通风盘式制动器热—机耦合仿真分析及寿命预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制动器是汽车制动系统的核心部件,制动过程是一个典型的热—机耦合过程,制动器摩擦副温度和应力场的耦合分析计算是制动器设计的重要内容和选择摩擦副材料的重要理论依据。本文应用有限元方法对制动过程中的热—机耦合现象进行仿真分析,并预测了制动盘的热疲劳寿命。
     首先,以目前轿车上普遍采用的通风盘式制动器为例,应用Catia软件进行三维建模,利用Hypermesh软件进行网格划分,推导盘式制动系统的三维瞬态温度场热传导方程,并确定其热流输入边界条件和对流散热边界条件,应用非线性有限元软件Abaqus建立制动系统的热—机完全耦合有限元分析模型,对汽车紧急制动过程进行模拟,在模拟计算中考虑到了因摩擦生热导致的旋转移动热流的产生和分配,以及温度、接触压力与应力之间相互耦合问题,并考虑到制动盘各界面的对流换热系数随制动盘转速而变化。
     其次,通过对热—机耦合制动过程的仿真分析,揭示制动盘在移动热源和对流换热作用下的瞬态温度场、接触压力场和应力场的分布规律,探讨制动盘在交变循环应力作用下盘面常见的径向裂纹的产生原因,研究制动过程中制动盘的翘曲和厚度变化的热变形,并根据热变形对接触状态和接触压力的影响来分析制动过程中制动盘摩擦表面出现的“热点”和制动时的热抖动问题。
     最后,基于热—机耦合分析结果,应用Manson-Coffin公式来预测制动盘的热疲劳寿命,并研究制动初速度和制动压力对制动盘使用寿命的影响。
Brake is the main components of the vehicle brake system. The braking process is a typical thermal-mechanical coupling process. The coupled temperature and stress field analysis and calculation is an important part of brake design and its results are the important theoretical foundation in for selecting friction materials. The paper simulated the thermal-mechanical coupling phenomenon for a ventilated disc brake and predicted the thermal fatigue life of the disc.
     Firstly, a ventilated disc brake which is currently widely used for passenger cars was chosen as an example, the 3-D model of disc brake system was established using the software Catia, and was meshed using the software Hypermesh. The three-dimensional transient temperature field of heat conduction equation of the disc brake system was derived, and its heat input boundary conditions and convection boundary conditions were identified. And the thermal-mechanical coupled finite element model for braking system was established using the non-linear finite element software Abaqus. The transient temperature field, contact pressure and stress field of the disc are simulated during emergency braking. The effect of the heat due to friction caused by rotational movement of the heat generation and distribution, the coupling of the temperature, contact pressure and equivalent stress were taken into account during the course of numerical simulation. And the change of the heat transfer coefficient for each interface of the forced convection state of the brake disc was taken into account.
     Secondly, based on the results of the simulation of the thermal-mechanical coupling, the distribution of the transient temperature, contact pressure and stress field of the disc were analyzed under the condition of the time-varying moving thermal load and the convection heat transfer. With the alternating cycle of stress, the radial cracks which are common on the disc surface were studied. The thermal deformation of warping and the thickness variation of the disc were investigated. And according to the thermal deformation the disc influence on the contact state and contact pressure, the“hot spots”which are on the disc surface and hot judder were analyzed during braking process.
     Finally, the thermal fatigue life of the disc was predicted according to Manson-Coffin equation. The effect of the initial braking speed and brake pressure to the brake disc life were also studied.
引文
[1]余志生.汽车理论[M].第4版.北京:机械工业出版社, 2006, 102-107
    [2]王望予.汽车设计[M].第4版北京:机械工业出版社, 2004, 258-265
    [3] Okmura T., Yumoto H.. Fundamental Study on Thermal Behavior of Brake Discs[J]. SAE paper, 2006-01-3203
    [4] Thuresson D.. Thermomechanical Analysis of Friction Brakes[J]. SAE paper, 2000-01- 2775
    [5] Wang P. H, Wu X., Jeon Y. B.. Thermal-mechanical coupled simulation of a solid brake disc in repeated braking cycles[J]. Journal of Engineering Tribology, 2009,11: 1041-1048
    [6] Choi J. H., Lee I.. Transient thermoelastic analysis of disk brakes in frictional contact[J]. Journal of Thermal Stresses, 2003, 26: 23-244
    [7] Choi J. H., Lee I.. Finite element analysis of transient thermoelastic behaviors in disk brakes[J]. Wear, 2004, 257: 47-58
    [8] Anderson A. E., Knapp R. A.. Hot spotting in automotive friction systems[J]. Wear, 1990, 135: 319-337
    [9] Steffen E., Thomas K.. Thermal Simulation within the Brake System Design Process[J]. SAE paper, 2002-01-2587
    [10] Mackin T. J., Noe M. C, Ball K. J. et al. Thermal cracking in disc brakes [J]. Engineering Failure Analysis, 2002(9): 63-76
    [11] Bagnoli F., Dolce F., Bernabei M.. Thermal fatigue cracks of fire fighting vehicles gray iron brake discs[J]. Engineering Failure Analysis, 2009(16): 152-163
    [12] Qi H. S, Day A. J.. Investigation of disc/pad interface temperatures in friction braking[J]. Wear, 2007, 262: 505–513
    [13]王洪纲.热弹性力学概论[M].北京:清华大学出版社, 1988
    [14] Barber J. R.. Thermoelastic instabilities in the sliding of conforming Solids [J]. Wear, 1969, 10: 381-394
    [15] Burton R.A., Nerlikar V., Kilaparti S.R.. Thermoelastic instability in a seal-1ike configuration[J]. Wear, 1973, 24: 177-188
    [16] Lee K., Barber J. R.. Frictionally excited thermoelastic instability in automotive disk brakes[J]. ASME J. Tribol, 1993, 115: 607-614
    [17] Voldrich J.. Frictionally Excited Thermoelastic Instability in Disc Brakes: Transient Problem in the Full Contact Regime[J]. International Journal of Mechanical Sciences, 2007, 49: 129-137
    [18] Valvano T., Lee K.. An Analytical Method to Predict Thermal Distortion of a Brake Rotor[J]. SAE paper, 2000-01-0445
    [19] Zagrodzki P., Lam K.B., Al E., et al. Barber.Nonlinear Transient Behavior of a Sliding System With Frictionally Excited Thermoelastic Instability[J]. Journal of Tribology, 2001, 123: 699-708
    [20] Zagtodzki P.. Analysis of thermomechanical phenomena in multi-disc clutches and brakes[J]. Wear, 1990, 140: 291-308
    [21] Floquet A., Dubourg M. C.. Nonaxisy metric effects for three dimension analysis of a brake[J]. Journal of Tribology, 1994, 116: 401-408
    [22] Floquet A., Dubourg M. C.. Realistic braking operation simulation of ventilated disc brakes[J]. Journal of Tribology, 1996, 118: 466-472
    [23] Gao C. H, Lin X. Z . Transient temperature field analysis of a brake in a non-axisymmetric three dimensional model[J]. Journal of Material processing Technology,2002, 129: 513-517
    [24] Aviles R., Hennequet G.. Low Frequency Vibrations in Disc Brakes at High Car Speed PartⅡ:Mathematical Model and Simulation[J]. International Journal of Vehicle Design, 1995, 16(6): 556-569
    [25] Altuzarra O., Amezua E., Aviles R.. Judder vibration in disc brakes excited by thermoelastic instability[J]. Engineering Computations, 2002, 19(4): 411-430
    [26] Jacobsson H.. Disc brake judder considering instantaneous disc thickness and spatial friction variation[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 217(5): 325-342
    [27]高诚辉,林谢昭,黄健萌.制动工况参数对制动盘摩擦温度场分布的影响[J].工程设计学报,2006, 13(1): 44-48
    [28]林谢昭,高诚辉.盘式制动器非轴对称温度场的有限元模型[C].第八届全国工程设计年会, 2002(8): 403-407
    [29]黄健萌,高诚辉,林谢昭,等.盘式制动器摩擦界面接触压力分布研究[J].固体力学学报,2007, 28(3): 297-302
    [30]杨智勇,韩建民,李卫京,等.制动盘制动过程的热—机耦合仿真[J].机械工程学报,2010, 46(2): 88-92
    [31]赵海燕,张海全,汤晓华,等.快速列车盘型制动热过程有限元分析[J].清华大学学报(自然科学版), 2005, 45(5): 589-592
    [32]张立军,司杨,余卓平.非均匀盘式制动器热机耦合特性试验研究[J].汽车技术, 2008(6): 45-49
    [33]吕振华,元昌.蹄—鼓式制动器热弹性耦合有限元分析[J].机械强度, 2003, 25(4): 401-407
    [34]黄健萌,高诚辉,唐旭晟,等.盘式制动器热—结构耦合的数值建模与分析[J].机械工程学报, 2008, 44(2): 144-151
    [35] Sasada M., Fujii T.. Study on Thermo-plastic Deformation for One-Piece Brake Disks[J]. SAE paper, 1998, 1339: 119-131
    [36] Emery A.F. Measured and Predicted Temperatures of Automotive Brakes under Heavy or Continuous Braking[J]. SAE paper, 2003-01-2712
    [37] Litos P., Honner M., Lanq V., et al. A measuring system for experimental research on the thermomechanical coupling of disc brakes[J]. Journal of Automobile Engineering, 2008, 222(7): 1247-1257
    [38] Lee K.. Frictionally Excited Thermoelastic Instability in Automotive Drum Brakes[J]. Journal of Tribology, 2000, 122(10): 849-855
    [39] Little E., Kao T. K.. A Dynamometer Investigation of Thermal Judder[J]. SAE paper, 982252
    [40] Manson S.S.. Behavior of materials under conditions of thermal stress[R]. NACA, TN2933, 1953
    [41] Coffin L.F.. The problem of thermal stress fatigue in austenitic steels at elevated temperatures[J]. ASTM, 1954, 165: 31-52
    [42] Spera D.A.. What is thermal fatigue: Thermal fatigue of Materials and Components[M]. American Society for Testing and Materials, 1976
    [43] Dufrenoy P., Weiehert D.. A thermomechanical model for the analysis of disc brake fracture mechanisms [J]. Journal of Thermal stress, 2003, 26: 814-828
    [44]王文静. SiCp_A356复合材料制动盘温度应力场数值模拟及热疲劳寿命预测[D].北京:北方交通大学, 2003
    [45] Kao T. K., Richmond J. W., Douarre A.. Brake disc hot spotting and thermal judder: an experimental and finite element study[J]. International Journal of Vehicle Design, 2000, 23(3): 276-296
    [46]徐济民,张海泉,陈强,等.快速列车制动盘安全评定与寿命预测模型[J].清华大学学报, 2006, 46(5): 609-612
    [47]杨强.列车制动盘温度场和应力场仿真与分析[D].北京:北京交通大学, 2009
    [48]何君毅,林祥都.工程结构非线性问题的数值解法[M].北京:国防工业出版社, 1994
    [49]庄茁. Abaqus/Standard有限元软件入门指南[M].清华大学出版社, 1998
    [50]罗庆生,韩宝玲.汽车摩擦片摩擦热分布规律的分析与研究[J].润换与密封, 2004(2): 20-22
    [51]马保吉,朱均.摩擦制动器接触表面温度计算模型[J].西安工业学院学报, 1999, 19 (l): 35-38
    [52]唐旭晟.盘式制动器热-结构非线性分析与计算[D].福州:福州大学, 2003
    [53] Friedrich K., Fl?ck J., Váradi K., et al. Numerical and finite element contact and thermal analysis of real composite-steel surfaces in sliding contact[J]. Wear, 1999, 225: 368-379
    [54] Kennedy F.E. Surface temperatures in sliding systems-A finite element analysis[J]. Journal of Tribology, 1981, 103: 90-96
    [55]俞昌铭.热传导及其数值分析[M].北京:清华大学出版社, 1982
    [56] QC/T564—2008.乘用车制动器性能要求及台架试验方法[S].北京:中国计划出版社, 2008
    [57]金晓行.盘式制动器温度场研究[D].合肥:合肥工业大学, 2007
    [58] Kim S. W., Park K., Lee S. H., et al. Thermophysical Properties of Automotive Metallic Brake Disk Materials[J]. Int J of Thermophysics, 2008, 29: 2179-2188
    [59] Zhu Z. C., Peng Y. X., Shi Z. Y., et al. Three-dimensional transient temperature field of brake shoe during hoist’s emergency braking[J]. Applied Thermal Engineering, 2009, 29: 932–937
    [60]成林,张文明.基于有限元的盘式制动器耦合场研究[J].拖拉机与农用运输车, 2009, 36(5): 43-45
    [61] McPhee A. D., Johnson D. A.. Experimental heat transfer and flow analysis of a vented brake rotor[J]. Int J of Thermal Sciences, 2008(47): 458-467
    [62]周凡华,吴光强,沈浩,等.盘式制动器15次循环制动温度计算[J].汽车工程, 2001, 23(6): 411-413
    [63]李亮,宋健,李永,等.制动器热分析的快速有限元仿真模型研究[J].系统仿真学报, 2005, 12(17): 2869-2872
    [64]杨世铭,陶文铨.传热学[M].第三版.北京:高等教育出版社, 1998
    [65]李明.高速列车制动盘热—机耦合数值模拟[D].成都:西南交通大学, 2007
    [66]徐新琦,成学军.热—机耦合分析的有限元法及其应用[J].海军航空工程学院学报, 2004, 19(3): 380-382
    [67] Eisengraeber R.. Comparison of different methods for the determination of the friction temperature of disc brakes[J]. SAE paper, 1999-01-0138
    [68] Tirovic M., Day A. J.. Disc brake interface pressure distributions[J]. Journal of Automobile Engineering, 1991, 205: 137-146
    [69] Eriksson M., Bergman F., Jacobson S. On the nature of tribological contact in automotive brakes[J]. Wear, 2002, 252: 26-36
    [70] Jacobsson H. Aspects of disc brake judder [J]. Proc.Instn Mech.Engrs Part D: Journal of Automobile Engineering, 2003, 217(6): 419-430
    [71]葛哲学,陈仲生. Matlab时频分析技术及其应用[M].北京:人民邮电出版社, 2006
    [72]杨智勇.高速客车铝基复合材料制动盘热损伤和结构设计研究[D].北京:北京交通大学, 2008
    [73] Suresh S..材料的疲劳[M].第二版.王中光译.北京:国防工业出版社, 1999
    [74]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700