视觉认知无线电位置优化关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
认知无线电通过动态频谱共享,提高频谱资源利用率,可解决当前很多国家遇到的频谱稀缺问题,是未来无线通信最有前途的技术之一。
     然而,传统认知无线电获取无线场景信息的能力有限。以频谱“侦听”为代表的认知无线电“侦听式”技术,被动监听无线电磁环境,感知频谱占用信息。这种被动监听缺少全景多维信息。通过“听”方式认知的参数局限在信号射频特征上,无法掌握用户周围的建筑楼群密度、用户密集程度和用户移动趋势等无线通信环境。视觉认知无线电可以解决上述问题,得到更多环境信息,推动无线通信系统环境自适应能力的全面提升。
     视觉认知研究基于视觉图意的移动无线网络认知理论及关键技术。“视觉图意”认知获取无线信道环境的图像,进行场景分析、资源决策等认知过程,解析出无线场景的通信资源信息,即图的含意“图意”,优化无线网络系统配置,达到提升网络整体性能的效果。
     位置是视觉认知的核心成分之一,本文围绕次用户感知天线位置优化、次用户基站位置优化与位置辅助协同频谱感知展开研究。
     首先,研究了认知无线电次用户感知天线的位置优化问题:
     (1)推导单天线下,复合瑞利-阴影信道的频谱感知性能闭合表达式。分析路径损耗和主用户位置布局对感知性能的影响,以最小化感知错误概率为准则,求得次用户感知天线的最优位置。
     (2)采用与次用户单天线最优位置相似的研究步骤,对次用户多天线的最优位置进行了研究。
     (3)通过理论分析发现,次用户单天线的最优位置位于小区中心;次用户多天线的最优位置关于小区中心对称分布,天线之间的距离由信道质量和小区大小决定,可应用凸优化理论计算出最优位置。理论和仿真结果表明,能量检测门限T=26,能量检测采样间隔N=10,小区半径R=100m,噪声方差σ~2=100dBm,路径损耗指数η=4,阴影标准差δ=6dB,阴影系数α=0.12时,两根天线之间的最优距离为33.6m。
     其次,针对采用并发接入与主用户网络实现频谱共享的广播次用户网络,研究次用户基站的最优位置问题:
     (1)考虑并发接入频谱共享下主用户的干扰约束以及次用户的服务质量约束,计算出次用户网络覆盖范围。以次用户网络覆盖范围最大化为准则,推导出次用户基站的最优位置。
     (2)将上述研究扩展到障碍存在于主用户和次用户基站之间的场景,推导了障碍存在场景下的次用户基站最优位置。
     (3)通过理论分析发现,随着主用户与障碍之间的距离增加,次用户基站最优位置与主用户之间的距离将不断增加,直至收敛到障碍不存在情况下的最优位置。理论与仿真结果表明,无障碍存在场景下,主用户和次用户基站天线高度h0=20m,主用户网络小区半径r=10,000m,主用户最大发射功率Pp=30dBm,次用户基站最大发射功率Ps=10dBm,主用户干扰门限I th=40dBm,次用户信干比门限th=10dB,求得最优次用户基站位置为8,200m。在障碍距离主用户为300m时,最优位置为600m,当障碍距离主用户大于800m后,最优位置收敛到8,200m。
     最后,考虑到位置优化在一些情况下分析困难或无解,从另一个角度即位置辅助应用进行研究:
     (1)提出了位置辅助的协作频谱感知方法。本地采用能量检测得到一个硬判决结果,并将判决结果传递到数据融合中心,数据融合中心利用位置信息对本地感知结果加权合并,得到全局判决结果。
     (2)对给出方法进行性能分析。根据本地频谱感知可靠性和判决结果传输可靠性,推导了位置辅助频谱感知的全局性能,即全局检测概率和全局虚警概率的精确计算闭合表达式;由于全局性能精确计算复杂,提出高斯近似方法计算全局性能;以全局感知错误概率最小化为准则,推导出本地检测最优门限值。理论和仿真结果表明当平均本地信噪比分别为12dB、8dB、4dB时,位置辅助协作频谱感知方法的全局错误概率为0.103,而传统方法的全局错误概率为0.447。
     (3)位置信息估计不可避免的会存在误差,从而对提出方法进行了误差分析,给出了误差衡量准则。
     论文工作为视觉认知无线电技术的深入研究提供了理论和方法支撑,具有较好的理论和实用价值,位置优化可应用于无线通信系统的规划布局,位置辅助应用可改善无线通信系统性能。
Cognitive Radio (CR) can improve the spectrum utilization efficiency through theway of dynamic spectrum share, which addresses the spectrum scarcity problem that isencountered in many countries. CR is widely regarded as one of the most promisingtechnologies for future wireless communications.
     However, the ability of wireless scenario acquisition is limited in traditionalcognitive radio. The cognitive radio “monitoring” technique is based on spectrumsensing, which is always sensing the spectrum usage by monitoring the radioelectromagnetic environment passively. It is lack of the panoramic andmultidimensional radio environment. The parameters cognized by “monitoring” arelimited on the signal characters. The buildings around the users, the intensity of theusers, and the mobile trend of the users are not available. In order to obtain moreenvironment information for improving the environmental adaptability of the wirelesscommunication system, visual cognitive radio is proposed.
     Visual cognitive radio studies the cognitive theory and key technologies of themobile wireless cognitive radio network based on the visual image meaning.“Visualimage meaning” cognition captures the image of the wireless channel environment,cognizes the image by wireless scenario analysis and resource decision, recognizes thecommunication resource information about the wireless scenario, namely the meaningof the image--“image meaning”, optimzes the configuration of the wireless networksystem, and so as to improve the network performance.
     Location is one of the most important components in visual cognitive radio. In thispaper, two key technologies around the location are studied, which are locationoptimization and location appilication.
     Firstly, the optimal location of the sensing antenna for the sencondary user (SU) incognitive radio is studied.
     (1) A closed-form expression of the spectrum sensing performance is derived in the composite Rayleigh and shadowed fading environment for the SU with onesensing antenna. The effects on the performance from the pathloss and thedistribution of primary users (PUs) are further analyzed. The optimal locationsof the sensing antennas are derived so as to minimize the spectrum sensingerror probability.
     (2) Following the similar procedures, the locations optimization is studied for twoantennas.
     (3) The theory analysis shows that, the optimal loation is the cell center for oneantenna. As for two antennas, they should be placed symmetrically. Thedistance between the two antennas depends on the channel condition and thecell range, which can be determined by the application of the convexoptimization theory. Both theory analysis and simulation results show that, theoptimal distance between two antennas is33.6m if the energy detectorthreshold, the interval of the energy detector, the cell radius, the noise variance,the pathloss exponent, the standard deviation of shadow, and the shadowcoefficience are26,10,100m,-100dBm,4,6dB, respectively.
     Secondly, the optimal location of the secondary base station (SBS) is studied forbroadcasting cognitive radio networks with spectrum underlay.
     (1) Considering the interference constraints for the PU and the quality of service(QoS) constaints for the SU, the coverage area of the SU network is calculated.The optimal SBS location is derived so as to maximize the coverage area ofthe SU network.
     (2) The analysis is extended to the scenario with an obstacle located between thePU and SBS, the optimal SBS location is discussed in this scene.
     (3) The theory analysis shows that, the optimal location of the SBS will be largerand will converge to a fixed point with the increase of the distance between thePU and the obstacle. This fixed point is the optimal location of the SBSwithout the obstacle. Both theory analysis and simulation results show that, theoptimal location of the SBS is8,200m without obstacle, under the conditionthat the antenna heights of the PU and SBS are20m, and the cell radius of the PU network is10,000m, the maximum of the PU transmit power is30dBm,the maximum of the SBS transmit power is10dBm, the interference thresholdof the PU is40dBm, and the receive SIR threshold of the SU is10dB. Theoptimal SBS location is600m if the distance between the PU and the obstacleis300m. The optimal SBS location will converge to8200m if the distancebetween the PU and the obstacle is larger than800m.
     At last, location usage is studied, since the location optimization in most cases isdifficulty for analysis or can not be solved out.
     (1) A location-based cooperation spectrum sensing scheme is proposed. Energydetection is performed to obtain a local hard decision, which is thentransmitted to the data fusion center. Combining the weighted local decisionswith location information, a global decision is obtained at the data fusioncenter.
     (2) The performance on the proposed scheme is analyzed. The global performance,namely the global detection probability and the global false alarm probability,are derived based on the local sensing reliability and the transmissionreliability; The Gaussian approximation method is introduced to calculate theglobal performance, since the exact calculation is too complicated. When theaverage local SNRs are12dB,8dB, and4dB, the global error probability inthe location-based cooperation spectrum sensing scheme proposed is0.103,while it is0.447in the conventional scheme.
     (3) The location estimation error is inevitable, therefore, the error analysis of theproposed scheme is given and the error measurement rule is described.
     The work in this paper provides the theory and method for the deep study in visualcognitive radio. It is full of theory and practical value. The location optimization can beused for the plan of wireless communication system. The location application can beintroduced to improve the performance of wireless communication system.
引文
[1] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, et al. A survey on spectrum management in cognitiveradio networks [J]. IEEE Communications Magazine,2008,46(4):40-48.
    [2] Y.-C. Liang, K.-C. Chen, G. Y. Li, et al. Cognitive Radio Networking and Communications:An Overview [J]. IEEE Transactions on Vehicular Technology,2011,60(7):3386-3407
    [3] G. Staple, K. Werbach. The end of spectrum scarcity [J]. IEEE Spectr.,2004,41(3):48-52.
    [4] M. H. Islam, C. L. Koh, S. W. Oh, et al. Spectrum survey in Singapore: Occupancymeasurements and analysis [C]. International Conference on Cognitive Radio OrientedWireless Networks and Communications, Singapore, Singapore,2008,1-7.
    [5] K. Qaraqe, H. Celebi, A. Gorcin, et al. Empirical results for wideband multidimensionalspectrum usage [C]. IEEE Personal, Indoor and Mobile Radio Communications, Tokyo, Japan,2009,1262-1266.
    [6] D. Datla, A. M. Wyglinski, and G. J. Minden. A spectrum surveying framework for dynamicspectrum access networks [J]. IEEE Transactions on Vehicular Technology,2009,58(8):4158-4168.
    [7] Federal Communications Commission. Notice of proposed rule making and order [R].2003,eT Docket No03-222.
    [8] J. Mitola III, G. Q. Maguire. Cognitive radio: making software radios more personal [J]. IEEEPers. Commun.,1999,6(4):3-18.
    [9] J. Mitola III. Cognitive radio: An integrated agent architecture for software defined radios [D].Stockholm, Sweden: Royal Institute Technology (KTH),2000.
    [10] R. Zhang, F. Gao, and Y.-C. Liang. Cognitive Beamforming Made Practical: EffectiveInterference Channel and Learning-Throughput Tradeoff [J]. IEEE Transactions onCommunications,2010,58(2):706-718.
    [11] S. Haykin. Cognitive radio: Brain-empowered wireless communications [J]. IEEE J. Sel.Areas Commun.,2005,23(2):201-220.
    [12] S. Stotas, A. Nallanathan. Enhancing the Capacity of Spectrum Sharing Cognitive RadioNetworks [J]. IEEE Transactions on Vehicular Technology,2011,60(8):3768-3779.
    [13] X. Kang, Y.-C. Liang, H. K. Garg, et al. Sensing-based spectrum sharing in cognitive radionetworks [J]. IEEE Transactions on Vehicular Technology,2009,8(8):4649-4654.
    [14] J. Mitola. Cognitive radio architecture evolution [J]. Proceding IEEE,2009,97(4):626-641.
    [15] T. Yucek, H. Arslan. A survey of spectrum sensing algorithms for cognitive radio applications[J]. IEEE Surveys Tuts.,2009,11(1):116-130.
    [16] A. Taherpour, M. Nasiri-Kenari, S. Gazor. Multiple antenna spectrum sensing in cognitiveradios [J]. IEEE Transactions on Wireless Communications,2010,9(2):814-823.
    [17] T. C. Clancy III. Dynamic sectrum access in cognitive radio networks [D]. College Park, USA:University of Maryland,2006.
    [18] S. Yarkan, H. Arslan. Exploiting Location Awareness toward Improved Wireless SystemDesign in Cognitive Radio [J]. IEEE Communications Magazine,2008,16(1):128-136.
    [19] K. Saneyoshi. Drive assist system using stereo image recognition [C]. Proceedings of the1996IEEE Intelligent Vehicles Symposium. Tokyo, Japan,1996,230-235.
    [20] Liu Tian, Shao Shi-hai, Ye Dai-xiong, et al. Visual Cognitive Radio [J]. Concurrency andComputation-Practice&Experience,2012,24(11):1252-1260.
    [21] H. Celebi, H. Arslan. Utilization of location information in cognitive wireless networks [J].IEEE Wireless Communications,2007,14(4):6-13.
    [22] H. Celebi, H. Arslan. Adaptive Positioning Systems for Cognitive Radios [C]. IEEESymposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN2007),Dublin, Ireland,2007,78-84.
    [23] H. Celebi, H. Arslan. Cognitive Positioning Systems [J]. IEEE Transactions on WirelessCommunications,2007,6(12):4475-4483.
    [24] H. Celebi, H. Arslan. Ranging Accuracy in Dynamic Spectrum Access Networks [J]. IEEECommunications Letters,2007,11(5):405-407.
    [25] D. Dardari, Y. Karisan, S. Gezici, et al. Perfonnance Limits on Ranging with Cognitive Radio
    [C]. IEEE Int. Conf. Commun.(ICC), Dresden, Gennany,2009,1-5.
    [26] A. Gorcin, H. Celebi, K. A. Qaraqe, et al. A Framework on Wideband Sensing and DirectionFinding for Location Aware Public Safety Cognitive Radio [C]. Proceeding IEEE Wirelessand Microwave Technology Conference (WAMICON), Clearwater, Fla, USA,2011,1-5.
    [27] M. Kazemi, B. Mahboobi, M. Ardebilipour. Performance Analysis of Simultaneous Locationand Power Estimation Using WLS Method for Cognitive Radio [J]. IEEE Commu. Lett.,2011,15(10):1062-1064.
    [28] R. R. Thomas, S. D. Barnes, B. T. Maharaj. TOA Location Estimation based on CognitiveRadio Channel Occupancy Prediction [C]. IEEE Wireless and Mobile Computing, Networkingand Communications (WiMob), Barcelona, Spain,2012,733-738.
    [29] Z. Ma, W. Chen, K. B. Letaief, Z. Cao. A Semi Range-Based Iterative Localization Algorithmfor Cognitive Radio Networks [J]. IEEE Transactions on Vehicular Technology,2010,59(2):704-716.
    [30] IEEE802.22Working Group. IEEE802.22. WirelessRAN. Cognitive Wireless RAN mediumaccess control (MAC) and physical layer (PHY) specifications: Policies and procedures foroperation in the TV Bands [S]. USA: IEEE Standards Activities Department, May2009.
    [31] C. R. Stevenson, G. Chouinard, Z. Lei, et al. IEEE802.22: The First Cognitive Radio WirelessRegional Area Network Standard [J]. IEEE Communications Magazine,2009,41(7):130-138.
    [32] A. W. Min, K. G. Shin, Xin Hu. Cooperative Sensing in IEEE802.22WRANs Using ShadowFading Correlation [J]. IEEE Transactions on mobile computing,2011,10(10):1434-1447.
    [33] WINLAB. Cognitive Radio Networks (CogNet)[EB/OL]. http://www.winlab.rutgers.edu/pub/docs/focus/Cognitive-Hw.html.
    [34] XG Working Group, The XG Architectural Framework [R]. RFC Version1.0,2003.
    [35] Broadband Wireless Networking Lab. Faramir [EB/OL]. http://www.ict-faramir.eu/.
    [36] R. W. Brodersen, A. Wolisz, D. Cabric, et al. CORVUS: a cognitive radio approach for usageof virtual unlicensed spectrum [EB/OL]. http://www.bwrc.eecs.berkeley.edu/MCMA.
    [37]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005年.
    [38] I. G. Cumming, F. H. Wong.合成孔径雷达成像[M].(洪文,胡东辉).北京:电子工业出版社,2005年.
    [39] J. C. Curlander and R. N. McDonough. Synthetic Aperture Radar: Systems and SignalProcessing [M]. New York: Wiley,1991.
    [40]尤红建,付琨.合成孔径雷达图像精准处理[M].北京:科学出版社.2011年.
    [41] W. Q. Wang, J. Y. Cai, Q. C. Peng. Near-space microwave radar remote sensing: potentialsand challenge analysis [J]. Remote Sensing,2010,2(3):717-739.
    [42]王文钦.多天线合成孔径雷达成像理论与方法[M].北京:国防工业出版社.2010年.
    [43] N. Dastgir. Processing SAR data using Range Doppler and Chirp Scaling Algorithms [D].Stockholm, Sweden: School of Architecture and Built Environment Royal Institute ofTechnology (KTH),2007.
    [44] C. Cafforio, C. Prati, F. Rocca. SAR data focusing using seismic migration techniques [J].IEEE Transactions on Aerospace and Electronic Systems,1991,27(2):194-206.
    [45] D. Zhu, S. Ye, Z. Zhu. Polar format algorithm using chirp scaling for spotlight SAR imageformation [J]. IEEE Transactions on Aerospace and Electronic Systems,2008,44(4):1433-1448.
    [46] A. Reigber, R. Scheiber, M. Jager, et al. Very-High-Resolution Airborne Synthetic ApertureRadar Imaging: Signal Processing and Applications [J]. Proceedings of the IEEE,2013,101(3):759-783.
    [47]王超,张红,陈曦.全极化合成孔径雷达图像处理[M].北京:科学出版社,2008年.
    [48] B. R. Mahafza, M. Moreira. Three-dimensional SAR imaging using linear aray in transversemotion [J]. IEEE Transactions on Aerospace and Electronic Systems,1996,32(1):499-510.
    [49] M. Suess, B. Grafmuller, R. Zahn. A novel high resolution, wide swath SAR system [C]. IEEEInternational Geoscience and Remote Sensing Symposium, Sydney, Austria,2001,1013-1015.
    [50] J. Homer, I. D. Longstaff, Z. She. High resolution3-D imaging via multi-pass SAR [J]. IEEProceedings Radar, Sonar and Navigation,2002,149(1):45-50.
    [51] R. Giret, H. Jeuland, P. Enert. A study of a3D-SAR concept for a millimeter-wave imagingradar onboard an UAV [C]. European Radar Conference, Amsterdam, The Netherland,2004,201-204.
    [52] M. Weib, J. H. G. Ender. A3D imaging radar for small unmanned airplanes–ARTINO [C].European Radar Conference, Paris, France,2005,209-212.
    [53] M. Soumekh. Bistatic synthetic aperture radar inversion with application in dynamic objectimaging [J]. IEEE Transactions on Signal Processing,1991,39(9):2044-2055.
    [54] D. Yu, D. C. Munson, Jr. A fast back-projection algorithm for bistatic SAR imaging [C]. IEEEInternational Conference on Image Processing. Rochester, New York, USA,2002,449-452.
    [55] B.D. Rigling, R. L. Moses. Motion measurement errors and autofocus in bistatic SAR [J].IEEE Transactions on Image Processing,2006,15(4):1008-1016.
    [56] M. Younis, R. Metzig, G. Krieger. Performance prediction of a phase synchronization link forbistatic SAR [J]. IEEE Geoscience and Remote Sensing Letters,2006,3(3):429-433.
    [57] Y. L. Neo, F. Wong, I. G. Cumming. A Two-Dimensional Spectrum for Bistatic SARProcessing Using Series Reversion [J]. IEEE Geoscience and Remote Sensing Letters,2007,4(1):93-96.
    [58]尤红建,付琨.合成孔径雷达图像精准处理[M].北京:科学出版社.2011年.
    [59] F. C. Robey, S. Coutts, D. Weikle, et al. MIMO radar theory and experimental results [C]. The38th Asilomar Conference on Signals, System and Computers, Pacific Grove, CA,2004,300-304.
    [60] I. Bekkerman, J. Tabrikian. Target detection and localization using MIMO radars and sonars[J]. IEEE Transactions on Signal Processing,2006,54(10):3873-3838.
    [61] L. Z. Xu, J. Li, P. Stoica. Radar imaging via adaptive MIMO techniques [C]. European SignalProcessing Conference, Florence,2006,1-5.
    [62] E. Fishler, A. Haimovich, R. S. Blum, et al. Spatial Diversity in Radars—Models andDetection Performance. IEEE Transactions on Signal Processing,2006,54(3):823-838.
    [63] J. Li, P. Stoica, X. Zheng. Signal Synthesis and Receiver Design for MIMO Radar Imaging [J].IEEE Transactions on Signal Processing,2008,56(8):3959-3968.
    [64]王怀军. MIMO雷达成像算法研究[D].长沙:国防科学技术大学,2010年.
    [65] D. Wang, X. Ma, A. Chen, et al. High-Resolution Imaging Using a Wideband MIMO RadarSystem With Two Distributed Arrays [J]. IEEE Transactions on Image Processing,2010,19(5):1280-1289.
    [66] Yutao Zhu, Yi Su, Wenxian Yu. An ISAR Imaging Method Based on MIMO Technique [J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(8):3290-3299.
    [67] C. Ma, Member, T. S. Yeo, C. S. Tan. Three-Dimensional Imaging of Targets Using ColocatedMIMO Radar [J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(8):3009-3021.
    [68] C. Ma, T. S. Yeo, C. S. Tan. Three-Dimensional Imaging Using Colocated MIMO Radar andISAR Technique [J]. IEEE Transactions on Geoscience and Remote Sensing,2012,50(8):3189-3201.
    [69] W. Yin, P. Ren. A multiple antenna spectrum sensing scheme based on space and timediversity in cognitive radios [J]. IEICE Transactions on Communications2011;E94-B(05):1254-1264.
    [70] J. Praks, J. Sarvas. Using multilook averaging for coherently modeled scattering from a pinetree at L-band [J]. IEEE Geoscience and Remote Sensing Letters,2009,6(1):162-166.
    [71] Y. Xu, J. B. Weaver, D. M. Healy, et al. Wavelet transform domain filters: Aspatially selectivenoise filtration technique [J]. IEEE Transactions on Imaging Processing,1994,3(6):747-758.
    [72] A. Achim, P. Tsakalides, A. Bezeianos. SAR image denoising via Bayesian wavelet shrinkagebased on heavy-tailed modeling [J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(8):1773-1784.
    [73]焦李成,张向荣,候彪,等.智能SAR图像处理与解译[M].北京:科学出版社,2008.
    [74]侯彪.脊波和方向信息检测方法及应用[D].兰州:西安电子科技大学,2003.
    [75] M. Martorella, E. Giusti. Automatic target recognition by means of polarimetric ISAR imagesand neural networks [J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(11):3786-3794.
    [76] V. Heikkinen, T. Tokola. Simulated Multispectral Imagery for Tree Species ClassificationUsing Support Vector Machines [J]. IEEE Transactions on Geoscience and Remote Sensing,2010,48(3):1355-1364.
    [77] R. M. Leandro, L. B. Henry. Cell shape for microcellular systems in residential andcommercial environments [J]. IEEE Transactions on Vehicular Technology,1994,43(5):270-278.
    [78] H. D. Sherali, C. M. Pendyala, T. S. Rappaport. Optimal location of transmitters formicro-cellular radio communication system design [J]. IEEE Journal on Selected Areas inCommunications,1996,14(4):662-673.
    [79] A. Molina, A. R. Nix, G. E. Athanasiadou. Optimised base-station location algorithm for nextgeneration microcellular networks [J]. Electronics Letters,2000,36(3):668-669.
    [80] F. A. Agelet, A. Martínez, J. M. Hernando, et al. Bundle method for optimal transmitterlocation in an indoor wireless system [J]. Electronic Letters,2000,36(6):573-574.
    [81] R. Bose. A smart technique for determining base-station locations in an urban environment [J].IEEE Transactions on Vehicular Technology,2001,50(1):43-47.
    [82] G. Robert, V. Manju, N. Mort, et al. Multicell CDMA network design [J]. IEEE Transactionson Vehicular Technology,2001,50(5):711-722.
    [83] F. A. Agelet, A. M. M. Varela, L. J. A. Vázquez, et al. Optimization Methods for OptimalTransmitter Locations in a Mobile Wireless System [J]. IEEE Transactions on VehicularTechnology,2002,51(6):1316-1321.
    [84] E. Amaldi, A. Capone, F. Malucelli. Planning UMTS Base Station Location: OptimizationModels With Power Control and Algorithms [J]. IEEE Transactions on WirelessCommunications,2003,2(5):939-952.
    [85] W. Nicole, S. Gabor, W. Karsten, et al. Evolutionary multiobjective optimization for basestation transmitter placement with frequency assignment [J]. IEEE Transactions onEvolutionary Computation,2003,7(4):189-203.
    [86] S. S. Samer, J. S. Khoury. An alternative setup for a base-station cellular antenna [J]. IEEETransactions on Vehicular Technology,2007,56(1):35-42.
    [87] Ying Shen, Youxi Tang, Ting Kong, et al. Optimal antenna location for STBC-OFDMdownlink with distributed transmit antennas in linear cells [J]. IEEE Communications Letters,2007,11(5):387-389.
    [88] J. S. Gan, Y. Z. Li, S. D. Zho, et al. On sum rate of multi-user distributed antenna system withcircular antenna layout [C]. IEEE Vehicular Technology Conference. Baltimore, MD,2007,596-600.
    [89] J. Munyaneza, A. Kurien, B. Van Wyk. Optimization of antenna placement in3G networksusing genetic algorithms [C]. International Conference on Broadband Communications,Information Technology&Biomedical Applications. Gauteng,2008,30-37.
    [90] B. Lin, P.-H. Ho. Dimensioning and Location Planning of Broadband Wireless Networksunder Multi-Level Cooperative Relaying [J]. IEEE Transactions on Wireless Communications,2009,8(11):5682-5691.
    [91] X. Wang, P. Zhu, M. Chen. Antenna Location Design for Generalized Distributed AntennaSystems [J]. IEEE Communications Letters,2009,13(5):315-317.
    [92] Y. Qian, M. Chen, X. Wang, et al. Antenna location design for distributed antenna systemswith selective transmission [C]. International Conference on Wireless Communications&Signal Processing. Nanjing,2009,1-5.
    [93] L. Han, Y. Tang, S. Shao, et al. On the design of antenna location for OSTBC with distributedtransmit antennas in a circular cell [C]. IEEE International Conference on Communications.Cape Town,2010,1-5.
    [94]韩亮,柳鑫,唐友喜,等.线型小区中V-BLAST两根分布发射天线的位置优化[J].电子与信息学报,2010,32(4):978-982.
    [95] H. Cheng, Y.-D. Yao. Cognitive-Relay-Based Intercell Interference Cancellation in CellularSystems [J]. IEEE Transactions on Vehicular Technology,2010,59(4):1901-1909.
    [96] J. Zhu, J. Huang, W. Zhang. Optimal One-Dimensional Relay Placement in Cognitive RadioNetworks [C]. International Conference on Wireless Communications and Signal Processing(WCSP), Suzhou, China,2010,1-6.
    [97] C. Han, Y. Yang. Information Propagation Speed Study in Multihop Cognitive RadioNetworks [C]. IEEE International Conference on Computer Communications (INFOCOM),Shanghai, China,2011,226-230.
    [98] D. Li, W. Zhong, Q. Shi, et al. Secondary Access Points Placement in Cognitive RadioNetworks: A Spatial Game Model With Power Discrimination [J]. IEEE Transactions onVehicular Technology,2012,61(6):2729-2739.
    [99] H. Yue, M. Pan, Y. Fangi, et al. Spectrum and Energy Efficient Relay Station Placement inCognitive Radio Networks [J]. IEEE J. Sel. Areas Commun.,2013,31(5):883-893.
    [100] L.-C. Wang, A. Chen. Effects of Location Awareness on Concurrent Transmissions forCognitive Ad Hoc Networks Overlaying Infrastructure-Based Systems [J]. IEEE Transactionson Mobile Computing,2009,8(5):577-589.
    [101] I. Krikidis. A SVD-Based Location Coding for Cognitive Radio in MIMO Uplink Channels [J].IEEE Communications Letters,2010,14(10):912-914.
    [102] Y. Wang. Cognitive Radio for Aeronautical Air-Ground Communications [J]. IEEE A&E Sys.Mag.,2010,25(5):18-23.
    [103] J. Peng, V. Mai, L.-N. Tho, et al. Capacity-and Bayesian-Based Cognitive Sensing withLocation Side Information [J]. IEEE J. Sel. Areas Commun.,2011,29(2):276-289.
    [104] K. W. Choi, E. Hossain, D. I. Kim. Cooperative Spectrum Sensing Under a RandomGeometric Primary User Network Model [J]. IEEE Transactions on Wireless Communications,2011,10(6):1932-1944.
    [105] T. Xue, Y. Shi, X. Dong. A Framework for Location-Aware Strategies in Cognitive RadioSystems [J]. IEEE Communications Letters,2012,1(1):30-33.
    [106] S. Hussain, X. Fernando. Approach for cluster-based spectrum sensing over band-limitedreporting channels [J]. IET Commun.,2012,6(11):1466-1474.
    [107] N. Han, H. Li. Cooperative Spectrum Sensing With Location Information [J]. IEEETransactions on Vehicular Technology,2012,61(7):3015-3024.
    [108] S.-M. Cheng, W. C. Ao, F.-M. Tseng, et al. Design and Analysis of Downlink SpectrumSharing in Two-Tier Cognitive Femto Networks [J]. IEEE Transactions on VehicularTechnology,2012,61(5):2194-2207.
    [109] Y. Liu, L. X. Cai, X. Shen. Spectrum-Aware Opportunistic Routing in Multi-Hop CognitiveRadio Networks [J]. IEEE J. Sel. Areas Commun.,2012,30(10):1958-1968.
    [110] S. Maleki, G. Leus. Censored Truncated Sequential Spectrum Sensing for Cognitive RadioNetworks [J]. IEEE J. Sel. Areas Commun.,2013,31(3):364-378.
    [111] W. Lee, D.-H. Cho. Channel Selection and Spectrum Availability Check Scheme for CognitiveRadio Systems Considering User Mobility [J]. IEEE Communications Letters,2013,17(3):463-466.
    [112] B.-L. To, H. Khalife, N. Malouch. A General Framework for Assisted Power Control inCognitive Radio Networks [C]. IEEE International Symposium on Personal Indoor andMobile Radio Communications (PIMRC), Istanbul, Turkey,2010,1648-1653.
    [113] M. Derakhshani, L.-N. Tho. Beacon transmitter placement effect on aggregate interferenceand capacity-outage performance in a cognitive radio network [C]. IEEE VehicularTechnology Conference Fall (VTC Fall), Ottawa, Canada,2010,1-5.
    [114] J.-H. Lee, J.-H. Baek, S.-H. Hwang. Collaborative spectrum sensing using energy detector inmultiple antenna system [C]. IEEE International Conference on Advanced CommunicationTechnology, Gangwon-Do, South Korea,2008,427-430.
    [115] S. Kim, J. Lee, H. Wang, D. Hong. Sensing Performance of Energy Detector With CorrelatedMultiple Antennas [J]. IEEE Signal Process. Lett.,2009,16(8):671-674.
    [116] H. Urkowitz. Energy detection of unknown deterministic signals [J]. Proceedings of the IEEE,1967,55(4):523-531.
    [117] T. Sanguanpuak, N. Rajatheva, A. Taparugssanagorn, et al. Performance of energy detectorover Nakagami-m fading for relay-based cognitive radio networks [C]. IEEE InternationalSymposium on Wireless Communication Systems (ISWCS), Paris, France,2012,546-550.
    [118] H. Sun, D. I. Laurenson, C.-X. Wang. Computationally Tractable Model of Energy DetectionPerformance over Slow Fading Channels [J]. IEEE Communications Letters,2010,14(10):924-926.
    [119] H. Rasheed, N. Rajatheva, F. Haroon. Spectrum Sensing with Energy Detection underShadow-fading Condition [C]. IEEE International Symposium on Wireless PervasiveComputing (ISWPC), Modena, Italy,2010,5-7.
    [120] S. Atapattu, C. Tellambura, H. Jiang. Performance of an Energy Detector over Channels withBoth Multipath Fading and Shadowing [J]. IEEE Transactions on Wireless Communications,2010,9(12):3662-3670.
    [121] A. Abdi and M. Kaveh. K distribution: an appropriate substitute for Rayleigh-lognormaldistribution in fading shadowing wireless channels [J]. Electronic Letters,1998,34(9):851-852.
    [122] A. Singh, M. R. Bhatnagar, R. K. Mallik. Cooperative Spectrum Sensing in Multiple AntennaBased Cognitive Radio Network Using an Improved Energy Detector [J]. IEEECommunications Letters,2012,16(1):64-67.
    [123] A. Taherpour, M. Nasiri-Kenari, S. Gazor. Multiple Antenna Spectrum Sensing in CognitiveRadios [J]. IEEE Transactions on Wireless Communications,2010,9(2):814-823.
    [124] L. Shen, H. Wang, W. Zhang, Z. Zhao. Multiple Antennas Assisted Blind Spectrum Sensing inCognitive Radio Channels [J]. IEEE Communications Letters,2012,16(1):92-94.
    [125] W. Zhang, R. K. Mallik, K. B. Letaief. Optimization of cooperative spectrum sensing withenergy detection in cognitive radio networks [J]. IEEE Transactions on WirelessCommunications,2009,8(12):5761-5766.
    [126] P. Cantrell and A. Ojha. Comparison of Generalized Q-Function Algorithms [J]. IEEE Trans.Inf. Theory,1987,33(4):591-596.
    [127] F. F. Digham, M. S. Alouini, M. K. Simon. On the energy detection of unknown signals overfading channels [J]. IEEE Transactions on Communications,2007,55(1):21-24.
    [128] M. K. Simon, M.-S. Alouini. Digital communication over fading channels [M]. New York:Wiley,2000.
    [129] A. Goldsmith. Wireless communications [M]. UK: Cambridge University Press,2006.
    [130] S. Boyd and L. Vandenberge, Convex Optimization [M]. UK: Cambridge University Press,2004.
    [131] A. Paulraj, R. Nabar, D. Gore. Introduction to space-time wireless communications [M]. UK:Cambridge University Press,2003.
    [132] M. Gudmundson. Correlation model for shadow fading in mobile radio systems [J].Electronics Letters,1991,27(23):2145-2146.
    [133] W. C. Headley, V. G. Chavali, C. R. C. M. da Silva. Exploiting Radio Correlation andReliability Information in Collaborative Spectrum Sensing [J]. IEEE Communications Letters,2011,15(8):825-827.
    [134] N. Kundargi, A. Tewfik. Sequential pilot sensing of ATSC signals in IEEE802.22cognitiveradio networks [C]. IEEE International Conference on Acoustics, Speech and SignalProcessing, Las Vegas, Nevada, USA,2008,2789-2792.
    [135] F. Moghimi, R. Schober, R. K. Mallik. Hybrid Coherent/Energy Detection for CognitiveRadio Networks [J]. IEEE Transactions on Wireless Communications,2011,10(5):1594-1605.
    [136] IEEE. IEEE802.22. Cognitive Wireless RAN Medium Access Control and Physical layerSpecifications: Policies and Procedures for Operation in TV Bands [S], Draft0.5, Jan.2008.
    [137] Z. Quan, S. Cui, A. H. Sayed. Optimal linear cooperation for spectrum sensing in cognitiveradio networks [J]. IEEE J. Sel. Areas Commun.,2008,2(1):28-40.
    [138] FWJ Olver, DW Lozier, RF Boisvert, et al. NIST Handbook of Mathematical Functions [M].New York: Cambridge University Press,2010.
    [139] Shengli Xie, Yi Liu, Yan Zhang, et al. A Parallel Cooperative Spectrum Sensing in CognitiveRadio Networks [J]. IEEE Transactions on Vehicular Technology,2010,59(8):4079-4092.
    [140] Q. Zhao, A. Swami. A decision-theoretic framework for opportunistic spectrum access [J].IEEE Wireless Communications Magazine,2007,14(4):14-20.
    [141] R. Tandra, M. Mishra, and A. Sahai, What is a spectrum hole and what does it take torecognize one?[J]. Proceding IEEE,2009,97(5):824-848.
    [142] Y. Xing, R. Chandramouli. Dynamic Spectrum Access in Open Spectrum Wireless Networks[J]. IEEE J. Selected Areas in Comm.,2006,24(3):626-637.
    [143] S. Sankaranarayanan, P. Papadimitratos, A.Mishra, et al. A Bandwidth Sharing Approach toImprove Licensed Spectrum Utilization [C]. IEEE Int’l Symp. New Frontiers in DynamicSpectrum Access Networks, Baltimore, USA,2005,279-288.
    [144] C. Doerr, M. Neufeld, J. Fifield, et al. MultiMAC-An Adaptive MAC Framework forDynamic Radio Networking [C]. IEEE Int’l Symp. New Frontiers in Dynamic SpectrumAccess Networks, Baltimore, USA,2005,548-555.
    [145] A. Ghasemi and E. S. Sousa. Fundamental limits of spectrum-sharing in fading environments[J]. IEEE Transactions on Wireless Communications,2007,6(2):649-658.
    [146] Bin Wang, Dongmei Zhao. Scheduling for Long Term Proportional Fairness in a CognitiveWireless Network with Spectrum Underlay [J]. IEEE Transactions on WirelessCommunications,2010,9(9):1150-1158.
    [147] A. Ghasemi, E. S. Sousa. Fundamental limits of spectrum sharing in fading environments [J].IEEE Transactions on Wireless Communications,2007,6(2):649-658.
    [148] M. Gastpar. On capacity under receive and spatial spectrum-sharing constraints [J]. IEEETrans. Inf. Theory,2007,53(2):471-487.
    [149] B. Wang, K. J. R. Liu. Advances in Cognitive Radio Networks: A Survey [J]. IEEE J. Sel.Topics. Signal Process,2011,5(1):5-23.
    [150] F. A. Ian, W. Y. Lee, C. V. Mehmet, et al. A Survey on Spectrum Management in CognitiveRadio Networks [J]. IEEE Communications Magazine,2008,46(4):40-48.
    [151] C. Vasu, L. Xue, Z. Q. Wu, et al. Novel Overlay/Underlay Cognitive Radio Waveforms UsingSD-SMSE Framework to Enhance Spectrum Efficiency Part I: Theoretical Framework andAnalysis in AWGN Channel [J]. IEEE Transactions on Communications,2009,57(12):3794-3804.
    [152] J. P. Hong, H. Bi, W. B. Tae, et al. On the Cooperative Diversity Gain in Underlay CognitiveRadio Systems [J]. IEEE Transactions on Communications,2012,60(1):209-219.
    [153] G. Andrea, A J. Syed, M. Ivana, et al. Breaking Spectrum Gridlock With Cognitive Radios: AnInformation Theoretic Perspective [J]. Proceedings of the IEEE,2009,97(5):894-914.
    [154] A. N. Edward. An Approach to Estimating Land Mobile Radio Coverage [J]. IEEETransactions on Vehicular Technology,1974,23(4):135-138.
    [155] K. C. Gerald. Propagation and Coverage Prediction for Cellular Radio Systems [J]. IEEETransactions on Vehicular Technology,1991,40(4):665-670.
    [156] J. L. Leandro, R. Luis, C. Narcís. Application of Some Theoretical Models for CoveragePrediction in Macrocell Urban Environments [J]. IEEE Transactions on Vehicular Technology,1999,48(5):1463-1468.
    [157] Y. H. Wang, S. Yang, L. Henry. A Novel Inversion Method for Outdoor Coverage Prediction inWireless Cellular Network [J]. IEEE Transactions on Vehicular Technology,2010,59(1):36-47.
    [158] Q. Xin, X. Wang, J. N. Cao, W. Feng. Joint Admission Control, Channel Assignment and QoSRouting for Coverage Optimization in Multi-hop Cognitive Radio Cellular Networks [C].IEEE International Conference on Mobile Ad-Hoc and Sensor Systems. Valencia, Spain,2011,55-62.
    [159] R. Alberto, M. Carlo, P. Fernando. Overlay Spectrum Reuse in a Multicarrier BroadcastNetwork: Coverage Analysis [C]. IEEE International Workshop on Signal ProcessingAdvances in Wireless Communications (SPAWC), Cesme, Turkey,2012,204-208.
    [160] L. C. Wang, C. Anderson. Effects of Location Awareness on Concurrent Transmissions forCognitive Ad Hoc Networks Overlaying Infrastructure-Based Systems [J]. IEEE Transactionson mobile computing,2009,8(5):577-589.
    [161] T. S. Rappaport. Wireless Communications: Principle and Practice [M]. NJ, USA: PrenticeHall,2002.
    [162] M. Gandetto, C. Regazzoni. Spectrum sensing: A distributed approach for cognitive terminals[J]. IEEE J. Sel. Areas Commun.,2007,25(3):546-557.
    [163] P. Qihang, Z. Kun, W. Jun, et al. A distributed spectrum sensing scheme based on credibilityand evidence theory in cognitive radio context [C]. IEEE Int. Symposium on Personal, Indoorand Mobile Radio Commun., Helsinki, Finland,2006,1-5.
    [164] C.-H. Huang, K.-C. Chen. Dual-Observation Time-Division Spectrum Sensing for CognitiveRadios [J]. IEEE Transactions on Vehicular Technology,2011,60(8):3712-3725.
    [165] Z. H. Zhang, Z. Han, H.S. Li, et al. Belief Propagation Based Cooperative CompressedSpectrum Sensing in Wideband Cognitive Radio Networks [J]. IEEE Transactions on WirelessCommunications2011,10(9):3020-3031.
    [166] Y. L. Zou, Y.-D. Yao, B. Y. Zheng. Cooperative relay techniques for cognitive radio systems:Spectrum sensing and secondary user transmissions [J]. IEEE Communications Magazine2012,50(4):98-103.
    [167] G. Ganesan, Y. Li. Agility improvement through cooperative diversity in cognitive radio [C].IEEE Global Telecomm. Conf.(GLOBECOM), St. Louis, Missouri, USA,2005,2505-2509.
    [168] S. M. Mishra, A. Sahai, R. W. Brodersen. Cooperative sensing among cognitive radios [C].Proceeding IEEE ICC, Istanbul, Turkey,2006,1658-1663.
    [169] I. F. Akyildiz, W. Y. Lee, M. C. Vuran, et al. A survey on spectrum management in cognitiveradio networks [J]. IEEE Communications Magazine,2008,46(4):40-48.
    [170] D. Cabric, S. Mishra, R. Brodersen. Implementation issues in spectrum sensing for cognitiveradios [C]. IEEE38th Asilomar Conference on Signals, Systems and Computers, PacificGrove, CA,2004,772-776.
    [171] E. Vistotsky, S. Kuffner, R. Peterson. On collaborative detection of TV transmissions insupport of dynamic spectrum sharing [C]. IEEE Symposium on New Frontiers in DynamicSpectrum Access Networks (DySPAN), Baltimore, Maryland USA,2005,338-345.
    [172] J. Ma, G. Zhao, Y. Li. Soft combination and detection for cooperative spectrum sensing incognitive radio networks [J]. IEEE Transactions on Wireless Communications,2008,7(11):4502-4507.
    [173] Z. Quan, W. K. Ma, S. Cui, et al. Optimal linear fusion for distributed detection viasemidefinite programming [J]. IEEE Transactions on Signal Processing,2010,58(4):2431-2436.
    [174] C. Sun, W. Zhang, K. B. Letaief. Cooperative spectrum sensing for cognitive radios underbandwidth constraints [C]. IEEE Wireless Communication and Networking Conference(WCNC), Hong Kong, China,2007,1-5.
    [175] N. T. Nhan, K. Insoo. An enhanced cooperative spectrum sensing scheme based on evidencetheory and reliability source evaluation in cognitive radio context [J]. IEEE CommunicationsLetters,2009,13(7):492-494.
    [176] H. Chen, B. Chen, P. K. Varshney. Further results on the optimality of the likelihood-ratio testfor local sensor decision rules in the presence of nonideal channels [J]. IEEE Trans. Inf.Theory,2009,55(2):828-832.
    [177] F. K. Jondral. Cognitive radio: A communications engineering view [J]. IEEE WirelessCommunications,2007,14(4):28–33.
    [178] H. Celebi, í. Güven, S. Gezici, et al. Cognitive-radio systems for spectrum, location, andenvironmental awareness [J]. IEEE Antennas and Propagation Magazine,2010,52(4):41–61.
    [179] A. Paulraj, R. Nabar, D. Gore. Introduction to space-time wireless communications [M]. UK:Cambridge University Press,2003.
    [180] T. Kurner, D. J. Cichon, W. Wiesbeck. Concepts and results for3D digital terrain-based wavepropagation models: An overview [J]. IEEE J. Sel. Areas Commun.,1993,11(7):1002-1012.
    [181] T. Fugen, J. Maurer, T. Kayser, et al. Capability of3-D ray tracing for defining parameter setsfor the specification of future mobile communications systems [J]. IEEE Transactions onAntennas and Propagation,2006,54(11):3125-3137.
    [182] M. E. Hassan, G. Liang, H. L. Bertoni, et al. Influence of diffraction coefficient and cornershape on ray prediction of power and delay spread in urban microcells [J]. IEEE Transactionson Antennas and Propagation,2002,50(5):703-712.
    [183] C. Kchao, G. L. Stüber. Analysis of a direct-sequence spread-spectrum cellular radio system[J]. IEEE Transactions on Communications,1993,41(10):1507-1516.
    [184] K. V. Lever. New derivation of Craig’s formula for the Gaussian probability function [J].Electronics Letters,1998,34(19):1821-1822.
    [185] Z. Chair, P. K. Varshey. Optimal data fusion in multiple sensor detection systems [J]. IEEETrans. Aerosp. Electron. Syst.,1986,22(1):98-101.
    [186] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, et al. NIST handbook of mathematical functions
    [M]. New York: Cambridge University Press,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700