基于可靠度分析的供水管网优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的发展和人民生活水平的提高,在城市供水管网研究课题中,管网的可靠度与设计合理性已日渐引起研究者越来越多的重视。
     本文在对国内外研究成果进行总结分析的基础上,提出了供水管网水力、水质可靠度的评估指标并建立了相应的计算模型;然后,根据供水管网的性质,建立了基于可靠度的多目标供水管网优化设计模型;最后,将模型成功地应用于某实际大规模管网的优化设计课题中。
     首先,本文对供水管网水力模型与水质模型的定义、建立和求解进行了研究和探讨,对水力分析软件EPANET的功能与二次开发进行了介绍,并根据某校园管网的水质监测数据,利用偏最小二乘法建立了总铁和浊度的预测模型,经过校核,该水质预测模型具有良好的预测效果,可以较好地解决许多以往用普通多元回归无法解决的问题。
     其次,通过对国内外管网可靠度研究成果的分析与综合,本文建立了供水管网水力、水质可靠度模型与水力、水质熵值可靠度模型,其中水力可靠度和水质可靠度模型的计算主体分别为节点实际可利用流量与需水量的比值和节点水质达标率,而水力熵值可靠度与水质熵值可靠度则是利用Shannon的信息熵原理,从管网配水的水量与水质分布的均匀程度来反映管网的可靠度。
     再次,本文通过对一个小型模拟管网优化设计算例的可靠度指标值进行计算,验证了所选可靠度指标与所建立计算模型的合理性与可行性,同时也证明了管网水力、水质熵值可靠度模型可以作为管网水力、水质可靠度的替代模型应用于供水管网优化设计研究中。
     最后,本文建立了以经济最优和管网熵值可靠度最大为目标的供水管网多目标优化模型,并选取华北某行政区内实际运行多年的大型供水管网作为研究对象,选用遗传算法,利用MATLAB与外部程序的接口功能,调用EPANET动态链接库,采用转化约束条件性质的方法对算法进行改进,使其适应供水管网管径选取规则。优化结果显示,优化后的管网不仅比优化前具有经济优势,其供水可靠度也有相应的提高。
Along with the social economic development and the people living standard improvement, reliability analysis and reasonable design of the municipal water distribution systems is becoming more and more important.
     In this paper, based on the summary of research results of the previous study, the indicators of hydraulic reliability and the water quality reliability of municipal water distribution systems has been chosen and the corresponding computational model has also been set up. And then, according to the characteristics of the water distribution systems, a multi-objective optimization model, which is based on the hydraulic and water quality information entropy, has been established. Finally, the optimization model has been successfully applied into the optimization of practical large-scale municipal water distribution systems.
     First of all, the definition, establishment and solution of the hydraulic model and water quality model of municipal water distribution systems have been analyzed. The function and the secondary development of hydraulic analysis software EPANET are introduced. Also, based on the water quality monitoring data of a water distribution systems in one campus, the partial least squares method has been used to establish the total iron and turbidity prediction model. The comparation of the monitoring data and the predicting results shows that the partial least squares water quality prediction model has good predictive effect, and it is more adaptable in solving the multiple regression problems which is always ill-solved by the ordinary regression method.
     Secondly, after the analysis and synthesis of the previous reliability research of municipal water distribution systems, in this paper, the hydraulic and water quality reliability model as well as the hydraulic and water quality information entropy model are established. In the hydraulic and water quality reliability model, the ratio of available water supply quantity and the normal water demand of nodes is used to calculate the hydraulic reliability, and the standard-reaching rate of water quality of nodes is used to calculate the water quality reliability. Also, based on the information entropy principle which was introduced by Shannon, the hydraulic and water quality information entropy models are established. According to the entropy models, the reliability of the municipal water distribution systems can be indicated by the uniformity of the water supply and the water quality distribution.
     Thirdly, a small municipal water distribution system has been taken as the example to simulate the reliability models which has been established in this study. The results of the analysis indicate that the reliability models not only can be well used in calculating the reliability of municipal water distribution system, but also it can be proved that the hydraulic and water quality information entropy model can be used as the alternative model of the hydraulic and water quality simulation model, and it can be better applied to the optimization design study of the complex municipal water distribution systems.
     Finally, based on the economic optimization and the maximum information entropy, the multi-objective optimization model of municipal water distribution systems is established. Then a practical large scale municipal water distribution systems in the administrative region of northern China is taken as the object, the MATLAB GATools is chosen to solve the multi-objective model, and the MATLAB external program interface function is used to call the EPANET dynamic link library. Also, according to the characteristics of the water distribution systems, the constraints have been well transferred to be more adaptable to the GATools. The optimization results indicate that the multi-objective model can be well used in the optimization of the municipal water distribution systems, it can not only reduce the investment but also increase the reliability of the municipal water distribution systems.
引文
[1]严煦世.给水工程(第四版)[M].北京:中国建筑工业出版社,1999.
    [2]李强,翟平.城市供水管网漏水原因及控制措施[J].水利天地,2008,(8):35.
    [3]宋兰合.城市供水管网问题突出亟待改造[J].建设科技(建设部),2008,(5):72-73.
    [4]中国城镇供水协会. 2003年城市供水统计年鉴[M].北京:中国统计出版社,2003.
    [5]陈超.供水管网漏水管理新系统和管道寿命经济决策系统[D].天津:天津大学,2000.
    [6]俞为荣.给水管道漏损的原因及对策[J].四川建筑,2001,25(2):83-90.
    [7](日)盐见弘著,彭乃学译.可靠度工程基础[M].北京:科学出版社,1982.
    [8]Kapur K C, Lamberson L R. Reliability in Engieering Design[M]. New York: John Wiley and Sons, Inc., 1977.
    [9]Damelin E, Shamir U. Engineering and economic evaluation of reliability of water supply[J]. Water Resource, 1972, 8(4):861-877.
    [10]Wagner M, Shamir U, Marks D H. Water distribution reliability: Analytical methods[J]. Journal of Water Resource Planning and Management, 1988, 114(3):253-275.
    [11]Mays L W. Methodologies for reliability analysis of water distribution systems[C]//Yen B C. Proceedings of Reliability and Uncertainty Analysis in Hydraulic Design. United States: American Society of Mechanical Engineers, 1993:233-268.
    [12]Shamsi U. Computerized evaluation of water supply reliability[J]. IEEE Transaction on Reliability, 1990, 39(1):35-41.
    [13]Y Bao, L W Mays. Model for water distribution system reliability[J]. Journal of Hydraulic Engineering, 1990, 116(9):1119-1137.
    [14]Fujiwara O, Silva AU De. Algorithm for reliability-based optimal design of water networks[J]. Journal of Environmental Engineering, 1990, 16(3):575-87.
    [15]Fujiwara O, Ganesharajah T. Reliability assessment of water supply systems with storage and distribution networks[J]. Water Resources Research, 1993, 29(8):2917-2924.
    [16]Su Y C, Mays L W, Duan N, et al. Reliability based optimization model for water distribution systems[J]. Journal of Hydraulic Engineering, 1987, 114(12):1539-1556.
    [17]Wu S J, Yoon J H, Quimpo R G. Capacity weighted water distribution system reliability[J]. Reliability Engineering and System Safety, 1993, 42(1):39-46.
    [18]Quimpo R G, Shamsi U M. Reliability-based distribution system maintenance[J]. Journal of Water Resource Planning and Management Division, 1991, 117(3):321-339.
    [19]Kansal M L, Kumar A, Sharma P B. Reliability analysis of water distribution systems under uncertainty[J]. Reliability Engineering and System Safety, 1995, 50(1):51-59.
    [20]Ostfeld A, Koganb D, Shamira U. Reliability simulation of water distribution systems-single and multiquality[J]. Urban Water, 2002, 4(1):53-61.
    [21]Liang T, Nahaji S. Managing water quality by mixing water from different sources[J]. Journal of Water Resources Planning and Management Division, 1983, 109(1):48-57.
    [22]Sinai G, Koch E, Farbman M. Dilution of brakish waters in irrigation networks- an analytic approach[J]. Irrigation Science, 1985, 6(3):191-200.
    [23]Cohen D, Shamir U, Sinai G. Optimal operation of multi-quality networks-I: Introduction and the Q-C model[J]. Engineering Optimization, 1999, 32(5):549-584.
    [24]Cohen D, Shamir U, Sinai G. Optimal operation of multi-quality networks-II: The Q-H model[J]. Engineering Optimization, 1999, 32(6):687-719.
    [25]Cohen D, Shamir U, Sinai G. Optimal operation of multi-quality networks-III: The Q-C-H model[J]. Engineering Optimization, 2000, 33(1):1-35.
    [26]Rossman L A. EPANET User Manual[M]. United States: Environmental Protection Agency, 1994.
    [27]Walski T M. Water distribution valve topology for reliability analysis[J]. Reliability Engineering and System Safety, 1993, 42(1):21-27.
    [28]Awumah K, Goulter I C, Bhatt S K. Assessment of reliability in water distribution networks using entropy-based measures[J]. Stochastic Hydrology and Hydraulics, 1990, 4(4):325-36.
    [29]Awumah K, Goulter I C, Bhatt S K. Entropy-based redundancy measures in water-distribution networks[J]. Journal of Hydraulic Engineering, 1991, 117(5):595-614.
    [30]Shannon C. A mathematical theory of communication[J]. Bell System Technology, 1948, 27(3): 379-428.
    [31]Awumah K, Goulter I C. Maximizing entropy defined reliability of water distribution networks[J]. Engineering Optimization, 1992, 20(1):57-80.
    [32]Tanyimboh T T, Templeman A B. Optimum design of flexible water distribution networks[J]. Civil Engineering and Environmental System, 1993, 10(1):243-58.
    [33]Tanyimboh T T. An Entropy-based Approach to the Optimum Design of Reliable Water Distribution Networks[D]. United Kingdom: University of Liverpool, 1993.
    [34]Tanyimboh T T, Templeman A B. Calculating maximum entropy flows in networks[J]. Journal of the Operational Research Society, 1993, 44(4):383-96.
    [35]Setiadi Y, Tanyimboh T T, Templeman A B. Modelling errors, entropy and the hydraulic reliability of water distribution systems[J]. Advances in Engineering Software, 2005, 36(11-12):780-788.
    [36]Sacks J, Welch W, Mitchell T, et al. Design and analysis of computer experiments (with discussion)[J]. Statistical Science, 1989, 4(4):409-435.
    [37]Lansey K E. The evolution of optimizing water distribution system application[C]//Burman R D. Proceedings of the 8th Annual Water Distribution Systems Analysis Symposium. United States: American Society of Mechanical Engineers, 2007:5.
    [38]Walski T M. A history of water distribution[J]. Journal of the American Water Works Association, 2006, 98(3):110-121.
    [39]John M H, Higgins D, Okun A. Regional Development of Public Water Supply Systems[M]. North Carolina: Water Resources Research Institute of the University of North Carolina, 1972.
    [40]Singh K P, Visocky A P, Lonnquist C G. Meeting regional water requirement-a case study[J]. Journal of the American Water Works Associations, 1974, 66(10):589-600.
    [41]Kordic M, Cbradovic D. Mathematical modeling of regional water supply systems in Yugoslavia[J]. Journal of the American Water Workers Associations, 1977, 69(4):203-205.
    [42]Masahiro N Sh, Harry H G Jr, Downey B E Jr. Water supply system model with capacity expansion[J]. Journal of Water Resources Planning and Management, 1986, 112(1):87-103.
    [43]Alperovits E, Shamir U. Design of optimal water distribution systems[J]. Water Resources Research, 1977, 13(6):885-900.
    [44]Duan N, Mays L W, Lansey K E. Optimal reliability-based design of pumping and distribution systems[J]. Journal of Hydraulic Engineering, 1990, 116(2):249-268.
    [45]Goulter I, Bouchart F. Reliability-constrained pipe network model[J]. Journal of Hydraulic Engineering, 1990, 116(2):211-229.
    [46]Gupta R, Bhave R. Reliability analysis of water distribution systems[J]. Journal of Environmental Engineering, 1994, 120(2):447-460.
    [47]Todini E. Looped water distribution networks design using a resilience index based heuristic approach[J]. Urban Water, 2000, 2(2):115-122.
    [48]Savic D A, Walters G A. Genetic algorithms for least-cost design of water distribution networks[J]. Journal of Water Resources Planning and Management, 1997, 123(2):67-77.
    [49]Halhal D, Walters G A, Ouazar D, et al. Water network rehabilitation with structured messy genetic algorithm[J]. Journal of Water Resources Planning and Management, 1997, 123(3):137-146.
    [50]Fujiwara O, Jenchaimahakoon B, Edirisinghe N. A modified linear programming gradient method for optimal design of looped water distribution networks[J]. Water Resources Research, 1987, 23(6):977-982.
    [51]Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing[J]. Science, 1983, 13(220):671-680.
    [52]Dorigo M, Caro C G, Gambardella L M. Ant algorithms for discrete optimization[J]. Artificial Life, 1999, 5(2):137-172.
    [53]Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]//Guerrero J E. Proceedings of the Sixth International Symposium on Micro machine and Human Science. United States: IEEE Computer Society CPS, 1995:39-43.
    [54]Goldberg D E, Kuo C H. Genetic algorithms in pipeline optimization[J]. Journal of Computing in Civil Engineering, 1987, 1(2):128-141.
    [55]Simpson A R, Dandy G C, Murphy L J. Genetic algorithms compared to other techniques for pipe optimisation[J]. Journal of Water Resources Planning and Management Division, 1994, 120(4):1589-1603.
    [56]Dandy G C, Simpson A R, Murphy L J. An improved genetic algorithm for pipe network optimization[J]. Water Resources Research, 1996, 32(2):449-458.
    [57]Wu Z Y, Simpson A R. A self-adaptive boundary search genetic algorithm and its application to water distribution systems[J]. Journal of Hydraulic Research, 2002, 40(2):234-241.
    [58]Maier H C, Simpson A R, Zecchin A C, et al. Ant colony optimization for design of water distribution systems[J]. Journal of Water Resources Planning and Management, 2003, 129(3):200-209.
    [59]Eusuff M M, Lansey K E. Optimization of water distribution network design using the shuffled frog leaping algorithm[J]. Journal of Water Resources Planning and Management, 2003, 129(3):210-225.
    [60]Geem Z W, Kim J H. Harmony search optimization: application to pipe network design[J]. International Journal of Modelling and Simulation, 2002, 22(2):125-133.
    [61]Wu Z Y, Simpson A R. Competent genetic-evolutionary optimization of water distribution systems [J]. Journal of Computing in Civil Engineering, 2001, 15(2):89-101.
    [62]Farmani R, Savic D A, Walters G A. The simultaneous multi-objective optimization of Anytown pipe rehabilitation, tank sizing, tank siting and pump operation schedules[C]//Wyllie A L Jr. Proceedings of the 2004 World Water and Environmetal Resources Congress: Critical Transitions in Water and Environmetal Resources Management. United States: American Society of Mechanical Engineers, 2004:4663-4673.
    [63]Lingireddy S, Ormsbee L E. Artificial Neural Networks for Civil Engineers: Advanced Features and Applications[M]. United States: American Society of Mechanical Engineers, 1998.
    [64]Walski T M. The wrong paradigm-why water distribution qptimisation doesn’t work[J]. Journal of Water Resources Planning and Management, 2001, 127(7):203-205.
    [65]Pierro F D, Khu S Th, Savic D, et al. Efficient multi-objective optimal design of water distribution networks on a budget of simulations using hybrid algorithms[J]. Environmental Modelling and Software, 2009, 24(2):202-213
    [66]张焯.城市给水管网的可靠度分析[J].天津市政工程,1996,8(1):19-24.
    [67]徐祖信,R Guerc.水分配系统以可靠度为基础的线性优化模式[J].同济大学学报,1996,24(5):580-585.
    [68]周建华,赵洪宾.低水压供水时的管网平差计算方法[J].中国给水排水,2003,19(3):43-45.
    [69]赵新华,刘英梅,乔宇.城市给水管网可靠度计算[J].中国给水排水,2002,18(4):53-55.
    [70]刘丽霞.城市给水管网系统可靠度分析与研究[D].重庆:重庆大学,2007.
    [71]卫书麟,李杰,刘威,等.沈阳市主干供水管网系统抗震可靠度优化[J].世界地震工程,2008,24(1):17-22.
    [72]赵洪宾,严煦世.给水管网系统理论与分析[M].北京:中国建筑工业出版社,2003.
    [73]王光辉.马鞍山市供水管网系统规划模型的研究[D].哈尔滨:哈尔滨工业大学,2007.
    [74]袁志彬,王占生.城市供水管网水质污染的防治研究[J].天津建设科技,2003,(2):30-31,37.
    [75]陈寅,陈国光.上海城市供水管网水质的调查分析[J].中国给水排水,2002,18(7):32-34.
    [76]杜英林,任立民.浅析配水管网水质污染原因及防止措施[J].山东水利,2001,9:43-44.
    [77]何维华.国内部分城市供水管网水质调研分析[J].给水排水,1993,19(11):15-19.
    [78]谭春晓,刘星.论海水淡化在天津市水资源分配中的作用[J].城市,2005,(4):45-46.
    [79]潘海祥.海水淡化水厂供水的黄水现象及应对措施[J].中国给水排水,2008,24(12):90-92.
    [80]郑毅,彭晨蕊,谭浩,等.给水管网内铁离子的释放[J].天津大学学报,2008,41(2):137-141.
    [81]Sarin P, Snoeyink V L, Bebee J, et al. Physico-ChemicalCharacteristics of Corrosion Scales in Old Iron Pipes[J]. Water Research, 2001, 35(12):2961-2969.
    [82]Lin J P, Ellaway M, Adrien R. Study of corrosion materials accumulated on the inner wall of steel water pipe[J]. Corrosion Science, 2001, 43(11):2065-2081.
    [83]牛璋彬,王洋,张晓健,等.给水管网中管内壁腐蚀管垢特性分析[J].环境科学,2006,27(6):1150-1154.
    [84]Sontheimer H, Kolle W, Snoeyink V L. Siderite model of the formation of corrosion-resistant scales[J]. Journal of American Water Works Association, 1981, 73(11):572-579.
    [85]Luo B J, Zhao X H, Liang B S, et al. Study on Water Quality Chemical Stability of Desalinated Seawater in Municipal Water Supply Systems [C]//Guerrero J E. Proceedings of 2009 International Conference on Environmental Science and Information Application Technology. United States: IEEE Computer Society CPS, 2009:344-348.
    [86]骆碧君,刘志强,郑毅,等.海水淡化水在既有管网中的水质变化研究[J].中国给水排水,2009,25(23):57-60.
    [87]方伟,许仕荣,徐洪福,等.城市供水管网水质化学稳定性研究进展[J].中国给水排水,2006,22(14):10-13.
    [88]刘星.输配系统消毒副产物的预测与控制[D].天津:天津大学,2003.
    [89]董晓磊.给水管网水质动态模拟[D].合肥:合肥工业大学,2006.
    [90]徐洪福.配水管网系统水质变化规律与水质模型研究[D].哈尔滨:哈尔滨工业大学,2003.
    [91]李欣,马建薇,袁一星.城市给水管网水质研究与进展[J].哈尔滨工业大学学报,2004,36(10):34-38.
    [92]赵洪宾.给水管内生长环对水质水压的影响[J].安徽建筑工业学院学报(自然科学版),1993(1):20-24.
    [93]吴文燕,解守志,赵洪宾.给水管网水质监控的理论研究[J].哈尔滨建筑大学学报,1997,30(1):57-61.
    [94]吴文燕,赵洪宾,解守志.监测配水管网水质[J].中国给水排水,1997,13(1):25-27.
    [95]李欣,马建薇,袁一星.城市给水管网水质研究与进展[J].哈尔滨工业大学学报,2004,36(10):1392-96.
    [96]李静萍,谢邦昌.多元统计分析方法与应用(数据分析系列教材)[M].北京:中国人民大学出版社,2008.
    [97]白鹏,张喜斌,张斌,等.支持向量机理论及工程应用实例[M].西安:西安电子科技大学出版社,2007.
    [98]王志丹,赵新华.城市给水管网水质模型的研究[J].天津工业大学学报,2004,23(9):46-49.
    [99]方正,马莉莉.水箱水质变化数学模型及计算机仿真研究[J].武汉大学学报:工学版,2005,38(5):99-103.
    [100]张诗芳,郑锋.降低饮用水浊度,保障水质安全[J].净水技术,2005,24(2):39-41.
    [101]Wu Q, Yuan Z H. Summary of Partial Least Squares Regression[J]. Statistics and Probability Letter, 2001, 53(2):113-121.
    [102]Philippe B, Esposito V V. PLS generalised linear regression[J]. Computational Statistics and data Analysis, 2005, 48(1):63-67.
    [103]吴和成.系统可靠度评定方法研究[M].北京:科学出版社,2006.
    [104]Brown R E, Gupta S, Christie R D, et al. Distribution System Reliability Assessment Using Hierarchical Markov Modeling[J]. IEEE Transactions. On Power Delivery, 1996, 11(4):1929-1934.
    [105]魏选平,卞树檀.故障树分析法及其应用[J].计算机科学与技术,2004,(3):43-45.
    [106]肖刚,李天棺.系统可靠度分析中的蒙特卡罗方法[M].北京:科学出版社,2003.
    [107]Tolson B A, Maier H C, Simpson A R, et al. Genetic Algorithms for Reliability- Based Optimazation of Water Distribution Systems[J]. Journal of Water Resources Planning and Management, 2004, 130(1):63-72.
    [108]金溪,张杰,高金良,等.利用GO法进行供水管网可靠度计算[J].浙江工业大学学报,2007,35(6):684-686.
    [109]Wanger J M, Shamir U, Marks D H. Water distribution reliability: simulation methods[J]. Journal of Water Resources Planning and Management, 1988, 114(4):276-294.
    [110]Gupta R. Bhave P R. Comparison of methods for predicting deficient network performance[J]. Journal of Water Resources Planning and Management, 1996, 122(3):214-217.
    [111]吴珊,刘彦辉,张申海,等.供水管道压力调控对漏水量影响的试验研究[J].水利水电科技进展,27(3):27-29.
    [112]袁一星,高金良,赵洪宾,等.给水管网运行工况计算分析系统的研究[J].哈尔滨建筑大学学报,1996,29(5):59-63.
    [113]张土乔,王鸿翔,郭帅.供水管网水质模型管壁余氯衰减系数校正[J].浙江大学学报(工学版),2008,42(11):1977-1981.
    [114]施沛颖.供水管网以可靠度为约束的分段线性优化模式[D].上海:同济大学,2000.
    [115]张亮.基于微粒群算法的供水管网扩建研究[D].重庆:重庆大学,2007.
    [116]彭永臻,崔福义.给水排水工程计算机应用(第二版)[M].北京:中国建筑工业出版社,2002.
    [117]Quindry G. Design of optimal water distribution Systems[J]. Water resource research, 1979, 15(6):1654-1654.
    [118]俞国平,刘静.微观模型配水系统的优化调度[J].给水排水,2004,30(7):106-108.
    [119]Mikkilineni R P, Feagin T. Computational method for minimization with nonlinear constraints[J]. Journal of Optimization Theory and Applications, 1978, 25(3):335-347.
    [120]Jacoby S L. Design of optimal hydraulic networks[J]. Journal of the American Society of Civil Engineering, 1968, 94(3):641-661.
    [121]Watanatada T. Least-cost Design of water Distribution System[J]. Journal of the American Society of Civil Engineering, 1973, 99(9):58-62.
    [122]Wolfe P. Methods of Nonlinear Programming, Recent Advance in Mathematical Programming[M]. United States: Mc Graw Hill, 1963.
    [123]Bhave P R. Noncompute optimization of single-source networks[J]. Journal of the Evironmental Engineering Division, 1978, 104(4):799-814.
    [124]Lasdon T S, Waren A D, Ratner M W. GRG2 User’s Guide[M]. United States: Cleveland State University, 1975.
    [125]Murtagh B A, Saunders M A. MINOS User’s Guide-a Large Scale Nonlinear Programming System[M]. United States: Stanford University, 1977.
    [126]Lasdon L S. Optimization Theroy for Large Systems[M]. United States: Macmillan, 2002.
    [127]Lansey K E, Mays W L. Optimization model for water distribution system design[J]. Journal of Hydraulic Engineering, 1989, 115(10):1401-1418.
    [128]Metropolis N, Rosenbluth A, Rosenbluth M, et al. Equation of state calculation by fast computing machines[J]. Journal of Chemical Physics, 1953, 21(6):1087-1092.
    [129]王辉,钱锋.群体智能优化算法[J].化工自动化及仪表,2007,34(5):7-13.
    [130]Eusuff M M, Lansey K E, Pasha F. Shuffled Frog-Leaping Algorithm: A Memetic Meta-Heuristic for disctrete optimization[J]. Engineering Opitmization, 2006, 38(2):129-154.
    [131]罗忠贤.分类遗传算法在供水管网优化设计中的应用[D].成都:西南交通大学,2004.
    [132]雷英杰,张善文,李续武,等. MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    [133]陶建科,刘遂庆.建立微观动态微观水力模型标准方法研究[J].给水排水,2000,26(5):4-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700