煤矸石产酸潜力及粉煤灰与马粪堆肥吸附重金属研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矸石山的露天堆存导致了严重的环境问题和社会问题,已成为煤矿区环境治理的重要课题。本文以中国和美国典型矿区煤矸石为例,采用室内模拟等方法研究了煤矸石产酸特性和重金属形态、释放规律及粉煤灰与马粪堆肥对重金属的污染控制。利用酸碱计算法(ABA)和净产酸潜力法(NAG)对煤矸石产酸进行了预测并证明了两种方法的可行性;比较和评价了煤矸石产酸潜力和中和潜力分析方法,最后提出了煤矸石产酸潜力测定的一些科学建议。利用改进的欧共体参比司(BCR)法分析了煤矸石重金属赋存形态,并利用美国TCLP、ASTM、SPLP等静态淋溶法和野外动态淋溶法研究了重金属的释放特性。采用柱状淋溶实验揭示了粉煤灰在控制煤矸石酸性和重金属复合污染具有较好的效果,其中分层覆盖比表层覆盖效果更佳,并系统讨论了重金属共沉淀、粉煤灰吸附等控制重金属污染的机理。利用批处理试验和柱状淋溶试验分析了马粪堆肥对煤矸石模拟淋滤液重金属Pb、Cu、Cd和Zn的单一吸附和复合离子的竞争性吸附及其动力学特征,表明马粪堆肥具有很好的吸附效果,并揭示离子交换是主要的吸附机理。
Coal waste piles have led to serious environmental problems and social problems, which has become an important issue for coal mining area environment. In this paper, taking coal waste and overburden as an example, the acid properties and heavy metals forms, leaching rule and comprehensive prevention and control measures were studied by using on laboratory and field tests and other methods. The acid producing potential and neutralization potential of coal waste and overburden were analyzed by using acid-base method (ABA) and net acid potential method (NAG), and the recommendations of different acid producing methods and some suggestions were put forward. The heavy metals forms of coal waste were analyzed by using of BCR method and the release characteristics of heavy metals were revealed by using of the United States TCLP, ASTM, and SPLP method. The effectiveness and feasibility of heavy metals and acidic pollution control by using fly ash were studied by using column leaching experiment, and the comparison of different coverage of fly ash also were analyzed, the mechanism of heavy metals pollution control pollution including the co-precipitation and fly ash adsorption were revealed. By using of batch leaching tests and column leaching experiment, the adsorption of Pb, Cu, Cd and Zn in single and competitive adsorption on horse compost and its kinetic characteristics were studied, and the results showed that the compost could be used as bio-solid materials to control heavy metals of coal waste, and the main mechanism of adsorption is ion exchange.
引文
94. A. Sahuquillo, A. Rigol, G Rauret. Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. Trends in Analytical Chemistry,2003,22(3):152-159.
    95. Pustisek, N, Milacic, R, Veber, M. Use of the BCR three-step sequential extraction procedure for the study of the partitioning of Cd, Pb and Zn in various soil samples. J. Soils Sediments,2001,1,25-29.
    96. Sowmya Bulusu, Ahmet H. Aydilek, Neha Rustagi, CCB-based encapsulation of pyrite for remediation of acid mine drainage. Journal of Hazardous Materials,2007,143(3),609-619
    97. Mei Fang cai, zhi dang, Yu wei Chen, etal. The passivation of pyrrhotite by surface coating Chemosphere,2005,61:659-667
    98. Matthew M. Matlock, Brock S. Howerton, David A. Atwood. Covalent coating of coal refuse to inhibit leaching. Advances in Environmental Research,2003,7:495-501
    99. Belzile, N., Maki, S, Chen, Y, etal. Inhibition of pyrite oxidation by surface treatment. Sci. Total Environ. 1997,196:77-186.
    100. B.Bussiere, M. Benzaazous, M. Aubeertion. A laboratory study of covers made of low-sulphide tailings to prevent acid mine drainage.environmental geology,2004,45:609-622
    101. Ernest k. yanful, marcela p. orlandea controlling acid drainage in a pyriticminewaste rock. part ii: geochemistry of drainage. water, air, and soil pollution2000,122:369-388.
    102. S. Geldenhuis, F. G Bell. Acid mine drainage at a coal mine in the eastern Transvaal, South Africa. Environmental Geology,1998,(34):234-242.
    103. Rolf O. Hallberg, Johan R. Granhagen, Anneli Liljemark. A fly ash/biosludge dry cover for the mitigation of AMD at the falun mine. Chemie der Erde,2005, (65) S1,43-63
    104. E. Mylona, A. Xenidis and I. Paspaliaris. Inhibition of acid generation from sulphidic wastes by the addition of small amounts of limestone.Minerals Engineering,2000,(13) 10:1161-1175
    105. M. Misra, K. Yang, R. K. Mehta. Application of fly ash in the agglomeration of reactive mine tailings.Journal of Hazardous Materials,1996,51(1):181-192
    106. M. Misra, K. Yang, R. K. Mehta. Application of fly ash in the agglomeration of reactive mine tailings, Journal of Hazardous Materials,1996,51(1):181-192
    107. S.S. Potgieter-Vermaak, J.H. Potgieter, P. Monama, etal. Comparison of limestone, dolomite and fly ash as pre-treatment agents for acid mine drainage. Minerals Engineering,2006,19:454-462
    108. Bellaloui, Achour, Chtaini, etal. Laboratory investigation of the control of acid mine drainage using alkaline paper mill waste. Water, Air and Soil Pollution,1999,111(1):57-73
    109.胡振琪,张明亮,马保国,等.粉煤灰防治煤矸石酸性与重金属复合污染.煤炭学报,2009,34(1)::79-83
    110.毕银丽,苏高华,郭婧婷,等.碱性粉煤灰对煤矸石硫污染防治技术.2007,32(6):622-625.
    111. Kleinmann, R.L.P, D.A. Crerar, and R.R. Pacelli. Biochemistry of acid mine drainage and a method to control acid formation. Min. Eng,1981(33):300-306.
    112. Rastogi V. Water quality and reclamation management in mining using bactericides.Minerals Engineering, 1996,48:66-71.
    113. Wolfgang Sand, Jozsa Peter Georg, Kovacs Zsuzsanna. Long-term evaluation of acid rock drainage mitigation measures in large lysimeters. Journal of Geochemical Exploration,2007,92:205-211.
    114.胡振琪,马保国,张明亮,等.高效硫酸盐还原菌对煤矸石硫污染的修复作用.煤炭学报,2009,34(3):400404
    115. Chang, In Seop, Shin. Biological treatment of acid mine drainage under sulphate-reducing conditions with solid waste materials as substrate. Water Research,2000,34(4):1269-1277
    116. K. komnitsas, A. peppas. prediction of the life expectancy of organic covers. minerals engineering, 2000,13(14):1589-1601
    117. Mohan, Dinesh, Chander, Subhash. Removal and recovery of metal ions from acid mine drainage using lignite-A low cost sorbent. Journal of Hazardous Materials,2006,137 (11):1545-1553
    118. LIN C. Analytical methods for environmental risk assessment of acid sulfate soils (ASS):a review. Pedosphere,2001,11:301-310.
    119. Mermut AR, Faz Cano A. Baseline studies of the clay minerals society source clays:chemical analyses of major elements. Clays clay minerals,2001,49:381-386
    120. Sobek, A. A, J.G Skousen, and S.E. Fisher, Jr. Chemical and physical properties of overburdens and minesoils. In Reclamation of drastically disturbed lands. AgronomyMonogr. ASA, Madison, WI.2000,77-104
    121. Backes C A, Pulford I D, Duncan HJ. Studies on the oxidation of pyrite in colliery spoil:Inhibition of the oxidation by amendment treatments [J]. Recl and Reveg Res,1987, (6):1-11
    122. Sobek AA, Schuller WA, Freeman JR, Smith RM. Field and laboratory methods applicable to overburden and mine soils. EPA report No.600/2-78-054,1978,47-50
    123. Lawrence R W, ScheskeM. A method to calculate the neutralization potential of mining waste. Environmental Geology,1997,32 (2):100-113.
    124. Lapakko, K. Evaluation of neutralization potential determinations for metal mine waste and a proposed alternative, Proc. International Land Reclamation and Mine Drainage Conference, Pittsburgh, USBM SP 06A-94,1994,129-137.
    125. Meek, F.A. Development of a Procedure to Accurately Account for the presence of Siderite during Mining Overburden Analysis, Proc.2nd Annual West Virginia Surface Mine Drainage Task Force Symposium,27 April, West Virginia Univ., Morgantown,1981.
    126. Skousen, J, Renton, J, Brown, H, etal. Neutralization Potential of Overburden Samples containing Siderite. Journal of Environmental Quality,1997,26(3):673-681.
    127. Blowes DW, Jambor JL.The pore-water geochemistry and the mineralogy of the vadose zone of sulfide tailings, Waite Amulet,Quebec, Canada. Appl Geochem,1990,5:327-346
    128. Campbell RN, Lindsay P, Clemens AH. Acid generating potential of waste rock and coal ash in New Zealand coal mines. Int J Coal Geol.2001,45:163-179
    129. Skousen, J.G, R.M. Smith, J.C. Sencindiver. Development of the acid-base account. Green Lands,1990, 20:32-37.
    130.王运泉,任德贻,尹金双.煤及其燃烧产物中微量元素的淋滤试验研究.环境科学,1996,17(1):16-20
    131.谢华林,张萍,贺惠,等.大气颗粒物中重金属元素在不同粒径上的形态分析.环境工程,2002,20(6):55-57.
    132.曹会聪,王金达,张学林.BCR法在污染农田黑土重金属形态分布研究中的应用.水土保持学报,2006,(6):163-166
    133.郭关林,周启星.污染黑土中重金属的形态分布与生物活性研究.环境化学,2005,24(4):383-388
    134.莫争,王春霞,陈琴,等.重金属Cu, Pb, Zn, Cr, Cd在土壤中的形态分布和转化.农业环境保护,2002,21(1):弘12
    135.郭观林,周启星.中国东北北部黑土重金属污染趋势分析.中国科学院研究生院学报,2004,21(3):386-392
    136.李永华,杨林生,李海蓉,等.湘黔汞矿区土壤汞的化学形态及污染特征.环境科学,2007,28(3):654-658
    137. Lawrence,R.W and Wang Y. Determination of neutralization potential for acid rock drainage prediction. MEND Report 1.16.3, Ottawa, ON,1997,149.
    138. Chang E E, Chiang P C. Comparisons of metal leachability for various wastes by extraction and leaching methods. Chemosphere,2001,45:91-99.
    139. M arika K, M arkku Y. Use of sequential extraction to assessmetal portioning in soils. Environmental Pollution,2003,126:225-2331
    140. Guy Mercier, Josee Duchesne. A simple and fast screening test, to detect soils polluted by lead. Environmental Pollution,2002,18:285-296.
    141. David M. Kargbo, Jiren He. A simple accelerated rock weathering method to predict acid generation kinetics. Environmental Geology,2004,46:775-783
    142. Smedley PL, Kinniburgh DG A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem,2002,17:517-568
    143. Phair J W, Van Deventer J S J,Smith J D. Effect of Al source and alkali activation on Pb and Cu immobilization in fly ash based geopolymers. App lied Geochemistry,2004 (19):423-434.
    144. Xu J Z, Zhou YL, Chang Q. Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers. Material Letters,2006,60 (6):820-822.
    145.席永慧,胡中雄.粉煤灰粘土膨润土等对Cd2+吸附性能的比较研究.农业环境科学学报,2004,23(5):930-934.
    146. Evangelou V P. Pyrite microencap sulation technologies:princip les and potential field app lication. Ecol. Eng,2001,17:165-178.
    147. McGregor, R.G, Blowes,D.W, Jambor,J.L, Robertson,WD. the solid-phase controls on the mobility of heavy metals at the copper cliff tailings area, Sudbury, Ontario,Canada.J.Contam.Hydrol.1998,33:247-271.
    148. F.M.Romero, M.A.Armienta, G. Gonzalez-Hernandez. Solid-phase control on the mobility of potentially toxic elements in an abandoned lead/zinc mine tailings impoundment,Taxco,Mexico.Applied Geochemistry, 2007,22:109-127.
    149.龚竹青,黄坚,蒋汉瀛.矿山酸性废水的综合治理及回收.中南工业大学学报,1996,8:32-435.
    150.向武.AMD处理技术及其进展.有色金属矿产与勘查,1998,(8):251-253.
    151.张胜,李日强.利用粉煤灰与沸石处理含铜废水的研究.山西大学学报(自然科学版),2004,27(3):313-315
    152. Meltem Sarioglu. Removal of copper from aqueous solutions using biosolids. Desalination.2009, 239:167-174
    153. N. Commenges-Bernole, J. Marguerie. Adsorption of heavy metals on sonicated activated sludge. Ultrasonics Sonochemistry,2009,16:83-87
    154. T. Altun, E. Pehlivan. Removal of copper(II) ions from aqueous solutions by walnut, hazelnut and almond shells. Clean Soil Air Water,2007,35 (6):601-606.
    155. E. Pehlivan, T. Altun. Biosorption of chromium(VI) ion from aqueous solutions using walnut, hazelnut and almond shell. J. Hazard. Mater,2008,155:378-384.
    156. V.K. Gupta, C.K. Jain, I. Ali, etal. Removal of cadmium and nickel from wastewater using bagasse fly ash sugar industry waste.Water Res.2003,37:4038-4044.
    157. A.K. Bhattacharya, S.N. Mandal, S.K. Adsorption of Zn(II) from aqueous solutions by using different adsorbents. Chem. Eng. J,2006,123:43-51.
    158. V.K. Gupta, P. Singh, N. Rahman. Adsorption behavior of Hg (II), Pb (II) and Cd (II) from aqueous solution on duolite C-433:a synthetic resin. J. Colloid Interf. Sci,2004,275 (2):398-402.
    159. V.J. Larsen, H.H. Schierup. The use of straw for removal of heavy metals from wastewater, J. Environ. Qual, 1981,10 (2):188-193.
    160. T.W. Tee, A.R.M. Khan. Removal of lead, cadmium and zinc by waste tea leaves. Environ. Technol. Lett, 1988,9:1223-1232.
    161. S.Y. Quek, D.A.J.Wase, C.F. Forster. The use of sagowaste for the sorption of lead and copper. Water SA,1998,24(3):251-256.
    162. P. Brown, LA Jefcoat, D. Parrish, etal. Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution. Adv. Environ. Res.2000,4 (1):19-29.
    163. A. Sukla, Y H. Zhang, P. Dubey, J.L etal. The role of saw dust in the removal of unwanted materials from water. J. Hazard. Mater.2002,95:137-152.
    164. D. Zhou, L. Zhang, J. Zhou, S. Guo. Cellulose/chitin beads for adsorption of heavy metals in aqueous solution.Water Res,2004,38:2643-2650.
    165. G. Doner, S. Akman. The removal of copper, cadmium and lead by rice husk ash. Fresen.Environ. Bull. 2003,12:736-739.
    166. S. Azizian. Kinetic models of sorption:a theoretical analysis.J. Colloid Interface Sci,2004,276:47-52.
    167. Strawn D.G, Scheidegger A.M, Sparks D.L. Kinetics and mechanisms of Pb(Ⅱ) sorption and desorption at the aluminum oxide-water interface. Environ. Sci. Technol,1998,32:2596-2601
    168.涂响,曾光明,陈桂秋,等.香菇培养基废料吸附水体中Pb2+的研究.中国环境科学,2006,4:165-167
    169. Serrano S, Garrido F, Campbell C.G, etal. competitive sorption of cadmium and lead in acid soils of central spain.Geoderma,2005,124:91-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700