.Mitchell T D Jr, De Jonghe L C. Processing and properties of particulate composites from coated powders[J],J Am Ceram Soc,1995,78(1):199-212.
    91.Liden E, Carlstrom E, Eklund L, et al. Homogeneous distribution of sintering additives in iiquild-phase sintered silicon carbide[J],J Am Ceram Soc,1995,78(7):1761-1768.
    92.张雄飞,王达健,陈书荣,谢刚.液态铝与陶瓷的润湿性改变机理[J],粉末冶金技术,2003(1):42-45.
    93.Hashim J, Looney L, Hashmi M S J. Metal matrix composites:production by the stir casting method [J], Journal of Materials Processing Technology,1999,92-93:1-7.
    94.任德亮,齐海波,丁占来,樊云昌.SiCp/Al复合材料搅拌铸造制备工艺的研究[J],铸造技术,1999(2):41-43.
    95.陈培生,孙扬善,蒋建清.工艺因素对SiCp/Mg复合材料中颗粒分布的影响[J],东南大学学报,1997(5):17-23.
    96.罗天骄,姚广春,吴林丽,张晓明,韩变华.CeO2对2024铝合金显微组织和力学性能的影响[J],稀土,2007,2:57-60.
    97.刘振刚.铝基石墨自润滑复合材料的研究[D],沈阳:东北大学,2006.
    98.牛小平.石墨铸铝复合材料-阻浮工艺的研究(二)[J],铸造,1987,(1):19-25.
    99.张友寿,李四年,陈慧敏,潘永清.铝-石墨最佳复合工艺参数的正交试验研究[J],铸造设备研究,1998,(2):28-30.
    100.Tianjiao Luo, Guangchun Yao, Linli Wu, Xiaoming Zhang, Hongbin Li. Repeatedly utilizing of carbon fiber chemistry copper plating waste liquid [C], TMS Annual Meeting, v 2006, Recycling-General and Electronics Sessions,2006, p 989-994.
    101.王莉梅.稀土元素对某些铝合金组织和性能的影响[J],轻合金加工技术,1994,(9):37-41.
    102.司乃潮,郭毅,李国强.稀土Ce对Al-Cu4.5%合金热疲劳性能的影响[J],中国有色金属学报,2006,16(4):606-611.
    103.李金富,侯文生,叶孔容.稀土对共晶铝硅合金变质行为的探讨[J],材料科学与工艺,1993,1(3):59-62.
    104.徐秀芝,魏绪钧,冯法伦.稀土对铝性能的影响[J],中国稀土学报,1995(7):425-427.
    105.彭德林,陆政,安阁英,周彼德.锆对Al_Li_Cu铸造合金组织及性能的影响[J],铸造,1992,7:23-28.
    106.孙宝岐.非金属矿深加工[M].北京:冶金工业出版社,1995:133.
    107.尹周澜,郭淑玲,周健.石墨粉末上化学镀镍的研究[J],新型碳材料.1998,13(4):46-49.
    108.余泉茂,吴一善,孙宝岐.铜镀覆石墨粉工艺中表面活性剂的作用及其机理研究[J],非金属矿,1999,22(3):4-5.
    109.刘雪健,古宏晨.分散剂对氮化硅浆料流变性的影响[J],无机材料学报.1999,14(3):491-492.
    110.沈钟,王果庭.胶体与表面化学[M],北京:科技出版社,1989:173-203.
    111.WD.金格瑞等,陶瓷导论[M],北京:中国建筑工业出版社,1982:163-189.
    112.浙江大学等.硅酸盐物理化学[M],北京:中国建筑工业出版社,1980:291-293.
    113.北京师范大学,华中师范大学,南京师范大学无机化学教室无机化学(下册)[M],北京:高等教育出版社,1986:647.
    114.J.A.Dirksen, Fundementals of Crystallzation:Kinetic effects on partical side distributions and morphology[j],, Chem.Eng. Sci,1999,46,2389-2427.
    115.高玮,张凡,罗美芳,朱孟钦,李春忠.氢氧化铈细粉的解聚与分散过程研究[J],中国稀土学报,2002,20(1):112-115.
    116.崔爱莉,王亭杰,金涌,孙牧.二氧化钛表面包覆Si02纳米膜的动力学研究[J],高等学校化学学报,2000,21(10):1560-1562.
    117.董相廷,李铭,张伟.沉淀法制备Ce02纳米晶和表征[J],中国稀土学报,2001,19(1):24-26.
    118.A.W.亚当森.表面的物理化学[M].北京:科学出版社,1984:182.
    119.彭华湘,陈彦模,朱美芳,张瑜,邢强,蒋种,孑,孙宾.纳米Ce02的表面改性及其在聚丙烯中的分散性研究[J].中国稀土学报,2004.22,(6):791-794.
    120.杨南如.无机非金属材料测试方法[M],武汉工业大学出版社,1990:287.
    121.Mataui K,Ohai M.Formation mechanism of hydrous-zirconia particles produced by hydrolysis of ZrOC12 solutions[J],J Am Cerm Soc,1997,80(8):1949-1956.
    122.黄岳祥,郭存济,谢贻芳.多晶单斜氧化锆颗粒的水热法合成[J],硅酸盐学报,1993,21(5):461-465.
    123.徐华蕊,李凤生.沉淀法制备纳米级粒子的研究-化学原理及影响因素[J],化工进展,1996,(5):29-31.
    124.Alifanti M., Baps B., Blangenois N., Naud J., Grange P., Deltnon B. Characterization of CeO2-ZrO2 mixed oxides[J],Chem.Mater,2003,15:395-403.
    125.Thromat N., Gautier-Soyer M., Bordier G, Formation of the Ce/Y2O3 interface:An in situ XPS study[J], Surface Science,1996,345(3):290-302.
    124.Kacar A S, Rana F, Stefanescu D M. Kinetics of gas-to liquid transfer of particles in metal matrix composites[J],Mater Sci Eng,1991,A135:95-99.
    125.Mortensen A, Jin I. Solidification processing of metal matrix composites[J],Inter. Mater. Rev.,1992,37 (3):101-128.
    126.Rohatgi P K, Asthana R,Yadav R N,et al. Energetics of particle transfer from gas to liquid during solidification processing of composites[J],Metall Trans,1990,21 A:2073.
    127.Rohatgi P K, Asthana R and Das S. Soidification, structures and properties of cast metal-ceramic particle composites[J],Inter. Mater. Rews.1986,31 (3):115-126.
    128.梁英教,车荫昌.无机物热力学手册[M],沈阳:东北大学,1993:43-109.
    129.刘江.搅拌反应合成Al-Fe金属间化合物强化铝基复合材料[D],重庆:重庆大学,2003.
    130.祝向福,陈大凯.搅拌因素对铸造法颗粒增强铝基复合材料的影响[J],武汉钢铁学院学报,1993,16(3):250-252.
    131.罗天骄.短碳纤维增强2024合金复合材料的研究[D],沈阳:东北大学,2007.
    132.丁文江,翟春泉.陶瓷粒子在铝合金熔体中的分散行为研究[J],热加工工艺,1992,4:26-28.
    133胨国桢,肖柯则,姜不居.铸件缺陷和对策手册[M],北京:机械工业出版社,1996:100-158.
    135.罗天骄,姚广春,吴林丽,张晓明,董志国.搅拌铸造法制备Cf/2024合金复合材料的工艺研究[C],2006年全国博士生(冶金学科)学术论坛(Doctoral Forum of China,2006),中国沈阳,2006,116.
    136.石德坷.材料力学性能[M],西安:西安交通大学出版,1998,32-33.
    137.吴洁君,王殿斌.SiCp增强铝基复合材料的铸造缺陷分析[J],金属学报.1999,35(1):103-108.
    138.李昊,桂满昌,周彼德.搅拌铸造金属基复合材料铸锭的孔隙率[J],宇航材料工艺,1997,2:31-32.
    ]39.赵永治.过共晶Al-Si合金连续铸造初晶硅细化的新方法[J],轻合金加工技术,1995 23(10):5-8.
    140.常国威,王建中.金属凝固过程中的晶体生长与控制[M],北京:冶金工业出版社,2002 1-20.
    141.唐多光.铸造铝合金精炼变质的好材料[J],特种铸造及有色合金,1999,(5):42-44.
    142.许春香,张金山.REAlTiBP多元复合变质ZL117铝合金[J],中国稀土学报,2002,20(4):331-333.
    143.朱培钱,陈熙深,贾均.铝硅合金变质过程的研究[J].哈尔滨工业大学学报,1981(1):11-29.
    144.黄良余.铝硅合金变质机理的新发展和新观点[J].特种铸造及有色合金,1995(5):19-22.
    145.L F蒙多尔福王祝堂译.铝合金的组织号性能[M],北京:叶冶金工业出版社,1984:211-213.
    146.侯平均,倪锋,龙锐,武红利.高铝锌合金的钛和锆变质机理研究[J,铸造设备研究,2003,(1):12-15.
    147.王文龙,吴军华.铝基复合材料的摩擦磨损性能[J],金属学报.1998,34(11):1178-1182.
    148.Paciej R C and Agarwala V S. Influence of processing variables on the corrosion susceptibility of metal-matrix composites[J],Corrosion,1988,44:680-684.
    149.Aylor D M and Moran P J. Effect of reinforcement on the pitting behavior of aluminum-base metal matrix composites[J],Electrochem Soc,1985,132:1277-1281.
    150.Deuis R L, Green L, Subramanian C, Yellup J M. Influence of the reinforcement phase on the corrosion of aluminium composite coatings[J],Mater Sci Lett,1997,16:440-444.
    151.刘维镐,陈电玲.高阻尼铝基复合材料在海水中的腐蚀行为[J],功能材料与器件学报,2001,7(2):195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700