石墨对SiCp/Gr/2024Al复合材料尺寸稳定性和力学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiCp/Al复合材料作为尺寸稳定性材料,已经应用在精密仪器仪表构件上。但是SiC颗粒这种高硬度增强物质的加入,使得这种材料切削加工困难。因此对SiCp/2024Al复合材料进行组份设计,通过加入不同粒度,不同体积份数的石墨,试图获得力学性能满足需要,尺寸稳定化热处理工艺简单的易加工新型复合材料。本文采用SiCp/Gr/2024Al复合材料为对象,研究鳞片状石墨的加入,对SiCp/Gr/2024Al复合材料显微组织、尺寸稳定性和力学性能的影响。
     以SiCp/Al复合材料为对比材料,采用透射电镜(TEM)方法研究不同热处理状态SiCp/Gr/2024Al复合材料微观组织。观察表明:SiCp/Gr/2024Al复合材料时效10小时处理后的基体中析出相弥散细小,位错密度低;时效24小时后SiCp/Gr/2024Al,基体中的析出相长大,数量较少;与时效24小时的热处理工艺相比,冷热循环处理后SiCp/Gr/2024Al复合材料基体中析出相尺寸小,数量较大。
     研究了交变温条件下和静载荷条件下石墨对SiCp/Gr/2024Al复合材料尺寸稳定性的影响。研究不同热处理工艺,石墨体积份数及石墨粒度对SiCp/Gr/2024Al复合材料尺寸稳定性的影响,并分析其变化规律及影响机制。结果表明,经时效24小时处理后SiCp/Gr/2024Al复合材料在交变温条件下的尺寸稳定性最好,经过10时效处理后SiCp/Gr/2024Al复合材料在静载荷条件下的微屈服强度最高。
     利用拉伸性能测试和扫描断口观察,研究SiCp/Gr/2024Al复合材料的力学性能和断裂机制。分析了随石墨体积分数和粒度变化,其抗拉强度和弹性模量的变化规律。结果表明,热处理工艺为10h的抗拉强度最高,达到334MPa,弹性模量对热处理工艺变化不敏感;随着石墨体积份数的增加,拉伸强度和弹性模量都降低;石墨粒度在1μm,6μm,20μm,70μm变化时,石墨粒度为6um的SiCp/Gr/2024Al复合材料抗拉强度最高,而弹性模量随石墨尺寸变化趋势与抗拉强度不同。
As dimensionally stable materials, SiCp/Al matrix composites have been applied on precision instrument. SiCp/Al matrix composites have a worse machinability because of the addition of hard SiC particle. Based on this background, a novel sort of SiCp/Gr/2024Al composites was fabricated by squeeze casting method with flaky graphite particle of different size and volume. The influence of graphite on properties of the composites was discussed in this paper, such as microstructure、dimensional stability and mechanical property.
     The microstructure of SiCp/Gr/2024Al composites under different heat treatment process was studied by transmission electron microscope, compared with the microstructure of SiCp/Al matrix composites. The result of TEM observation indicated, precipitated phase of SiCp/Gr/2024Al composites treated aging for 10 hours was dispersed in the form of small size and high density and a low dislocation density appeared in the matrix. The composites treated aging for 24 hours has a microstructure feature of big size precipitated phase and less distributed, while it was not observed that precipitated phase was relatively small and dense in the microstructure of the composite treated by thermal-cold cycling.
     Compared with SiCp/2024Al composites, the dimensional stability of the SiCp/Gr/2024Al composites was investigated under the condition of alternative temperature and static load respectively. The research indicated that SiCp/Gr/2024Al composites by treated for 24 hours gained the best dimensional stability under alternative temperature condition, the micro-yield strength of the SiCp/Gr/2024Al composites treated by three different heat treatment processes except for annealing doesn’t changes obviously.
     Mechanical property and fracture behaviors were investigated by tensile test and obversion of SEM fractography. The effect of volume fraction and size of graphite on tensile strength and elastic modulus were analyzed. With the increase of volume fraction, the tensile strength was decreasing as well as elastic modulus. The tensile strength of SiCp/Gr/2024Al composites by aged for 10 hours was the highest value during the different heat treatment processes. The size of graphite in 1μm, 6μm, 20μm and 70μm, the tensile strength of the composites with 6μm
引文
1 吴波, 刘一薇. 复合材料在惯性器件中的应用研究. 导弹与航天运载技术. 2000, 3:17~20
    2 周琪, 单联洁. 铝基复合材料在惯性平台结构件中的应用. 航天工艺.2001, 3:36~39
    3 S.V.Nair, J.K.Tien, R.C.Bates.SiC-Reinforced Aluminum Metal Matrix Composites. Int. Met. Rev.. 1995, 30 (60): 275~288
    4 杜树芳. 金属材料的尺寸稳定性.机械工程师. 1984, (6):36~38
    5 C.W.Marschall,R.E.Maringer.Dimensional Instability. New York:Pergamon Press. 1977:1~229
    6 武高辉, 马森林等人. 亚微米颗粒增强 6061 铝基复合材料的微塑变特性. 材料研究学报. 1998, 12(3):307~310
    7 梅志, 顾明元, 吴人洁. 金属基复合材料残和余应力测试的新方法.宇航工艺材料. 1966, (6):39-43
    8 刘秋云, 费维栋, 姚忠凯, 赵连城. 金属基复合材料的热残余应力研究进展.宇航材料工艺. 1998,(3):1~6
    9 P.J.Withers,H.K.D.H.Bhadeshia.Residual stress Part 1-Measuement Techniques. Materials Science and Technology.2001,17:355~365
    10 A.J.Allen, M.A.Bouke,S.Dawes,et al. The Analysis of Internal Strains Measured by Neutron Diffraction in AlSiC Matrix Composites. Acta Metal. Mater.. 1992,40(9):2361~2373
    11 史冬梅. LY12铝合金尺寸稳定性处理的研究.哈尔滨工业大学硕士学位论文. 1987
    12 孙冬立, 杨峰, 武高辉. 尺寸稳定性评定的新方法——圆环开口法的初步尝试.物理检验(物理分册). 1999,35(10):447~448
    13 王秀芳, 武高辉, 李晓玲, 孙冬立. 金属材料无负载条件下尺寸稳定性的热循环在线检测.中国有色金属学报. 2003,13(3):1~4
    14 李健. 铝合金残余应力的降低和释放. 航天工艺. 1993,(4):48~50
    15 王世中, 欧阳宇平. LY12冷热加工的残余应力及其消除. 航天工艺. 1992,(3):26~29
    16 陈具足. 振动时效工艺及应用. 金属热处理. 1992,(4):50~52
    17 兰俊昌, 刘志超, 常崇礼.ZL-S424 铸造铝合金铸件尺寸稳定化处理的研究. 热加工工艺. 1980,(5):58~63
    18 吴人洁. 非连续增强金属基复合材料的发展现状及应用前景. 航空制造技术. 2001,(3):20~22
    19 Dai L H,L ing Z,Bai Y L. Size Dependent Inelastic Behavior of Particle Reinforced Metalmatrix Composites. Composite Science and Technology, 2001, 8 (61):1057~1 063
    20 Helge Heinrich, Alessandro Vananti, Gomot Kostorz.Strain Fields at Interfaces of Al Based Metal Matrix Composites.Materials Science and Engineering A2001,319~321: 434~438
    21 王莹, 刘向东. 碳化硅颗粒增强铝基复合材料的现状及发展趋势. 铸造设备研究. 2003,(3):18~22
    22 M.Vogelsang, R.J.Arsenault,R.M.Fisher. An In Situ HVEM Study of Dislocation Generation At Al/SiC Interface in Metal Matrix Composites.Metal.Trans.. 1986,17A (3):379~389
    23 R.J.Arsenault,N.Shi.Dislocation Generation Due to Difference Between the Coefficients of Thermal Expansion. Mater. Sci. Eng.. 1986, 81:175~187
    24 R. U.Vaidya, K. K. Chawla. Thermal Expansion of Metal-matrixComposites. Composites Science and Technology. 1994,50: 13~22
    25 Y.L.Shen.Thermal Expansion of Metal-Ceramic Composites: A Three Dimensional Analysis. Materials Science and Engineering. 1998,9:269~275
    26 C.T.Kim, J.K Lee, M.R.Plichta.Plastic Relaxation of Thermoelastic Stress in Aluminum/Ceramic Composites. Metall. Trans.. 1990, 21A (3):673~681
    27 徐文娟, 吴申庆, 卫中山. 短纤维增强铝基复合材料的热循环尺寸稳定性. 特种铸造及有色合金. 1999, 5:1~3
    28 胡明, 费维栋. 非连续增强金属基复合材料的热残余应力. 宇航材料工艺. 2005, (1):15~19
    29 R.J.Arsenault,M.Taya.Thermal Residual Stress in Metal Matrix Composite.Acta Metall.Mater.. 1987,35(3): 651
    30 N.J.Townley,T.M.Holden,P.Clarke,J.D.Boyd,D.J.Lloyd.Residual Stress in Particulate Reinforced Meta. 2001
    31 赵永春. 颗粒增强铝基复合材料的显微组织及力学行为. 哈尔滨工业大学博士学位论文. 1997: 36~123
    32 姜龙涛. 亚微米 Al2O3 颗粒增强铝基复合材料近界面区的显微结构特征. 哈尔滨工业大学博士学位论文. 2001,92~115
    33 董尚利, 杨德庄. 碳化硅晶须和颗粒增强铝基复合材料的时效行为. 材料工程. 1996, (8):45~48
    34 Ashby M F,Johnsen L.On the Generation of Ddislocation as Misfitting Particulate in Ductile Matrix. Phil. Mag.1969:1009~1022
    35 VogelsangM, Arsenault R J, Fisher R M. An in Situ HREM Study of Dislocation at SiC /Al Inferfaces in Metal Matrix Composites. Metall. Trans. .1986,17A (3): 379~389
    36 肖纪美. 合金相与相变. 冶金工业出版社. 1987:6
    37 Dutta I,Bourell D L.A Theoretical an Experimental Study of Aluminum Alloy 60612SiC Metal Matrix Composite to Identify the Operative Mechanism for Accelerated Aging. Mater.Sci. Eng. .1989,A112:67~77
    38 C.Bartels,D.Raabe, G.Gottstein, U.Huber. Investigation of Precipitation Kinetics in an Al6061/TiB2 Metal Matrix Composite. Materials Science and Engineering. 1997, A237:12~23
    39 姜龙涛, 武高辉, 孙东立, 张强, 河野紀雄. Al2O3p/Al 复合材料中颗粒粒径与形态对组织和性能的影响. 中国有色金属学报. 2002,12 (3):516~520
    40 P.B.Prangnell,W.M.Stobbs. The Effect of SiC Particulate Reinforcement on the Aging Behaviour of Aluminum-based Matrix Alloys. In Proc. 7th Int. Conf. On Comp. Mats., Pergamon,1990:573~578
    41 张雪囡, 耿林. 混杂增强铝基复合材料的研究进展. 宇航材料与工艺. 2004,(4):1~6
    42 Ko Byung-chul,Yoo Yeon-chul.The Effect of Aging Treatment on The Microstructure on The Mechanical Properties of AA2124 Hybrid Composites Reinforced with Both SiC Whiskers and SiC Particles. Composites Science and Technolgy .1999 ,59:775~779
    43 Ko Byung-chul , Yoo Yeon-chul. Hot-deformation. Behaviour of AA2124 Composites Reinforced with Both Particle and Whiskers of SiC. Composites Science and Technolgy , 1998,58(3 ,4) :479~485
    44 Zhang X. N.,Geng L.,Wang G.S. Microstructure and Tensile Properties of Al Hybrid Composites Reinforced with SiC Whiskers and SiC Nanoparticles. Key Engineering Materials . 2003,249 :277~282
    45 Wilson S , Alpas A T. Effect of Temperature on the Sliding Wear Performance of Al Alloys and Al Matrix Composites. Wear , 1996,196 :270~278
    46 Lavernia E J, Perez R J.Damping Behavior of Discontinuously Reinforced Al Alloy Metal Composites[J]. Metall Mater TransA,1995,26A:2803~2817
    47 刘维镐, 朱劲松. 高阻尼铝基复合材料的研究. 功能材料. 2001(5):1~3
    48 卢德宏, 固明元等. 铝-石墨界面反应对石墨、碳化硅混杂增强铝基复合料摩擦磨损性能的影响.稀有金属材料与工程. 2000,29(1): 35~38
    49 刘如铁, 李溪滨等人. 石墨添加量对热压镍铬钼-石墨复合材料性能的影响. 粉末冶金技术. 2005,23(5):359~362
    50 李义春. 颗粒增强铝基复合材料的微塑性变形行为. 哈尔滨工业大学博士学位论文. 1996
    51 王秀芳. SiCp/2024Al 复合材料的尺寸稳定性研究. 哈尔滨工业博士学位论文. 2003
    52 李义春, 安希墉.SiC/Al 复合材料微蠕变行为及影响因素分析. 航空学报. 1994, 15(5): 632~635
    53 杨晓红, 刘永兵等人. 混杂增强 AZ91 复合材料的制备及其显微组织和性能.吉林大学学报(工学版). 2004,34(1):60~64
    54 叶志平, 薛茂权. 石墨含量对镍基材料的力学性能及径向组织的影响. 机车车辆工艺. 2005,4.(2)15~17
    55 王世中, 欧阳宇平. LY12 冷热加工的残余应力及其消除. 航天工艺. 1992,3: 26~29
    56 T.W.克莱因, P. J.威瑟斯. 金属基复合材料导论.冶金工业出版社. 1996,11
    57 余湘彬, 仲政. 弱界面颗粒增强复合材料的有效弹性模量. 同济大学学报. 2002.28(3):257~261
    58 张强. 高体积分数铝基复合材料的微观组织和力学性能的. 哈尔滨工业大学博士学位论文. 2003,121
    59 唐春安, 傅宇方等. 界面性质对颗粒增强复合材料破坏模式影响的数值模拟分析. 复合材料学报. 1999,4(16):112~120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700