金属纳米粒子增强荧光有机磷生物传感器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机磷具有高效的杀虫能力,已经成为当今广泛使用的农药之一,有机磷农药的残留所引起的食品安全问题长期以来一直是人们所关注的焦点。因此,建立快速、可靠、灵敏、简便和实用的有机磷检测的分析方法,对于环境保护和食品安全等具有重要现实意义。
     生物传感器的研究和应用是实现实时、定位、在线分析的重要途径,已成为当前分析化学研究领域热点之一。基于AChE的有机磷生物传感器的研究越来越受到人们的重视,其中包括光学、电学、电化学、热学、磁学等换能器。由于荧光法检测具有灵敏度高、良好的组织穿透力、高空间分辨率和成本低等优点,因此最受人们的亲睐而且得到广泛的应用。
     生物缀合物是指两个或两个以上具有生物活性的分子连接起来形成一个新的复杂的生物复合物,同时具有各个组成分子的性能。本论文的研究目的是:将贵金属纳米材料(即金和银纳米粒子)和乙酰胆碱酯酶(AChE)共价结合形成生物缀合物来构建分子纳米传感器,利用金属纳米子结合于AChE对荧光探针的影响,建立高灵敏度、快速响应的有机磷检测新方法。
     本论文分为三章,第一章为绪论,简要综述了蛋白质荧光生物传感器和贵金属纳米材料在生物传感分析中的研究进展;介绍了乙酰胆碱酯酶的特点和应用;归纳了贵金属纳米材料的基本性质、化学修饰以及在分析化学中的应用;并论述了本论文的研究思路、目的和意义。
     第二章和第三章为实验部分,具体内容如下:第二章金纳米粒子增强荧光有机磷生物传感器
     7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) (DDAO)是一类红色的荧光染料分子。利用金属纳米粒子对DDAO荧光特性的影响,本章建立了基于乙酰胆碱酯酶的有机磷检测新方法,并初步探讨了分子传感机理。首先,利用巯基与Au形成共价键的作用,将11-巯基十一烷酸(MUA)共价结合到金纳米粒子上,再通过EDC/NHS将羧基活化,然后利用乙酰胆碱酯酶分子上的自由氨基,将AChE共价固定在金纳米粒子上,形成AuNPs/AChE缀合物:利用吸收光谱、透射电镜等方法对合成的金纳米粒子、AuNPs/AChE等缀合物进行了表征,考察了温度和pH值对缀合物的影响。研究了AuNPs/AChE生物缀合物对对氧磷的生物传感器性能;还测定了DDAO与AChE的双分子结合速率常数和抑制常数,探讨了DDAO对AChE的抑制类型、对氧磷与AuNPs-AChE-DDAO生物缀合物的结合常数等;利用Autodock4.2软件,对DDAO与乙酰胆碱酯酶的分子对接进行了研究。结果表明:吸收光谱图和透射电子显微镜图片表明了AuNPs/AChE缀合物的形成。与自由酶相比,在同样的温度和酸度条件下,固定化的AChE具有更好的稳定性。当AuNPs/AChE生物缀合物存在时,DDAO的荧光强度急剧增加,对氧磷加入到此体系中后,DDAO则发生荧光猝灭,据此,建立了一种简单灵敏的测定对氧磷的方法,检出限为4×10-7M。该传感器具有很好的稳定性,响应快、灵敏度高等优点。对DDAO与AChE的相互作用研究表明,DDAO对AChE有很强的抑制作用,抑制常数的大小为Ki为1.1×10-7M,属混合型抑制。对氧磷与AuNPs-AChE-DDAO生物缀合物的结合常数为3.2×106L·mol-1,说明对氧磷与DDAO/AChE/AuNPs具有强的相互作用;分子对接的结果表明,与对氧磷结合于AChE的活性中心Ser200不同,DDAO结合于AChE的外周阴离子位点,表明了DDAO-AChE-AuNPs对对氧磷的传感性是由于其对生物缀合物中AChE分子构象的扰动,引起DDAO周围微环境的改变,造成荧光发射性能的改变。第三章银纳米粒子增强荧光有机磷生物传感器
     在第二章的研究中,发现了金纳米粒子对复合物中荧光探针DDAO具有增敏作用,尽管有文献报道金纳米粒子具有荧光增敏作用,但大量文献报道金纳米粒子具有荧光猝灭作用,这取决于金纳米粒子与荧光探针之间的距离,更多的文献报道银纳米粒子具有荧光增敏作用。为了进一步验证实验结果,本章将银纳米粒子标记于乙酰胆碱酯酶上进行研究。利用吸收光谱、透射电镜等方法对合成的银纳米粒子、AgNPs/AChE缀合物进行了表征,考察了温度和pH值对缀合物的影响。研究了AgNPs/AChE生物缀合物对对氧磷的生物传感器性能。我们还测定了对氧磷与AgNPs-AChE-DDAO生物缀合物的结合常数。结果表明:吸收光谱图和透射电子显微镜图片表明了AgNPs/AChE缀合物的形成。与自由酶相比,在同样的温度和酸度条件下,固定化的AChE同样具有更好的稳定性,对氧磷与AgNPs-AChE-DDAO生物缀合物的结合常数为1.7×106L·mol-1,说明对氧磷与DDAO/AChE/AgNPs也具有较强的相互作用。AgNPs/AChE生物缀合物的存在同样对DDAO具有荧光增敏作用,对氧磷加入到此体系中后,DDAO则同样发生荧光猝灭作用,说明DDAO/AChE/AgNPs生物缀合物同样可对对氧磷进行高灵敏的生物传感分析。
Organophosphate has high insecticidal abilities, which has been a far-ranging pesticide nowadays. The food safe problems resulting from damages of organophosphate are always taking people's attentions. Consequently, there is a growing interest in fast, reliable, sensitive, simple and practical detection methods, which has important practical significance on environmental protection and food safety.
     Biosensors have attracted much attention in recent times because of the potential applications of these devices in the clinical diagnostics, environmental monitoring, pharmaceuticals, and food processing industries due to their fast response and ease of operation. And the use of acetylcholinesterase (AChE) as organophosphate biological recognition element in biosensor technology has gained more and more attention, in particular with respect to pesticides detection. Many kinds of biosensors using different transducer for insecticide detection involving optics, electrics, electrochemistry, calorifics, magnetics,etc, has been developed. Among those, fluorescent biosensor is widely used as a class of biological sensors because of its good physical property such as high sensitivity, good penetrability, space resolution and low cost. Herein, a kind of biological sensors has been developed using fluorescence as detection signal.
     Bioconjugation involves the linking of two or more molecules to form a novel complex having the combined properties of its individual components. The objective of the present work is to develop a novel nanobiosensor for insecticide detection, combining noble metal nanoparticles(e.g. AuNPs or AgNPs) and with AChE by covalent bonding to form bioconjugation. Thus, the influence of metal nanoparticles was applied to improve the sensitivity of the fluorescent probe for better detetion of organophosphate.
     This thesis contains three chapters. Chapter one is introduction. It firstly reviews the progress of fluorescent biosensors and the basic characteristics and their applications of nobel metal nanoparticles, then summarize the functions and applications of AChE, the properties and chemical modification method of nobel metal nanoparticles, particularly in analytical chemistry application, finally describes the method, aim and significance of this research.
     Chapter two and chapter three are experimental sections as follows: Chapter two Organophosphate biosensor based on fluorescence enhancement with gold nanoparticles
     7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) (DDAO) is a red fluorescent dye with weak fluorescence. By means of metal nanoparticles affecting the fluorescence properties of DDAO, a novel method based on AChE about the detection of organophosphate has been established. The sensing mechanism has been also explored. Firstly, based on the thiol 11-mercapto-undecane acid (MUA) and Au forming a covalent bond, MUA was covalently immobilized onto the gold nanoparticles, then the carboxyl was activated through the EDC/NHS, reacted with the free amino groups of AChE via covalent binding, and form AuNPs/AChE conjugate. Finally the synthesized gold nanoparticles and AuNPs/AChE were characterized by absorption spectroscopy and transmission electron microscopy methods, and the influence of temperature and pH on enzyme activity between AChE and AuNPs/AChE was studied, then the biosensor performance of AuNPs/AChE biological conjugate on detection of paraoxon was studied. It was also calculated the bimolecular rate constants and inhibition constants of paraoxon combination with AuNPs-AChE-DDAO, and binding constants of paraoxon and AuNPs-AChE-DDAO biological conjugates. The inhibition type between AChE and DDAO was also tested. Using autodock4.2 software, the interactions between DDAO and AChE was studied by molecular docking. The absorption spectra and transmission electron microscopy images showed that the AgNPs/AChE conjugate had formed. Compared with the free enzyme, the immobilized AChE had better stability in the same temperature and acidity. In the presence of AuNPs/AChE bio-conjugates, the fluorescence intensity of DDAO had greatly enhanced,then the quenching phenomenon of DDAO fluorescence occured when the paraoxon was gradually added in this system. Consequently, a simple and sensitive method for determination of paraoxon was established according to the change of fluorescence intensity.The detection limit was 4×10-7 M. The sensor had good stability, fast response, high sensitivity. The interaction studies between AChE and DDAO showed that DDAO strongly inhibited the activity of AChE, the inhibition constant Ki was 1.1×10-7 M and resulted in a mixed inhibition type. Binding constant was 3.2×106 L-mol-1, which showed that there was a strong interaction between paraoxon and DDAO/AChE/AuNPs. The results of molecular docking showed that it was different from paraoxon binding to Ser200 in the active center of AChE. DDAO interacts with peripheral anion sites of AChE. It reasoned that the high sensing performance between paraoxon and DDAO-AChE-AuNPs was due to disturbance of the conformation of AChE conjugates. It ultimately lead to the changes of the micro-environment of DDAO and resulted in the changes of fluorescence emission performance.
     Chapter three Organophosphate biosensor based on fluorescence enhancement with silver nanoparticles
     In the second chapter, it was found that the gold nanoparticles could improve fluorescence of fluorescent probe DDAO. Many literatures reported that gold nanoparticles had fluorescence quenching features, few literatures reported that gold nanoparticles had a fluorescent enhancement effect.On the contrary, more studied showed that silver nanoparticles resulted in the fluorescent enhancement effect. To validate the experimental results, AChE the labeled silver nanoparticles was synthesized and characterized by absorption spectroscopy and transmission electron microscopy. The influence of temperature and pH value on enzyme activity of free AChE and AuNPs/AChE bioconjugate was studied. Then, the biosensing performance of AgNPs/AChE bioconjugate on detection of paraoxon was tested. The binding constants of AgNPs-AChE-DDAO bioconjugates and paraoxon was also calculated. The absorption spectra and images of transmission electron micros-copy showed that the AgNPs/AChE conjugate had been fabricated. At the same temperature and acidity, the immobilized AChE was more stabe than free AChE. The calculatesd binding constant was 1.7×106 L·mol-1, which also showed that there was a strong interaction between paraoxon and DDAO/AChE/AgNPs. In the presence of AgNPs/AChE bio-conjugates, the fluorescence intensity of DDAO had greatly enhanced, then the quenching phenomenon of DDAO fluorescence occured when the paraoxon was gradually added. It indicated that DDAO/AChE/AgNPs bioconjugate was also sensitive for biosensing paraoxon.
引文
[1]Wang H. X, Nakata E, Hamachi I. Recent progress in strategies for the creation of protein-based fluorescent biosensors[J]. Chem Bio Chem,2009,10:2560-2577.
    [2]Huang Z. Y, Yang P. Y, Almofti M. R, et al. Comparative analysis of the proteome of left ventricular heart of arteriosclerosis in rat[J]. Life Sci.,2004, 75(26):3103-3115.
    [3]Pasinetti G. M, Ho L. From cDNA microarrays to high-throughput proteomics implications in the search for preventive initiatives to slow the clinical progression of alzheimers disease dementia[J]. Restorative Neurology Neuroscience,2001,18(2-3):137-142.
    [4]Greenbaum D. C, Baruch A, Grainger M,et al. Munira Grainger, et al. A role for the protease falcipain 1 in hostcell invasion by the human malaria parasite [J]. Science,2002,298 (5600):2002-2006.
    [5][Hagihara M, Fukuda M, Hasegawa T. A modular strategy for tailoring fluorescent biosensors from ribonucleopeptide complexes[J]. J. Amer. Chem. Soc., 2006,128:12932-12940.
    [6]Pollack G. R, Nakayama P. G. Shultz. Introduction of nucleophiles and spectroscopic probes into antibody combining sites[J]. Science,988, 242:1038-1040.
    [7]Nakata E, Tsukiji S, Hamachi I. Preparation of silica nanosprings using cationic gelators as template[J]. Bull. Chem. Soc. Jpn.,2007,80:1268-1279.
    [8]Hamachi I, Nagase T, Shinkai S. A general semisynthetic method for fluorescent accharide biosensors based on a lectin[J]. J. Amer. Chem. Soc.,2000, 122:12065-12066.
    [9]Nagase T, Shinkai S, Hamachi I. Post-photoaffinity labeling modification using aldehyde chemistry to produce a fluorescent lectin toward saccharide boisensors[J]. Chem. Commun.,2001,229-230.
    [10]Froede H. C, Wilson I. B. Direct determination of acetyl-enzyme intermediate in the acetylcholinesterase-catalyzed hydrolysis of acetylcholine and acetylthiocholine[J]. J. Biol. Chem.,1984,259:11010-11013.
    [11]冷欣夫,唐振华,王荫长.杀虫药剂分子毒理学及昆虫抗药性[M].北京:中国农业出版社,1996,1-171.
    [12]唐振华,吴士雄.昆虫抗药性的遗传与进化[M].上海:上海科学技术文献出版社,2000,190-217.
    [13]Sussman J. L, Harel M, Frolow F, et al. Atomic structure of acetylcholinesterase from torpedo californica:a prototypic acetylcholine-binding protein[J]. Science., 1991,5022(253):872-879.
    [14]施明安,袁建忠,唐振华.乙酰胆碱酯酶的晶体结构及功能位点[J].农药学学报,2000,3(2):1-7.
    [15]Chai Y. X, Liu G. Y, Wang J. J. Toxicological and biochemical characterizations of AChE in liposcelis bostrychophila badonnel (psocoptera:liposcelididae)[J]. J. Biol. Chem.,1992,267:17640-17648.
    [16]Mushigeri S. B, David M. Fenvalerate induced changes in the ACh and associated AchE activity in different tissues of fish cirrhinus mrigala (hamilton) under lethal and sublethal exposure period[J]. Environ. Toxicol. Pharmacol.,2005,20:65-72.
    [17]Shafferman A, Velan B. Multidisplinary approaches to cholinesterase functions[M]. New York:Plenum Press,1992,95-156.
    [18]Radic Z, Gibney K, Kaw S, et al. Expression of recombinant acetylcholinesterase in a baculovirus system:kinetic properties of glutamate 199 mutants[J]. Biochemistry.,1992,31:9760-9767.
    [19]Taylor P, Lappi S. Interaction of fluorescence probes with acetylcholinesterase:the site and specificity of propidium binding[J]. Biochemistry.,1975,14:1989-1997.
    [20]Joseph L, Johnson, Bernaderre C, et al. Inhibition tethered near the acetylcholinesterase active site sever as molecular rulers of the peripheral and acylationsites[J]. J.Biol.Chem.,2003,78:38948-38955.
    [21]Fournier D, Stojan J, Brochier L, et al. Inhibition of drosophila melanogaster acetylcholinesterase by high concentrations of substrate [J]. Eur.J.Biochem.,2004, 271:1364-1371.
    [22]Gandia L, Alvarez R M, Hernandez Guijo J M, etal. Anticholinesterases in the treatment of alzheimer's disease[J]. RevNeurol.,2006,42(8):471-477.
    [23]Darreh Shori T, Hellstrom-Lindahl E, Flores-Flores C, et al. Long-lasting acetylcholinesterase splice variations in anticholinesterase-treated alzheimer's disease patients[J]. Neurochem,2004,88(5):1102-1113.
    [24]Thibault Sauvai tre, Mireille Barlier, Denyse Herlem, etal. New potent acetylcholinesterase inhibitors in the tetracyclic triterpene series[J]. J. Med. Chem. 2007,50:5311-5323.
    [25]Yusuke Hirasawa, Hiroshi Morita, Motoo Shiro, etal. Sieboldine A, a novel tetracyclic alkaloid from lycopodium sieboldii,inhibiting acetylcholinesterase org[J]. Letter.,2003,5(21):3991-3993.
    [26]孟范平,何东海,朱小山等.利用流动注射型乙酰胆碱酯酶传感器监测海水中马拉硫磷[J].分析化学,2005,33(7):922-926.
    [27]Liu G. D, Li Y. H. Biosensor based on self-assembling acetylcholinesteras on carbon nanotubes for flow injection/amperometr deteetion of organophosphate pesticides and nerve agents[J]. Anal. Chem.,2006,78:835-843.
    [28]Sinhaa R, Mallikar J, Ganesa N. AChE biosensor based on zinc oxide sol-gel for the detection of pesticides [J]. Anal. Chim. Acta,2010,661:195-199.
    [29]康天放,刘润,鲁理平等.再生丝素固定乙酰胆碱酯酶生物传感器[J].应用化学,2006,23(10):1009-103.
    [30]Camp S, Zhang. L. M. Acetylcholinesterase gene modification intransgenic animals:functional consequences of selected exon and regulatory regiond eletion[J]. Chem. Biol. Interact.,2005,157:79-86.
    [31]Su W., Wu J., Ye W. Y. A monoclonal antibody against synaptic AChE:a useful tool for detecting apoptotic cells[J]. Chem. Biol. Interact.,2008,175:101-107.
    [32]Zhao W, Ge P. Yu, Xu, J.J, et al. Selective detection of hypertoxic organophosphates pesticides via PDMS composite based acetylcholinesterase-inhibition biosensor[J]. Environ. Sci. Technol.2009, 43:6724-6729.
    [33]Hache F. Application of time-resolved circular dichroism to the study of conformational changes in photochemical and photobiological processes[J]. J. Photochem. Photobiol., A:Chemistry 2009, (204):137-143.
    [34]Zhang, W, Ding J, Qin Y., et al. One-step electrochemically deposited gold nanoparticles interface grafted with avidin for acetylcholinesterase biosensor design[J]. J.Nanosci NanoTechnol.,2010,10(9):5685-5691.
    [35]Sun, X. and X. Wang. Acetylcholinesterase biosensor based on prussian blue-modified electrode for detecting organophosphorous pesticides[J]. Biosens.Bioelectron.,2010,25(12):2611-2614.
    [36]Yang X., Niu C. G, Shang Z. J., etal., Optical-fiber sensor for determining content in organic solvents[J]. Sens. Actuators, B:Chemieal,2001,75:43-50.
    [37]Du D, Xiao X. Y, Jie C, et al. Acetylcholinesterase biosensor based on gold nanoparticles and cysteamine self-assembled monolayer for determination of monocrotophos[J]. J.Nanosci.Nanotechnol.,2009,9(4):2368-2373.
    [38]Viveros L, Paliwal S, McCrae D, et al. A fluorescence-based biosensor for the detection of organophosphate pesticides and chemical warfare agents[J]. Sens. Actuators, B.,2006, (115):150-157.
    [39]Clark B. K, Gregory B. W, Avila A, et al. Image potential surface states localized at chemisorbed dielectric-metal interfaces[J]. Langmuir,2002,18(12):4709-4719.
    [40]Nie S, Emory S. R. Probing single molecules and single nanoparticles by SERS[J]. Science,1997,275(5303):1102-1106.
    [41]Narayanan R, El-Sayed M. A. Effect of catalysis on the stability of metallic nanoparticles:suzuki reaction catalyzed by PVP-palladium nanoparticles [J]. J. Amer. Chem. Soc.,2003,125(27):8340-8347.
    [42]Thomas C. R., George S, Allison. M, et al. Nanomaterials in the environment: from materials to high-throughput screening to organisms[J]. ACS Nano,2011,5 (1):13-20.
    [43]Ian V. L, Thomas H. K, Prashant V. K. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide[J]. Nano Lett.,2010,10(2):577-583.
    [44]Christine M. A, George C. S. Time-dependent density functional theory examination of the effects of ligand adsorption on metal nanoparticles [J]. ACS Symp. Ser.,2008,9969(9):108-121.
    [45]Stewart M. E., Anderton C. R., Thompson L. B. Nano structured plasmonic sensors[J]. Chem. Rev.,2008,108:494-521.
    [46]Zou J. H, Dai Q, Guda R, et al. Controlled chemical functionalization of gold nanoparticles [J]. ACS Symp. Ser.,2008,996(3):31-40.
    [47]Hong D, Hinestroza J P. Metal nanoparticles on natural cellulose fibers: electrostatic assembly and in situ synthesis[J]. ACS Appl. Mater. Interfaces,2009, 1(4):797-803.
    [48]Samuel P. H, Briano J. G., Edwin D. L, etal. Enhanced raman scattering of nitroexplosives on metal oxides and Ag/TiO2 nanoparticles[J]. ACS Symp. Ser., 2009,10160(16):205-216.
    [49]Subbiah R, Veerapandian M, Yun K. S. Nanoparticles:functionalization and multifunctional applications in biomedical sciences[J]. Current medicinal chemistry.,2010,17(36):4559-4577.
    [50]Albena I, Lee K. B, Park S. J. Redox-controlled orthogonal assembly of charged nanostructures[J]. Am. Chem. Soc.,2001,123 (49):12424-12425.
    [51]Katherine C. G, Freeman R. G, Michael B. H. Preparation and characterization monolayers[J]. Anal. Chem.,1995,67:735-743.
    [52]Cumberland S. L and Strouse G. F.,Analysis of the nature of oxyanion adsorption on gold nanomaterial surfaces[J]. Langmuir.,2002,18:269-276.
    [53]Neiman B, Grushka E, Ovadia L. Use of gold nanoparticles to enhance capillary electrophoresis[J]. Anal. Chem.,2001,73:5220-5227.
    [54]Torigoe K, Esumi K. Preparation and catalytic effect of gold nanoparticles in water dissolving carbon disulfide[J]. J. Phys. Chem. B.,1999,103:2862-2866.
    [55]Li D. X, He Q, Cui Y. Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability[J]. Biochem. Biophys. Res. Commun.,2007,355: 488-493.
    [56]Liu S. P, Yang Z, Liu Z. F, et al. Resonance rayleigh-scattering method for the determination of proteins with gold nanoparticle probe[J]. Anal. Biochem.,2006, 353:108-116.
    [57]周宥辰,王艳艳,马志方等.湿化学镀SPR金基底及其性能表征[J].电化学,2011,17(1):31-36.
    [58]Hu M, Chen J. Y, Li Z. Y, Li X. D, et al. Gold nanostructures:engineering their plasmonic properties for biomedical applications [J]. Chem. Soc. Rev.,2006, 35:1084-1094.
    [59]彭剑淳,刘晓达,丁晓萍等.可见光谱法评价胶体金粒径及分布[J].军事医学学院院刊,2000,24(3):211-237.
    [60]Myroshnychenko V, Jessica R. F, Isabel P. S, et al. Modelling the optical response of gold nanoparticles [J]. Chem. Soc. Rev.,2008,37:1792-1805.
    [61]Brown K. R, Walter D. G, Natan M. J. Seeding of colloidal Au nanoparticle solutions:improved control of particle size and shape chem[J]. Chem. Mater., 2000,12:306-313.
    [62]Hussain I, Brust M, Barauskas J, et al. Controlled step growth of molecularly linked gold nanoparticles:from metallic monomers to dimers to polymeric nanoparticle chains[J]. Langmuir,2009,25 (4),1934-1939.
    [63]Faulk W. P, Taylor G. M.An immunocolloid method for the electron microscope [J]. Immunochemistry,1971,8:1081-1083.
    [64]Li D, Wieckowska A, Willner I. Optical analysis of Hg ions by oligonucleotide gold-nanoparticle hybrids and DNA-based machines[J]. Angew. Chem.,2008, 120:3991-3995.
    [65]Zotti G, Vercelli B, Berlin A. Gold nanoparticle linking to polypyrrole and polythiophene:monolayers and multilayers [J]. Chem. Mater.,2008,20:6509-6516.
    [66]Shad T C., Dimitra G. G, Mirkin C. A. Gold nanoparticle probes for the detection of nucleic acid targets[J]. Clinica Chimica Acta,2006,363:120-126.
    [67]Zhen X. W, Jason L, Andrew R. C, et al. Microarray-based detection of protein binding and functionality by gold nanoparticle probes[J]. Anal. Chem.,2005, 77:5770-5774.
    [68]Jenny M. C, David A, Robert S. Self-assembled gold nanoparticle molecular probes for detecting proteolytic activity in vivo[J]. ACS Nano,2010,4 (3):1511-1520.
    [69]Ghosh P, Han G, Kim C. K, Rotello V. M.. Gold nanoparticles in delivery applications [J]. Adverse Drug React. Toxicol. Rev.,2008,60:1307-1315.
    [70]Rosi Na. L, Mirkin C. A. Nanostructures in biodiagnostics[J]. Chem. Rev.,2005, 105:1547-1562.
    [71]Daniel M. C, Astruc D. Gold nanoparticles:assembly, supramolecular chemistry,quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chem. Rev.,2004,104:293-346.
    [72]Wang H, Wang Y. X, Jin J. Y. Gold nanoparticle-based colorimetric and "turn-on" fluorescent probe for mercury(Ⅱ) ions in aqueous solution[J]. Anal. Chem.,2008, 80:9021-9028.
    [73]Lu C, Zhang N, Li J. G, et al. Colorimetric detection of cephradine in pharmaceutical formulations via fluorosurfactant-capped gold nanoparticles[J]. Talanta,2010,81:698-702.
    [74]Parfenov A, Gryczynski I, Malicka J, et al. Enhanced fluorescence from fluorophores on fractal silver surfaces[J]. J. Phys. Chem. B.,2003, 107(34):8829-8833.
    [75]Lakowiczj R, Yibing S, Auria S,et al. Radiative decay engineering:effects of silver island films on fluorescence intensity lifetimes,and resonance energy transfer [J].Anal. Biochem.,2002,301(2):261-277.
    [76]Lakowiczj R, Malicka J. D, Auria S, et al. Release of the sef-quenching of fluorescence near silver metallic surfaces[J]. Anal. Biochem.,2003,320:13-20.
    [77]Liu S. H, Zhang Z. H, Han M. Y. Synthesis and biofunctionalization of silica-coated silver nanoparticles for fast colorimetric DNA detection[J]. Anal. Chem.,2005,77:2595-2600.
    [78]张吴然,李清彪.纳米级银颗粒的制备方法[J].贵金属,2005,26(2):51-56.
    [79]Wei H, Chen C. G, Han B. Y. Enzyme colorimetric assay using unmodified silver nanoparticles[J]. Anal. Chem.,2008,80:7051-7055.
    [80]Ramon A, Aroca R. F. Synthesis of silver nanoparticles with controllable surface charge and their application to surface-enhanced raman scattering [J]. Anal. Chem., 2009,81:2280-2285.
    [81]Sastry M, Mayya K. S. K. pH dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles[J]. Colloids Surf., A:Physicochemical and Engineering Aspects,1997,127(2):221-228.
    [82]Lee P. C, Meisel D. Adsorption and surface-enhanced raman of dyes on silver and gold sols[J]. J. Phys. Chem.,1982,86:3391-3395.
    [83]Vukovie V. V, Nedeljkovie J. M. Surface modification of nanometerscale silver particles by imidazole[J]. Langmuir,1993,9:980-983.
    [84]Cliffel D. E, Zamborini F. P, Stephen M. G. Mercaptoammonium-monolayer-protected,water soluble gold, silver, and palladium clusters[J]. Langmuir,2000, 16:9699-9702.
    [85]Shon Y. S, Cutler E. Aqueous synthesis of alkanethiolatc-protected Ag nanoparticles using bunte salts[J]. Langmuir,2004,20:6626-6630.
    [86]Li D. G, Chen S. H, Zhao S. Y, Hou X. Simple method for preparation of cubic Ag nanoparticles and their self-assembled films[J]. Thin Solid Films,2004, 460:78-82.
    [87]Mandal S, Gole A, Lala N. Studies on the reversible aggregation of cysteine-capped colloidal silver particles interconnected via hydrogen bonds[J]. Langmuir,2001,17:6262-6268.
    [88]Henglein, A.Formation of colloidal silver nanoparticles:capping action of citrate[J]. J. Phys. Chem. B,1999, 103:9533-9539.
    [89]Rijiravanich P, Somasundrum M, Surareungchai W. Femtomolar electrochemical detection of DNA hybridization using hollow polyelectrolyte shells bearing silver nanoparticles[J]. Anal. Chem.,2008,80:3904-3909.
    [90]Thompson D. G, Enright A, Faulds K, et al. Ultrasensitive DNA detection using oligonucleotide silver nanoparticle conjugates [J]. Anal. Chem.,2008, 80:2805-2810.
    [91]Tokareva I, Hutter E. Hybridization of oligonucleotide-modified silver and gold nanoparticles in aqueous dispersions and on gold films [J]. J. Amer. Chem. Soc., 2004,126:15784-15789.
    [92]Li L, Pei H. Q, Xu N. C, et al. Colloidal silver nanoparticles modified electrode and its application to the electroanalysis of cytochromec[J]. Electrochim. Acta, 2008,53:5368-5372.
    [93]Jiang G. H, Wang L, Chen W. X. Studies on the preparation and characterization of gold nanoparticles protected by dendrons[J]. Mater. Lett.,2007,61:278-283.
    [94]Nam Y. J, Allen D W, Philip H. E. X-thioacetylalkyl phosphonium salts precursors for the preparation of phosphonium-functionalised gold nanoparticles [J]. J. Org. Chem.,2008,693:3504-3508.
    [95]Zhou J. F, Ralston J, Sedev R, et al. Functionalized gold nanoparticles:synthesis, structure and colloid stability [J]. J. Colloid Interface Sci.,2009,331:251-262.
    [96]Huang X, Tu H. Y, Zhu D. H, et al. A gold nanoparticle labeling strategy for the sensitive kinetic assay of the carbamate-acetylcholinesterase interaction by surface plasmon resonance[J]. Talanta,2009,78:1036-1042.
    [97]Gross G. M, Grate J. W, Synovec R. E. Monolayer-protected gold nanoparticles as an efficient stationary phase for open tubular gas chromatography using a square capillary model for chip-based gas chromatography in square cornered microfabricated channels[J]. J. Chromatogr. A.,2004,1029:185-192.
    [98]Wangoo N, Bhasinb K. K., Boro R, Suri C. R. Facile synthesis and functionalization of water soluble gold nanoparticles for a bioprobe[J]. Anal. Chim. Acta.,2008,610,142-148.
    [99]Elghanian R, Storhoff J, Mucic, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles[J]. Science,1997,277:1078-1081.
    [100]Geddes C. D., Parfenov A, Gryczynski I, Joseph R. L. Luminescent blinking of gold nanoparticles[J]. Chem. Phys. Lett.,2003,380:269-272.
    [101]Darbha G. K, Singh A. K, Rai U. S. Detection of mercury (II) ion using nonlinear optica properties of gold nanoparticles[J]. J. Amer. Chem. Soc.,2008,130, 8038-8043.
    [102]Philip D. Synthesis and spectroscopic characterization of gold nanoparticles[J]. Spectrochim. Acta, Part A,2008,71:80-85.
    [103]Lim S. Y, Kim J. H, Lee J. S. Gold nanoparticle enlargement coupled with fluorescence quenching for highly sensitive detection of analytes[J]. Langmuir, 2009,25(23):13302-13305.
    [104]He P. L, Shen L, Cao Y. H. Ultrasensitive electrochemical detection of proteins by amplification of aptamer-nanoparticle bio bar codes[J]. Anal. Chem.,2007,79, 8024-8029.
    [105]Brainina K, Kozitsina A, Beikin J. Electrochemical immunosensor forest-spring encephalitis based on protein a labeled with colloidal gold[J]. Anal. Bioanal. Chem.,2003,376(4):481-485.
    [106]蔡强,吴维明,陈裕泉.纳米金粒子的生物组装技术与光学检测技术研究[J].传感技术学报,2003,1:21-23.
    [107]Orozco J, Fernandez S. C, Cecilia J. J. Gold nanoparticle-modified ultramicroelectrode arrays:a suitable transducer platform for the development of biosensors [J]. Procedia Chemistry,2009,1:666-669.
    [108]Ipe B. I, Yoosaf K, Thomas G. K. Functionalized gold nanoparticles as phosphorescent nanomaterials and sensors[J]. J. Amer. Chem. Soc.,2006,128 (6):1907-1913.
    [109]Wang L, Wang E. K. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode [J]. Electrochem. Commun.,2004,6(2):225-229.
    [110]Wei H, Chen C. G, Han B. Y. Enzyme colorimetric assay using unmodified silver nanoparticles[J].Anal. Chem.,2008,80:7051-7055.
    [111]Sperling R. A, Gil P. R, Zhang F, et al. Biological applications of gold nanoparticles[J]. Chem. Soc. Rev.,2008,37:1896-1908.
    [112]Rosenberry T. L, Leilani K. Analysis of the reaction of carbachol with acetylcholinesterase using thioflavin T as a coupled fluorescence reporter[J]. Biochemistry,2008,47,13056-13063.
    [113]Peng L. H, Zhang G. X, Zhang D. Q, etal. A fluorescence "turn-on" ensemble for acetylcholinesterase activity assa and inhibitor screening[J]. Org.Lett.,2009, 11(17):4014-4017.
    [114]Gole A, Murphy C. J. Seed-mediated synthesis of gold nanorods:role of the size and nature of the Seed[J]. Chem. Mater.,2004,16,3633-3640.
    [115]Grabar K. C, Freeman R. G, Natan M. J. Preparation and characterization monolayers[J], Anal. Chem.,1995,67,735-743.
    [116]Bose S, Yang J. Guidelines in selecting ligand concentrations for the determination of binding constants by affinity capillary electrophoresis [J]. J. Chromatogr. B,1997,69:77-88.
    [117]Korytam J, Stulik K. Ion selective electrodes[M]. NewYork:Cambridge University Press,1983,21-56.
    [118]Loo J. A, McConnell H. P. Study of srcsh domain protein phosphopeptide binding interactions by electrospray ionization mass spectroetry[J]. J. Am. Soc. Mass. Spectrom.,1997,8:234-243.
    [119]胡建平,柯国涛,陈慰祖,王存新.HIV-1病毒DNA结合整合酶后构象变化的分子模拟研究[M].物理化学学报,2008.
    [120]Sun T. G, Hu J. P, Li C. H. A molecular dynamics simulation study of glutamine-binding protein[J]. THEOCHEM,2005,725:9-16.
    [121]Liu M., Sun T. G, Hu J. P., et al. Study on the mechanism of the btuf periplasmic-binding protein for Vitamin B12 [J]. Biophys. Chem.,2008, 135:19-24.
    [122]Brenk R,Vetter S. W, Boyce S. E. Probing molecular docking in a charged model binding site [J]. J. Mol. Biol.,2006,357:1449-1470.
    [123]Koca J, Ludin M. Single coordinate driving method for molecular docking: application to modeling of guest inclusion in cyclodextrin[J]. J. Mol. Graphics Modell,2000,18,108-118.
    [124]Janson S, Merkle D. Molecular docking with multi-objective particle swarm optimization[J]. Applied Soft Computing,2008,8:666-675.
    [125]Lu S. Y, Jiang Y. J. Molecular docking and molecular dynamics simulation studies of GPR40 receptor-agonist interactions[J]. J. Mol. Graphics Modell,2010, 28(8):766-774.
    [126]王文祥,胡美英,刘萱清等.兔血清乙酰胆碱酯酶用于农药残留速测的最佳条件研究[J].食品科学,2006,27(3):179-182.
    [127]Sherry L. J, Jin R. C, Mirkin C. A, et al. Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms[J]. Nano Lett.,2006,6, 2060-2065.
    [128]Braun G, Lee S. J, Dante M, et al. Surface-enhanced raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films[J]. J. Amer. Chem. Soc.,2007,129,6378-6379.
    [129]Wei H, Chen C. G, Han B. Y, et al. Enzyme colorimetric assay using unmodified silver nanoparticles[J]. Anal. Chem.,2008,80,7051-7055.
    [130]Sengupta A, ThaiC K, Sastry S. R. A genetic approach for controlling the binding and orientation of proteins on nanoparticles[J]. Langmuir,2008,24:2000-2008.
    [131]Badawy A, Silva R. G, Morris B, et al. Surface charge-dependent toxicity of silver nanoparticles[J]. Environ. Sci. Technol.2011,45,283-287.
    [132]Kalele S. A, Kundu A. A, Gosavi S. W, et al. In situ observation of dendrite in Pb5Ge3O11 crystal growth[J]. Small,2006,2(3):335-338.
    [133]徐建平,计剑,陈伟东等.磷酸胆碱基细胞膜仿生药物缓释涂层材料的研究.高等学校化学学报,2004,25:188-190.
    [134]Morimotoa N, Watanabea A, Iwasakia Y, et al. Nano-scale surface modification of a segmented polyurethane with a phospholipid polymer [J]. Biomaterials,2004, 25:5353-5361.
    [135]Sunho Park, Katherine A. Brown, Kimberly Hamad-Schifferl. Changes in oligonucleotide conformation on nanoparticle surfaces by modification with mercaptohexanol[J]. Nano Lett.,2004,4(10):1925-1929.
    [136]Maxwell D. J, Taylor J. R, Nie S. Self-assembled nanoparticle probes for recognition and detection of biomolecules[J]. Am. Chem. Soc.,2002, 124(32):9606-9612.
    [137]Selvin P. R. The renaissance of fluorescence resonance energy transfer[J]. Nature, 2000,7(9):2730-2735.
    [138]Sivanesan A, Ly H. K, Kozuch J, et al. Functionalized Ag nanoparticles with tunable optical properties for selective protein analysis[J]. Chem. Commun.,2011, 47,3553-3555.
    [139]Zheng X. L, Xu W. Q, Corredor C, et al. Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect[J]. J. Phys. Chem., C.,2007,111,14962-14967.
    [140]Mei Y, Lu Y, Polzer F. Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels[J]. Chem.Mater., 2007,19:1062-1069.
    [141]Mei Y, Sharma G, Lu Y, et al. High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes [J]. Langmuir,2005, 21:12229-12234.
    [142]Oliveira M M, Castro E G, Canestraro C D, et al. A simple two-phase route to silver nanoparticles/polyaniline structures [J]. J. Phys.Chem. B.,2006, 110:17063-17069.
    [143]Wu H. Y, Chu H. C, Kuo T. J, et al. Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid[J]. Chem. Mater.,2005,17:6447-6451.
    [144]Sengupta A,ThaiC K, Sastry M. R, et a.l A genetic approach for controlling the binding and orientation of proteins on nanoparticles [J]. Langmuir,2008, 24:2000-2008.
    [145]Su C. H, Wu P. L, Yeh C. S. Sonochemical synthesis of well-dispersed silver nanoparticles at the ice temperature [J]. J. Phys. Chem. B,2003,107:14240-14243.
    [146]Zhang S. H, Jiang Z. Y, Xie Z. X, et al. Growth of silver nanowires from solutions:a cyclic penta-twinned-crystal growth mechanism[J]. J. Phys. Chem. B, 2005,109:9416-9421.
    [147]Thompson D. G,Enright A, Faulds K, et al. Ultrasensitive DNA detection using oligonucleotide-silver nanoparticle conjugates[J]. Anal. Chem.,2008, 80:2805-2810.
    [148]Tokareva I, Hutter E. Hybridization of oligonucleotide-modified silver and gold nanoparticles in aqueous dispersions and on gold films[J]. J. Amer. Chem. Soc., 2004,126:15784-15789.
    [149]Horvath A, Beck A, Sarkany A, et al. TPO characterization of ethanol reduced Pd nanoparticles supported on SiO2[J]. Solid State Ionics,2002,148:219-225.
    [150]郭斌,罗江山,唐永建,程建平.种子法制备三角形银纳米粒子及其性能表征[J].强激光与粒子束,2007,19(8):1291-1294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700