颗粒尺寸对SiC_p/Al复合材料阻尼性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了明确颗粒尺寸对铝基复合材料组织、力学性能和阻尼性能的影响规律,本文采用粉末冶金法制备了10%的纳米级、亚微米级和微米级(40nm、500nm、1μm、5μm和10μm)的SiCp/Al复合材料。重点研究了制备纳米级复合材料的球磨工艺,以及制备微米级复合材料的球磨和机械混粉两种工艺。采用SEM和TEM研究了具有不同粒径的复合材料的微观组织,测试了其相应的室温拉伸性能,分析了颗粒尺寸对材料组织和力学性能的影响。采用动态机械分析仪(DMA)测试复合材料的低频阻尼性能随应变和温度变化的阻尼性能,阐述了颗粒尺寸对复合材料的阻尼性能的影响规律和阻尼机制。
     通过对纳米SiC和Al球磨工艺中的球磨时间以及硬脂酸含量对混粉效果的影响的研究,确定的最佳球磨工艺参数为:球磨时间15h,过程控制剂含量2wt%。并成功制备出综合性能良好的纳米和亚微米级复合材料,抗拉强度分别达到395和365MPa,较纯Al分别提高了259%和232%;虽然延伸率下降,依然分别达到了12.51%和11.4%。退火处理后性能有所下降,幅度不大。
     分别采用球磨和机械混粉两种工艺制备出微米级(1μm、5μm和10μm)复合材料。球磨制备出的复合材料抗拉强度达到305~316MPa,塑性却只有4.0~7.2%;而机械混粉制备出的复合材料抗拉强度只有133~142MPa,而塑性却达到17.3~26.3%。研究表明,球磨工艺比机械混粉工艺更容易大幅度提高复合材料抗拉强度,同时却使塑性急剧下降。
     对于高能球磨混粉制备的不同颗粒尺寸SiCp/Al复合材料,抗拉强度、屈服强度都比纯Al显著提高,延伸率明显下降。随着SiC颗粒尺寸的减小,复合材料挤压态的抗拉强度、屈服强度和延伸率逐渐增大;退火后,复合材料的强度和塑性较挤压态稍有降低。
     TEM分析结果表明,颗粒粒径为40nm和500nm时,挤压态SiCp/Al复合材料的界面附近没有热错配位错产生,基体上有热挤压造成的变形位错,复合材料晶粒细小。退火消除了部分变形位错,复合材料发生了再结晶,纳米SiC阻碍位错运动抑制晶粒长大,再结晶晶粒非常细小。挤压态下的微米级SiCp/Al复合材料的界面处和基体上都有大量位错存在,退火消除了部分变形位错,复合材料发生了再结晶。
     采用动态机械分析仪研究复合材料阻尼。对室温阻尼-应变振幅的曲线研究表明,无论是纳米、亚微米级和微米级复合材料在室温下显示的都是典型位错机制。并随着SiC颗粒尺寸的减小,阻尼性能逐渐增大。退火后,随着SiC颗粒尺寸的增大,阻尼性能逐渐增大。并且发现,纳米级复合材料阻尼性能明显要高于其它尺寸材料;退火后,其阻尼性能变为最低。
     阻尼-温度谱的测试结果表明,颗粒尺寸显著影响着内耗峰的出现。无论是纳米、亚微米级和微米级复合材料都发现了位错内耗峰的存在,并且随着颗粒尺寸增大,内耗峰后移。晶界阻尼峰在纳米、亚微米级复合材料中可以明显观察到,在微米级复合材料中并不明显。
In order to obtain the effect of particle size on the microstructure, the mechanical properties and the damping properties of aluminum matrix composite, the aluminum matrix composites reinforced by 10vol% SiC particles with various sizes were fabricated by powder metallurgy The high energy ball milling technics twas studied in detail. The microstructure of composites were analysed by SEM and TEM and the mechanical properties at room temperature were measured. The strain dependent and temperature dependent low frequency damping capacities of these composites and alloys were studied by dynamic mechanical thermal analyzer (DMA). The effect of particle size on the tensile mechanical properties and the damping properties were analysed in detail.
     According to the investigations of the influences of milling time and process control agent(PCA) on the ball-milling effect, the ball-milling parameters were optimized as followed: milling time: 4:1; PCA content :2wt%. The tensile strength of the aluminium composites with 40nm and 500nm SiC reached 395 and 365 MPa respectively, meanwhile the elongation reached 12.51% and 11.4%。
     The aluminum matrix composite with various sizes changed from 1μm to 10μm were fabricated by high energy ball milling and regular powder milling technics. The tensile strength of composites fabricated by high energy ball milling reached 305~316MPa, the elongation reached 4.0~7.2%, while the tensile strength of composites fabricated by regular powder milling reached 133~316MPa, the elongation reached 17.3~26.3%. The results showed that the high energy ball milling can improve the strength and reduce the elongation.
     The tensile strength and the yield strength of SiCp/Al MMCs fabricated by powder metallurgical process with high energy ball milling were significantly greater than Al, and the elongation lower than that of Al. With decreasing SiC particle size, the strength and elongation of the MMCs as-extruded increase, the strength and elongation decreased after annealing.
     According to TEM results,free dislocations were observed in the SiCP/Al composite as extruded reinforced with SiC particles of 40nm and 500nm. The dislocations of high-density were generated in the matrix by thermal extrusion, and the grain size was fine. The dislocations were disappeared and recrystallization occurred in the annealing process. The grains were restrained by nano-SiC and the recrystallized grain size was refined furthermore. The high-density dislocations existed in the matrix and near the interfaces and annealing made some dislocations disappear and recrystallize.
     The research of damping capacity of extruded and annealed MMCs showed that damping-strain amplitude can be explained by G-L dislocation damping mechanism. With decreasing SiC particle size, the damping-strain amplitude of the MMCs as-extruded increased, and that decreased after annealing.
     The research of the damping-temperature capacity for SiCp/Al composites showed that the damping peak influenced by particle size. The damping peak induced by dislocation was observed in all MMCs, and with increasing the particle size, the peak location moved to high temperature.
引文
1 E. J. Lavernia, R. J. Perez, J. Zhang. Damping Behavior of Discontinuously Reinforced Al Alloy Metal Matrix Composites. Metallurgical and Materials Transactions A. 1995, 26(11): 2803~2817
    2马继盛,漆宗能,张树范.插层聚合制备聚丙烯/蒙脱土纳米复合材料及其结构性能表征.高等学校化学学报, 2001, 22(10): 1767
    3刘晓辉,范家起.聚丙烯/蒙脱土纳米复合材料Ⅰ.制备、表征及动态力学性能.高分子学报, 2000, (5): 563
    4 X. H. Liu , Q. J. Wu. PP/clay Nano-composites Prepared by Grafting-melt Intercalation. Polymer. 2001, 42(25):10013~10019
    5于志勇,郝斌等.纳米SiC颗粒增强铝基复合材料制备工艺进展.材料导报, 2006, 20(Ⅶ): 206~218
    6肖伯律,毕敬,赵明久,马宗义. SiCp尺寸对铝基复合材料拉伸性能和断裂机制的影响.金属学报, 2002, 38(9): 1006~1008
    7 G. H. Wu, N. Norio, T. Takshashi, H. Watanabe. Fabrication of Al2O3p/6061 Particles Composite Materials by Squeeze Exhaust Casting. Japan. Institute of Light metals.1994, 44(8): 421~426
    8赵永春,武高辉.亚微米级Al2O3p/6061Al复合材料的断裂行为.复合材料学报, 1998, 15(3): 27~31
    9吕毓雄,毕敬,陈礼清,赵明久. SiCp尺寸及基体强度对铝基复合材料破坏机制的影响.金属学报, 1998, 34(11): 1188~1192
    10葛庭燧.晶界驰豫研究50年.物理. 1999, 28(9): 529~540
    11葛庭隧.固体内耗理论基础_晶界弛豫与晶界结构.北京:科学出版社, 2000.7
    12江东亮,闻建勋,陈国民.新材料.上海科学技术出版社. 1994: 25~30.
    13 A. Granato. K. Lüker. Theroy of Mechanical Damping Due to Dislocation. Journal of Applied Physics. 1956, 27(6): 583~593
    14 T. S. Kê. Stress Relaxation across Grain Boundaries in Metals. Physics Review A. 1947, 72(1): 41~46
    15李沛勇,戴圣龙,刘大博,柴世昌,李裕仁.材料阻尼及阻尼合金的研究现状.材料工程. 1999. (8): 44~48
    16 I. G. Ritchie, Z. L. Pan. High Damping Metals and Alloys. Metallurgical Transactions A. 1991, 22(3): 607~616
    17 M. Vogelsang, R. J. Aisenault, R. M. Fisher. An In Situ HVEM Study of Disloeation Generation at Al/SiC Interfaces in Metal Matrix Composites. Metallurgical Transactions A. 1986, 17(3): 379~389
    18过梅丽.高聚物与复合材料的动态力学热分析.化学工业出版社. 2002: 79~160
    19张小农.金属基复合材料的阻尼行为研究.上海交通大学博士学位论文. 1997: 1~79
    20李开明.当代金属类阻尼材料及其应用.上海航天. 1996, 1: 40~47
    21冯端.金属物理学.第三卷金属力学性能.科学出版社. 1999: 13~16.
    22 T. S. Kê. Anomalous Internal Friction Associated with the Precipitation of Copper in Cold-Worked Al-Cu Alloys. Physical Review A. 1950, 78(4): 420~423.
    23 J. Weertman. Dislocation Damping at High Temperature. Journal of Applied Physics. 1957, 28 (2): 193~196.
    24 G. Schoeck. Friccion Interna Debido A La Interaccion Entre Dislocaciones Y Atomos Solutos. Acta Materialia. 1963, 6: 617~622.
    25 P. L. Ratnaparkhi J. M. Howe. Structure and Mechanical of Bonding at Diffusion-Bonded Al/SiC Interface. Acta Metallurgica and Materialia. 1994, 3: 811~823
    26王庆,李秀臣.应变幅对铝基复合材料阻尼性能的影响.机械工程材料. 1997, 21(2):19~20
    27 H. X. Zhang, M. Y. Gu. Study on the Damping Behavior of Al/SiCp Composites in Thermal Cycling. Journal of Materials Science. 2007, 42: 6260~6266
    28顾金海,朱杰,于涛,王西科,张晓农,顾明元. 6061Al/SiCp淬火后残余应力对阻尼性能影响的模拟.郑州大学学报. 2004, 25(2):79~83
    29张永琨.碳化硅晶须增强镁基复合材料阻尼性能研究.哈尔滨工业大学硕士学位论文. 2006.6
    30 E. P. Hunt. The Effects of Ageing on the Physical and Mechanical Properties of Particulate reinforced Aluminium Alloys. Scripta Metallugical et Materialia. 1991, 25(12): 2769~2774
    31 J. Zhang, R. J. Rerez, E. J. Lavernia. Damping Behavior of Particulate Reinforced 2519 Al Metal Matrix Composite. Journal of Materials Science. 1993, 28(1): 91~96
    32徐惠娟.高阻尼铝基材料及其发展趋势.湖南冶金. 1996
    33顾敏. SiCp/Gr颗粒混杂增强6061铝基复合材料中的内耗峰及其阻尼机制.中国有色金属学报. 2003, 13(3):646~649
    34张迎元,乐永康,高灵清.喷射沉积SiCp增强6061AIMMC的阻尼性能及位错阻尼机制.中国有色金属学报. 1999, 9(1): 91~96
    35李沛勇,戴圣龙.高阻尼铝基复合材料的研究动向.航空材料学报. 2000, 20(3): 164~171
    36贺春林.碳化硅颗粒增强铝基复合材料的微结构和力学与腐蚀行为研究.东北大学博士论文. 2002: 1~149
    37李洪武.亚微米颗粒增强铝基复合材料的制备、组织与性能研究.中南大学硕士论文. 2004: 1~81
    38 Z. Y. Ma, Y. L. Li, Y. Liang. Nanometric Si3N4 Particulate Reinforced Aluminum Composite. Materials Science and Engineering A 1996, A219(2): 229~231
    39肖永亮.金属基复合材料的仿生愈合探讨及纳米SiCp/Al与微米SiCp/Al复合材料对比研究.中国科学院金属研究所博士论文. 1996: 56~110
    40 R. W.卡恩. P.哈森.金属于合金工艺.科学出版社. 1999: 197
    41 Y. Flom, R. J. Arsenault. Effect of Particle Size on Fracture Toughness of SiC/Al Composite Material. Acta Materialia. 1989, 37(9): 2413~2423
    42 W. S. Miller, F. J. Humphreys. Strengthening Mechanisms in Metal Matrix Composites. In: Fundanmental Relationships between Microstructure and Mechanical Properties of Metal-Matrix Composites. Scripta Metallurgical et Materialia. 1991, 25(11): 517~541
    43王盘鑫.粉末冶金学.冶金工业出版社. 1997: 1~130
    44 N. Hnasen. The effect of Grain Size and Srtain on The Tensile Flow Stress of Aluminum at Room Temperature. Acta Materialia. 1977, 25: 863~869
    45 S. G. Song, N. Shi, G. T. Gray, J. A. Robert. Reinforcement Shape Effect on the Fracture Behavior and Ductility of Particulate Reinforced 6061-Al Matrix Composites. Metallurgical and Materials Transactions A. 1996, 27(11): 1193~1198
    46秦蜀懿,王文龙,张国定.颗粒形状对SiCp/LD2复合材料塑性的影响.金属学报. 1998, 34(11): 1193~1198
    47 M. Mabuchi, Higashi, T. G. Landon. An Investigation of the Role of A Liquid Phase in Al-Cu-Mg Metal Matrix Composites Exhibiting High Strain Rate Superplasticity. Acta Metallurgica. 1994, 42(5): 1739~1745
    48 T.S. Kê. Experimental Evidence of the Viscous Behavior of Grain Boundaries in Metals. Physical Review B. 1947, 71(8): 533~546.
    49 T. S. Kê, Q. Tan, Q. F. Fang. Further Experiments on the Anomalously Amplitude-Dependent Internal Friction Peaks in Polycrystalline and Single-Crystal Al-Mg. Physica Status Solidi(a). 1987, 103(2): 421~429
    50 Q. Tan, T.S. Kê. Double Amplitude Internal Friction Peaks in Al-0.02 wt% Mg Single Crystals. Physica Status Solidi(a). 1987, 104 (2): 723~729
    51 O. Mercier, K. N. Melton. The Influence of an Anisotrophic Elastic Medium on the Motion of Dislocations: Application to the Martensitic Transformation. Scripta Materialia. 1976, 10 (12): 1075~1080
    52 C. Mayencourt, R. Schaller. A Theoretical Approach to the Thermal Transient Mechanical Loss in Mg Matrix Composite. Acta Materialia. 1998, 46(17): 6103~6114
    53 J. N. Wei, D. Y. Wang, W. J. Xie, J.L. Luo, F.S. Han. Effects of Macroscopic Graphite Particulates on the Damping Behavior of Zn-Al Eutectoid Alloy. Physics Letters A. 2007, 366(1-2): 134~136
    54 R. Schaller. Mechanical Spectroscopy of Interface Stress Relaxation in Metal-matrix Composites. Materials Science and Engineering A. 2006, 442(1-2): 423~428
    55 O. Bremnes, B. Carreno-Morelli, G. Gremaud. Influence of the Interaction between Dislocations and Mobile Point-defects on the Damping Spectrum of Aluminium. Journal of Alloys and Compounds. 2000, 310(1-2): 62~67
    56 R. R. Mulyukov, A. I. Pshenichnyuk. Structure and Damping of Nanocrystalline Metals and Alloys Prepared by High Plastic Deformation Techniques. Journal of Alloys and Compounds.. 2003, 355(1-2): 26~30
    57 I. Aaltio, M. Lahelin, O. S?derberg, O. Heczko, B. L?fgren. Temperature Dependence of the Damping Properties of Ni-Mn-Ga Alloys. Materials Science and Engineering A. 2007, 481-482: 314~317
    58胡小石.热处理和变形对镁合金低频阻尼性能的影响及机理研究.哈尔滨工业大学博士学位论文. 2007.
    59 T.S. Kê. Internal Friction of Metals at Very High Temperature. Journal of Applied Physics 1950, 21(5): 414~419
    60方前锋,朱震刚,葛庭燧.高阻尼材料的阻尼机理及性能评估.物理. 2000, 29(9):541~545

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700