SVEC中CSFV差异基因的鉴定、cDNA序列的延伸及shRNA抑制CSFV在PK-15细胞中增殖的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪瘟病毒具有对猪专一性致病的特性,病毒虽能在多种体外培养的猪源细胞中增殖,但只引起猪血管内皮细胞(SVEC)发生细胞病变效应(CPE),而被感染的其他细胞不能够产生眼观的病理变化。产生这种现象的原因可能是猪血管内皮细胞被猪瘟病毒感染后刺激某种/某些敏感基因(我们将其称之为猪瘟病毒“敏感基因”)表达了某种/某些蛋白酶,将猪瘟病毒的p125蛋白裂解成为p80蛋白所致。本文在前期研究工作的基础上,采用RNA干扰技术,对11个候选猪瘟病毒“敏感基因”中的4个基因采用生物学软件对每一条基因设计、合成不同位置的shRNA干扰序列,以载体法介导实现shRNA分子在内皮细胞中的有效转录,筛选、鉴定差异基因的功能,为猪瘟病毒对猪专一性致病机理的研究提供科学资料。以RACE法延伸差异基因的编码序列,为差异基因在PK-15细胞中的表达及功能研究提供序列基础。将靶向猪瘟病毒NS3基因的shRNA重组干扰表达载体导入PK-15细胞中,为猪瘟病毒的抗感染以及基因功能的研究奠定基础。本研究获得了以下结果:
     1.应用在线RNA干扰设计软件针对4个差异基因中每一条基因设计不同位置的小发卡RNA干扰序列,合成这些序列,并退火连接为双链干扰片段,将双链干扰片段定向克隆到RNA干扰载表达体中,转化DH5α大肠杆菌感受态细胞,对转化产物进行卡那霉素筛选,碱裂解法提取重组质粒,将酶切鉴定为阳性的质粒进行核苷酸序列的测序,序列结果表明,重组载体构建成功,插入的干扰序列位置、大小、序列均正确。鉴定为阳性的重组质粒纯化后转染体外分离培养的猪血管内皮细胞,接种猪瘟病毒石门株并与不同时间断观察内皮细胞的病变情况。结果表明,转染了靶向差异基因Y8的shRNA重组干扰载体的内皮细胞,相对于对照细胞及其他的差异基因转染组,细胞的形态较好、存活率较高,差异基因Y8可能是所寻找的与猪瘟病毒致内皮细胞病变有关的“敏感基因”。
     2.为了验证差异基因Y8能否使猪瘟病毒致对PK-15产生细胞病变效应,以5’端标记磷酸基团的反转录引物反转录差异基因Y8的cDNA序列,然后用两对反式PCR引物以环化的cDNA序列模板进行5’端上游未知序列的扩增。以特异性上游引物与3’接头引物对差异基因Y8的cDNA序列3’端下游未知序列进行延伸。扩增的目的片断在T4 DNA酶的作用,分别连接到pMD18-T与pMD19-T simple vector载体中,转化DH5α大肠杆菌感受态细胞,挑取的重组质粒经酶切鉴定后进行核苷酸序列的测序。结果表明,通过5’RACE与3’RACE分别对差异基因Y8的cDNA序列5’端上游未知序列及3’端下游未知序列进行了延伸。
     3.应用软件分析猪瘟病毒NS3基因,设计针对NS3基因不同位置的小发卡RNA干扰序列,化学合成这些序列,并退火连接为双链干扰片段,将双链干扰片段定向克隆到pGenesil-1 RNA干扰表达载体中,构建重组载体pGene-NS3-1、pGene-NS3-2、pGene-NS3-3及阴性对照pGene-NS3-Neg,转化DH5α大肠杆菌感受态细胞,对转化产物进行卡那霉素筛选,碱裂解法提取重组质粒,将酶切、测序鉴定为阳性的重组干扰载体经Plasmid mini kit纯化后在脂质体的作用下转染PK-15细胞。G418抗性筛选获得稳定转染的阳性细胞,克隆细胞扩大培养后,接种猪瘟病毒Shimen株,72h时收集细胞分别进行实时定量PCR和ELISA光吸收度分析。Real-time PCR分析表明,pGene-NS3-1、pGene-NS3-2、pGene-NS3-3转录产生的shRNA分子与对照细胞比较,均在一定程度上沉默了病毒基因;ELISA检测结果表明,转染pGene-NS3-1、pGene-NS3-2、pGene-NS3-3重组载体的PK-15细胞均在不同程度上抑制了猪瘟病毒粒子的增殖。
Classical swine fever virus(CSFV) effected specificly pathopoiesis for swine,CSFV could propagate in more swine cells in vitro culture without cytopathic effect(CPE),but had CPE in swine vascellum endothelial cells(SVEC).It’s that one or some protease which one or some“sensitive genes”(they were named with CSFV“sensitive genes”) expressed splited p125 protein to p80 protein after CSFV infected in SVEC possibly.On basis of previous study, we designed small hairpin RNA(shRNA) for four genes of eleven CSFV“sensitive genes”by biology software and synthetized them.We Screened and identified“different genes”by vector transcribing shRNAs in SVEC. The“different genes”sequences by Rapid Amplification of cDNA Ends(RACE) extending provided a basis for researching functions of different genes in PK-15 cells.It was a basis for gene functions and anti-virus by transfecting shRNAs recombinant vectors targeting CSFV NS3 into PK-15 cells.This study obtained following results:
     1. We designed shRNAs for four“different genes”by biology software and synthetized them.we annealed double-strands and ligated them into RNAi vector and transformed competent cell of E.coli DH5α.We screened and indentified recombinant plasmids, the results indicated that recombinant vectors were constructed successfully.These recombinant plasmids were transfected into SVEC and inoculated CSFV and observed cells pathological changes during different times.The results indicated that SVEC’s appearance and survival rate was better than control cells and other cells by transfecting recombinant vectors targeting for Y8“different gene”.The Y8“different gene”is CSFV“sensitive gene”with SVEC CPE possibly.
     2. Did CSFV infect PK-15 cells with CPE by“different genes”?cDNA sequcnce of“different gene”was transcribed reversely by RT primers. 5’-uptream unknows sequenc of Y8“different gene”was amplificated by two inverse PCR primers.3’-downstream unknows sequence of Y8“different gene”was amplificated by specific upstream primer and 3’-adaptor primer.Objective genes was ligated into pMD18-T and pMD19-T simple vector and transformed competent cell of E.coli DH5α.We identified recombinant plasmids by restriction analysis and sequence analysis.The results indicated that 5’upstream unknows sequence and 3’downstream unknows sequence of Y8“different gene”were extended by 5’RACE and 3’RACE.
     3. We analyzed and designed shRNAs for CSFV NS3 gene by biology software and synthetized them.We annealed double-strands and ligated them into pGenesil-1 vector, the constructing recmbinant vectors for pGene-NS3-1,pGene-NS3-2,pGene-NS3-3 and pGene-NS3-Neg negative control were transformed competent cell of E.coli DH5α. Recombinant vectors were transfected into PK-15 cells by liposome and screened positive cells.Cells were collected for Real-Time PCR and ELISA after CSFV were inoculated into cells in 72h.Real-Time PCR results indicated that shRNAs that were transcribed by pGene-NS3-1 and pGene-NS3-2 and pGene-NS3-3 silenced CSFV gene partly;ELISA results indicated that shRNAs inhibitted CSFV propagation partly.
引文
[1] Napoli C,Lemieux C,Jorgensen R.Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans[J].Plant Cell, 1990,2:279-289.
    [2] van der Krol AR,Mur LA,Beld M.et al.Flavonoid genes in petunia:Addition of a limited number of gene copies may lead to a suppression of gene expression[J].Plant Cell,1990,2:291-299.
    [3] Blokland R V,Geest NV,Mol JNM.Transgene mediated suppression of chalcone synthase expression in Petunia hybrida results in an increase in RNA turnover[J].Plant J,1994,6:861-877.
    [4] Metzlaff M,O Dell M,Cluster P.D.RNA -mediater RNA degradation and chalcone synthase A silencing in Petunia[J].Cell,1997,88: 845-854.
    [5] Matzke M A,Priming M,Trnovsky J.Reversible methylation and inactibation of marker genes in sequentially transgormed tobacco plants[J].EMBO J,1989,8:643-649.
    [6] Guo S,Kemphues K.par-1,a gene required for establishing polarity in C.elegans embryos, encodes a putative Ser/Thr kinase that is asymmertrically distributed[J].Cell,1995,81:611-620.
    [7] Fire A,Xu S,Montgomery M K,et al.Potent and specific genetic interference by double-stranded RNA in Caenomab ditis elegans[J].Nature,1998,391(6669):806-811.
    [8] Stauber M, Taubert H, Schmidt Ott U.Function of bicoid and hunchback homologs in the basal cyclorrhaphan fly Megaselia (Phoridae)[J]. Proc Natl Acad Sci ,2000,97:10844-10849.
    [9] Hammond S M,Berstein E,Beach D,et al. An RNA-directed nuclease mediates post- transcriptional gene silencing in Drosophila cells[J]. Nature, 2000,404:293-296.
    [10] Marie B,Bacon JP,Blagburn JM.Double-stranded RNA interference shows that Engrailed controls the synaptic specificity of identified sensory neurons[J]. Curr. Biol,2000, 10:289-292.
    [11] Martens H,Novotny J,Oberstrass J, et al. RNAi in Dictyostelium: the role of RNA-directed RNA polymerases and double-stranded RNase[J]. Mol.Biol.Cell,2002,13:445-453.
    [12] Raponi M, Arndt G M.Double-stranded RNA-mediated gene silencing in fission yeast[J]. Nucleic Acid Res,2003,31:4481-4489.
    [13] Wargelius A,Ellingsen S,Fjose A.Double-stranded RNA induces specific developmental defects in zebrafish embryos[J]. Biochem Biophys Res Commun,1999,263:156-161.
    [14] Elbashir S M,Harborth J,Lendeckel W,et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalia cells[J]. Nature,2001,411(6836):494-498.
    [15] Sen George,Wehrman Tom S,Myers Jason W.Restriction enzyme-generated sirna(REGS) vector and libraries[J].Nature Genetics,2004,36(2):183-189.
    [16] Shirane Daisuke,Sugao Kohtaroh, Namiki Shigeyuki.Enzymatic production of RNAi libraries from cDNAs[J].Nature Genetics,2004,36(2):190-196.
    [17] Berns Katrien,Hijmans E,Mullenders Jasper.A large cale RNAi screen in human cells identifies new components of the p53 pathway[J].Nature,2004,428:431-437.
    [18] Dykxhoom D M,Novina C D,Sharp PA.Killing the messenger short RNAs that silence gene expression[J].Nat Rev Mol Cell Biol,2003,4(6):457-467.
    [19] Palauqui J C,Elmayan,Pollien JM,et al.System is acquired silencing:transgene specific post transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions[J]. EMBO,1997, 16 (15):4738-4745.
    [20] Florence Colbère-Garapin, Bruno Blondel, Aure Saulnier,et al.Silencing viruses by RNA interference [J].Microbes and Infection,2005,767-775.
    [21] Hamilton A J, Baulcombe D C. A species of small antisense RNA in posttranscriptional gene silencing in plants[J].Science,1999,286:950-952.
    [22] Catalanotto C,Azzalin G,Macino G,et al.Involvement of small RNAs and role of the qde genes in the gene silencing pathway in Neurospora[J].Genes Dev,2002,16:790-795.
    [23] Ketting R F,Fischer S E,Bernstein E,et al.Dicer functions in RNA interference and in synthesis of small RNA in developmental timing in C.elegans[J].Genes Dev,2001,15:2654-2659
    [24] Djikeng A,Shi H,Tschudi C,et al.RNA interference in Trypanosoma brucie:Cloning of small interfering RNAs providers evidence for retroposon-derived 24 ~ 26 nucleotide RNAs[J].RNA, 2001,7:1522-1530.
    [25] Yang S,Tutton S,Pierce E,et al.Specific double-stranded RNA interference n undifferentiated mouse embryonic stem cells[J].Mol.Cell.Biol,2001,21:7807-7816.
    [26] Nykanen A,Haley B,Zamore P.D.ATP requirements and small interference RNA structure in the RNA interference pathway [J].Cell,2001,107(3): 309-321.
    [27] Lee Y S,Nakahara K,Pham J W,et al.Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/ miRNA silencing pathways.Cell,2004,117(1):69-81.
    [28] Kadotani N, Nakayashiki H,TosaY,et al.One of the two dicer-like proteins in the filamentous fungi Magnaporthe oryzae genome is responsible for hairpin RNA-triggered RNA silencing and related siRNA accumulation[J].J Biol Chem,2004,279(43):44467-44474.
    [29] Xie Z,Johansen L K,Gustafson A M,et al.Genetic and functional diversification of small RNA pathways in plants.PloS Biol,2004,2(5):E104.
    [30] Zhang H,Kolb FA,Brondani V,et al.Human Dicer preferentially cleaves dsRNA at their termini without a requirement for ATP[J].EMBO J,2002,21:5875-5885.
    [31] Bernstein E,CaudyA A,Hammond S M,et al.Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature,2001,409(6818):363-366.
    [32] Schauer S E,Jacobsen S E,Meinke D W,et al.Dicer-like 1:blind men and elephants in Arabidopsis development[J]. Trends Plant Sci,2002,7(11):487-491.
    [33] Hammond S M,Bernstein E,Beach D,et al.An RNA-directed nuclease mediates post–transcriptional gene silencing in Drosophila cells[J].Nature,2000,404,293-296.
    [34] Tabara H,Sarkissian M,Kelly W G,et al.The rde-1 gene RNA interference and transposon silencing in C.elegans[J].Cell,1999, 99:123-132.
    [35] Parker J S,Roe S M,Barford D.Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity[J].EMBO J,2004,23(24):4727-4737.
    [36] Makeyev EV,Bamford DH.Cellular RNA-dependent RNA polymerase involved in post-trancriptional gene silencing has two distinct activity modes[J].Mol Cell,10:1417-1427.
    [37] Smardon A,Spoerke J M,Stacey S C,et al.EGO-1 is related to RNA-directed RNA polymetase and functions in germ-line development and RNA interference in C.elegans[J].Curr Biol,2000, 10: 169-178
    [38] Sijen T,Fleenor J,Simmer F,et al.On the role of RNA amplification dsRNA-trggered gene silencing[J].Cell,2001,107:465-476.
    [39] Lipardi C,Wei Q,Paterson B.M.RNAi as random degradative PCR:siRNA primers convert mRNA intodsRNAs that are degraded to generate new siRNA[J].Cell,2001,107:297-307.
    [40] Sijen T,Fleenor J,Simmer F,et al. On the role of RNA amplification in dsRNA-triggered gene silencing[J].Cell,2001,107:465-476.
    [41] Mette MF,van der Winden J,Matzke MA,et al.Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans[J].EMBO J,1999,18:241-248.
    [42] Mette M F,Aufsatz W,van der Winden J,et al.Transcriptional gene silencing and promoter methylation triggered by double stranded RNA[J].EMBO J,2000,19:5194-5201.
    [43] Ramsahoye B,Biniszkiewicz D,Lyko F,et al.Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a[J].Proc Natl Acad Sci,2000,97: 5237-5242.
    [44] Jones PA,Takai D.The role of DNA methylation in mammalian epigenetics.Science,2001,293: 1068-1070
    [45] Chicas A,Macino G.Characteristecs of post-transcriptional gene silencing[J].EMBO Rep,2001,2: 992 -996.
    [46] Brummelkamp TR,Bernards R,Agami R.A system for stable expression of short interfering RNAs inmammalian cells[J].Science,2002,296(5567): 550-553.
    [47] Brantl S.Antisense-RNA regulation and RNAinterference.Biochim Biophys Acta,2002,1575(123): 15-25.
    [48] Irie N,Sakai N,Ueyama T,et al.Subtype and species specific knockdown of PKC using short interfering RNA[J].Biochem Biophys Res Commun,2002,298(5):738-743.
    [49] Ui-Tei K,Zenno S,Miyata Y,et al. Sensitive assay of RNA interference in Drosophila and Chinese hamster cultured cells using firefly luciferase gene as target [J]. FEBS Letter,2000,479: 79-82.
    [50] Gil J and Esteban M. Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action [J].Apoptosis,2000,5:107-114.
    [51] Elbashir S M,Martinez J,Patkaniowska A,et al.Functional anatomy of siRNA for mediating efficient RNAi in Drosophila melanogaster embryo lysate[J].EMBO J,2001,20: 6877-6888.
    [52] Kasahara H,Aoki H.Gene silencing using adenoviral RNAi vector invascular smooth muscle cells and cardiomyocytes[J].Methods Mol Med,2005,112:155-172.
    [53] Wang L,Mu FYA Web-based design center for vector-based siRNA and siRNA cassette [J], Bioinformatics,2004,20(11): 1818-1820.
    [54] Brummelkamp T R,Bernards R,Agami R.A system forstable expression of short interfering RNAs in mammalian cell[J].Science,2002, 96(5567): 550-553.
    [55] Kawasaki H,Taira K.Short hairpin type of dsRNAs that are controlled by tRNA promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of h uman cells[J].Nucleic Acids Res,2003, 31(2):700-707.
    [56] Siolas D,Lerner C,Burchard J,et al.Synthetic shRNAs aspotent RNAi triggers[J].Nat Biotechnol, 2005, 23(2):227-231.
    [57] Overhoff M,Alken M,Far R K K,et al.Local RNA target structure influences siRNA efficafy:a systematic global analysis[J].J MoL Biol, 2005, 438:781-881.
    [58] Luo K Q,Chang D C.The gene-silencing efficiency of siRNA is strongly dependent on the local structuye of mRNA at the targeted region.Biochem Bioph Res Co, 2004,318:303-310.
    [59] Schubert S,Grunweller A,Erdmann V A,et al. Local RNA target structure influences siRNAefficacy:systematic analysis of intentionally designed bingding regions.J Mol Biol,2005,348: 883-893.
    [60] Jacque J,Triques K,Stevenson M.Modulation of HIV-1 replication by RNA interference[J]. Nature,2002,6896:418-435.
    [61] Holen T,Moe SE,Sorbo JG.Tolerated wobble mutations in siRNAs decrease specificity,but can enhance activity in vivo[J].Nucleic Aceids Res,2005,33(15):4704-4710.
    [62] Song E,Zhu P,Lee S K,et al.Antibody mediated in vivo delivery of small interfering RNAs via cell surface receptors[J].Nat Biotechnol, 2005, 23(6): 709-717.
    [63] Allerson C R,Sioufi N,Jarres R,et al.Fully 2′-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA[J].J Med Chem,2005,48 (4):901-904.
    [64] Elbashir S M,Harborth J,Weber K,et al.Analysis of gene function in somatic mammalian cells using small interfering RNAs[J].Methods.2002,26(2): 199-213.
    [65] Chiu Y L,Rana T M.siRNA function in RNAi: a chemical modification analysis. RNA,2003, 9(9):1034-1048.
    [66] Layer J M,McCaffrey A P,Tanner AK.In vivo activity of nuclease-resistant siRNAs[J]. RNA,2004, 10(5):766-771.
    [67] Lorenz C,Hadwiger P,John M,et al.Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells[J].Bioorg Med Chem Lett,2004,4(19): 4975-4977.
    [68] Soutschek J,Akinc A,Bramlage B,et al.Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs[J].Nature,2004,432(7014):173-178.
    [69] Hoshika S,Minakawa N,Kamiya H,et al.RNA interference induced by siRNAs modified with 4′-thioribonucleosides in culture mammalian cells[J].FEBS Lett,2005,579(14): 3115-3118.
    [70] Liao H,Wang J H.Biomembrane~permeable and Ribonuclease resistant siRNA with enhanced activity[J]. Oligonucleotides,2005,15 (3):196-205.
    [71] Braasch DA,Paroo Z,Constantinescu A,et al.Biodistribution of phosphodiester and phosphorothioate siRNA[J].Bioorg Med Chem Lett,2004,14 (5):1139-1143.
    [72] 胡迎宾, 李定国, 李光明等.化学合成经修饰抗 TIMP-2 小干扰 RNA 对 CCl4 诱导肝纤维化动物模型的影响[J].世界华人消化杂志,2006,14(32): 3081-3087.
    [73] Elmen J,Thonberg H,Ljungberg K,et al.Locked nucleic acid(LNA) mediated improvements in siRNA stability and functionality[J].Nucleic Acids Res,2005,33(1):439-447.
    [74] 张淑华,葛银林,罗达亚,等.小干扰 RNA 靶向 VEGF 基因体内外抑制乳腺癌细胞 MCF27 的增殖[J].中国生物化学与分子生物学报,2007,23(1):68-73.
    [75] Hall A H,Wan J,Shaughnessy E E,et al.RNA interference using boranophosphate siRNAs: structure-activity relationships[J].Nucleic Acids Res,2004,32(20):5991-6000.
    [76] Brummelkamp T.R.,Bernards R.New tools for functional mammalian cancer genetics[J].Nat Rev Cancer,2003,3(10):781-789.
    [77] 周唏,张鹏辉.SiRNA 稳定抑制肝癌细胞 hTERT 基因的表达[J].第四军医大学学报,2005, 25(24):2233-2236.
    [78] Castanotto D,Li H,Rossi JJ.Functional siRNA expression from transfected PCR products. RNA,2002,8(11):1454-1460.
    [79] Olivier ter Brake, Pavlina Konstantinova, Mustafa Ceylan,et al.Silencing of HIV-1 with RNAInterference: a Multiple shRNA Approach[J].Molecular Therapy,2006,14(6) :883-892.
    [80] Zhirong Mou, Jinran Zhou, Jintao Li,et al.Expression of small hairpin RNAs for S100A9 used in the protein function research[J].Leukemia Research,2006,30(8):1013-1017.
    [81] Honghai Li,Xiaoyong Fu,Yao Chen,et al.Use of Adenovirus-Delivered siRNA to Target Oncoprotein p28GANK in Hepatocellular Carcinoma[J].Gastroenterology,2005,128(7):2029-2041.
    [82] Gorbatyuk M,Justilien V,Liu J,et al.Uppression of mouse rhodopsin expression in vivo by AAV mediated siRNA delivery[J].Vision Research, In Press,Corrected Proof, Available online 12 February 2007.
    [83] Ming Jie Li,John J. Rossi.Lentiviral Vector Delivery of Recombinant Small Interfering RNA Expression Cassettes[J].Methods in Enzymology,2005,392:218-226.
    [84] Ning Ke, Demin Zhou, Jon E,et al.A new inducible RNAi xenograft model for assessing the staged tumor response to mTOR silencing[J].Experimental Cell Research,2006,312(15): 2726-2734.
    [85] Justyna Janas, Jacek Skowronski,Linda Van Aelst,et al.Lentiviral Delivery of RNAi in Hippocampal Neurons[J].Methods in Enzymology,2006,406:593-605.
    [86] Koichi Miyake, Johan Flygare, Thomas Kiefer.Development of cellular models for ribosomal protein S19 (RPS19)-deficient diamond-blackfan anemia using inducible expression of siRNA against RPS19[J].Molecular Therapy,2005,11(4):627-637.
    [87] Johan Jakobsson,Cecilia Lundberg.Lentiviral Vectors for Use in the Central Nervous System[J]. Molecular Therapy,2006,13(3): Pages 484-493.
    [88] Mortimer Korf, Dominik Jarczak, Carmela Beger,et al.Inhibition of hepatitis C virus translation and subgenomic replication by siRNAs directed against highly conserved HCV sequence and cellular HCV cofactors[J].Journal of Hepatology,2005,43(2):225-234.
    [89] Raman M D, Nick J V H, Gareth R H,et al.A robust system for RNA interference in the chicken using a modified microRNA operon[J].Developmental Biology,2006, 294(2,15):554-563.
    [90] Kuan Chih Chow,Mei Pao Lu,Meng Tse Wu,et al.Expression of dihydrodiol dehydrogenase plays important roles in apoptosis and drug-resistance of A431 squamous cell carcinoma [J].Journal of Dermatological Science,2006,41(3):205-212.
    [91] Gabriela Hernández,Hoyos,José Alberola-Ila,et al.Analysis of T-Cell Development by Using Short Interfering RNA to Knock Down Protein Expression[J].Methods in Enzymology, 2005, 392:199-217.
    [92] Marisa J Wainszelbaum, Brandon M Proctor, Suzanne E,et al.IL4/PGE2 induction of an enlarged early endosomal compartment in mouse macrophages is Rab5-dependent[J]. Experimental Cell Research,2006,312(12,5):2238-2251.
    [93] Ling Jun Zhao, Heng Jian, Henghu Zhu.Specific gene inhibition by adenovirus-mediated expression of small interfering RNA[J].Gene,2003,316 (16):137-141.
    [94] Jing Zhang, Osamu Yamada, Takashi Sakamoto,et al.Down-regulation of viral replication by adenoviral mediated expression of siRNA against cellular cofactors for hepatitis C virus[J]. Virology, 2004,320(1):135-143.
    [95]Hiroaki Uchida, Toshihiro Tanaka, Katsunori Sasaki,et al. Adenovirus-Mediated Transfer of siRNA against Survivin Induced Apoptosis and Attenuated Tumor Cell Growth in Vitro and in Vivo[J].Molecular Therapy10(1)2004:162-171.
    [96] Helmuth H G van Es,Gert-Jan Art.Biology calls the targets: combining RNAi and diseasebiology[J].Drug Discovery Today,2005, 10 (20):1385-1391.
    [97] Leeni Koivisto, Guoqiao Jiang, Lari H?kkinen,et al.HaCaT keratinocyte migration is dependent on epidermal growth factor receptor signaling and glycogen synthase kinase-3α[J].Experimental Cell Research,,2006,312(15):2791-2805.
    [98] Wenlong Han,Megan Wind Rotolo,Richard L Kirkman,et al.Inhibition of human immunodeficiency virus type 1 replication by siRNA targeted to the highly conserved primer binding site[J].Virology,2004, 30(1):221-232.
    [99] Alessandra Tessitore, Fabiana Parisi, Michela Alessandra Denti,et al.Preferential silencing of a common dominant rhodopsin mutation does not inhibit retinal degeneration in a transgenic model[J].Molecular Therapy,2006,14(5):692-699.
    [100] Aza Blanc P,Cooper C L,Wagner K,et al.Identification of modulator of TRAIL-induced Apoptosis via RNAi based phenotypic screening[J].Mol Cell, 2003, 12(3):797-801.
    [101] Hefzy M S,Cooke T D V,Arevies of knee models:1996 update.Appl Mech Rev,1996,49: 187-189.
    [102] Shirane D,Sugao K,Namiki S,etal.Enzymatic production of RNAi libraries from cDNAs [J].Nat Genet,2004,36(2):190-196.
    [103] Paddison P J,Silva J M,Conklin D S,et al.A resource for large scale RNA interference based screens in mammals[J].Nature, 2004, 428 (6981):427-431.
    [104] Berns K,Hijmans E M,Mullenders J.A large scale RNAi screen in human cells identifies new components of the p53 pathway[J].Nature,2004,428 (6981):431-437.
    [105] Ngo V N,Davis R E,Lamy L,et al.A loss-of –function RNA interfeence screen for molecular targes in cancer[J].Nature,2006,441 (7089):106-110.
    [106] Pelkmans L,Fava E,Grabner H,et al.Gonome-wide analysis of human kinases in clathrin and caveolae/raft-mediated endocytosis[J].Nature,2005,436 (7):78-86.
    [107] Li X H,Scuderi A,Letsou A.B56 associated proteinphos phatase 2A is required for survival and protects from apoptosis in drosphila melanogaster[J].Mol Cell Biol,2002,22(11):3674-3684.
    [108] Schepers H,Geugien M,Marco van der Toorn,et al.HSP27 protects AML cells against VP16 induced apoptosis through modulation of p38 and c-Jun[J].Exp Hematol,2005,33(6):660-670.
    [109] Lyn O’Brien.Inhibition of multiple strains of Venezuelan equine encephalitis virus by a pool of four short interfering RNAs.Antiviral Research, 2007,75(1):20-29.
    [110] Jacque JM,Triques K,Stevenson M.Modulation of HIV-1 replicatio By RNA interference[J]. Nature,2002,418(6896):435-438.
    [111] Novina C D,Murray M F,Dykxhoorn DM,et al.siRNA_directed inhibition of HIV-1 infection.Nat Med,2002,8(7):681-686.
    [112] Ong S P,B G H. Choo,J J H,et al.Expression of vector based small interfering RNA against West Nile virus effectively inhibits virus replication[J].Antiviral Research,2006,72(3):216-223.
    [113] Q Ge,L Filip,A Ba,et al.Inhibition of influenza virus production in virus infected mice by RNA interference[J]. Proc.Natl.Acad.Sci.2004,101:8676-8681.
    [114] Yuanxiang Zhou,Jack H Chan,Annie Y Chan,et al.Transgenic plant derived siRNAs can suppress propagation of influenza virus in mammalian cells[J].FEBS Letters,2004,577:345-350.
    [115] L Gitlin,S Karelsky,R Andino.Short interfering RNA confers intracellular antiviral immunity in human cells[J].Nature,2002,418:430-434.
    [116] Aure Saulnier,Isabelle Pelletier,Karine Labadie Complete Cure of Persistent Virus Infections by Antiviral siRNAs[J].Molecular Therapy,2006,13(1) 142-150.
    [117] Z Wang,L Ren,X Zhao,et al.Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs inmammalian cells[J]. J Virol,2004,78:7523-7527.
    [118] Juan Huang, Ping Jiang, Yufeng Li,et al.Inhibition of porcine reproductive and respiratory syndrome virus replication by short hairpin RNA in MARC-145 cells[J].Veterinary Microbiology,2006,115(4): 302-310.
    [119] Momoko Otaki, Kiyonao Sada, Hiroyasu Kadoya,et al.Inhibition of measles virus and subacute sclerosing panencephalitis virus by RNA interference[J].Antiviral Research,2006, 70(3)105-111.
    [120] Teresa de los Santos,Qiaohua Wu1,Sonia de Avila Botton.Short hairpin RNA targeted to the highlyconserved 2B nonstructural protein coding region inhibits replication of multiple serotypes of foot and mouth disease virus[J].Virology,2005,335:222-231.
    [121] A P Mc Caffrey,L Meuse,T T T Pham,et al.RNA interference in adult mice[J].Nature,2002, 418:38-39.
    [122] Aviad Levin, Larisa Kutznetova, Ronen Kahana,et al.Highly effective inhibition of Akabane virus replication by siRNA genes[J].Virus Research, 2006,120(1-2):121-127
    [123] Hilla Giladi,Mali Ketzinel Gilad,Ludmila Rivkin.Small Interfering RNA Inhibits Hepatitis B Virus Replication in Mice[J].Molecular Therapy,2003,8:769-776.
    [124] Baoqin Xuan, Zhikang Qian, Jie Hong,et al.EsiRNAs inhibit Hepatitis B virus replication in mice model more efficiently than synthesized siRNAs.Virus Research,2006,18 (1-2):150-155.
    [125] Kai Lang Wu,Xue Zhang,Jianlin Zhang,et al.Inhibition of Hepatitis B virus gene expression by single and dual small interfering RNA treatment[J].Virus Research,2005,112:100-107.
    [126] H.Giladi,M.Ketzinel Gilad,L.Rivkin,et al.Small interfering RNA inhibits hepatitis B virus replication in mice[J].Mol Ther,2003,8:769-776.
    [127] Duckhyang Shin, Soo In Kim, Meehyein Kim,et al.Efficient inhibition of hepatitis B virus replication by small interfering RNAs targeted to the viral X gene in mice[J].Virus Research, 2006,119(2)146-153.
    [128] 吴叔文,方骢,潘纪安.细胞内表达的小干扰 RNA 靶向丙肝病毒 5′保守区的研究.中国病毒学[J],2003,18(6):515-518.
    [129] Meehyein Kim, Duckhyang Shin, Soo In Kim.Inhibition of hepatitis C virus gene expression by small interfering RNAs using a tricistronic full-length viral replicon and a transient mouse model[J]Virus Research,2006,122(1-2):1-10.
    [130] J Zhang,O Yamada,T Sakamoto.Down-regulation of viral replication by adenoviral mediated expression of siRNA against cellular cofactors for hepatitis C virus[J].Virology. 2004.320:135-143.
    [131] Kailang Wu,Yongxin Mu,Jing Hu,et al.Simultaneously inhibition of HIV and HBV replication through a dual small interfering RNA expression system[J].Antiviral Research,2007,2(74):142-149.
    [132] Kyung Soo Chang ,Guangxiang Luo.The polypyrimidine tract~binding protein (PTB) is required for efficient replication of hepatitis C virus (HCV) RNA[J].Virus Research,2006,15 (1) :1-8.
    [133] M Y Seo,S Abrignani,M Houghton,et al.Small interfering RNA mediated inhibition of hepatitis C virus replication in the human hepatoma cell line Huh-7[J]. J Virol,2003,77:810-812.
    [134] W Chen,W Yan,Q D,et al.RNA interference targeting VP1 inhibits foot-and-mouth disease virus replication in BHK-21 cells and suckling mice[J].Virol,2004,78:6900-6907.
    [135] Korf M,Jarczak D,Beger C,et al.Inhibition of hepatitis C virus translation and subgenomic replication by siRNAs directed against highly conserved HCV sequence and cellular HCV cofactors[J].Hepatol, 2005,43(2):225-234.
    [136] Yue Wang, Naoya Kato, Amarsanaa Jazag.Hepatitis C Virus Core Protein Is a Potent Inhibitor of RNA Silencing Based Antiviral Response[J].Gastroenterology,2006,130(3):883-892
    [137] Rajnish S. Dave, James P. McGettigan, Tazeen Qureshi,et al.siRNA targeting Vaccinia virus double-stranded RNA binding protein (E3L) exerts potent antiviral effects[J].Virology, 2006,348(2): 489-497.
    [138] Qinyan Yin,Erik K. Flemington.siRNAs against the Epstein Barr virus latency replication factor,EBNA1,inhibit its function and growth of EBV-dependent tumor cells[J].Virology,2006, 346(2,15):385-393.
    [139] Sunil Kumar Mallanna, T.J. Rasool, Bikash Sahay,et al.Inhibition of Anatid Herpes Virus-1 replication by small interfering RNAs in cell culture system[J].Virus Research,2006,115(2) 192-197.
    [140] Wannenes F,Clafre SA,Niola F,et al.Vector-based RNA interference against vascular endothelial growth factor-A significantly limits vascularization and growth of prostate cancer in vivo[J].Cancer Gene Ther,2005,12(12):926-934.
    [141] Fan QW,Wwiss WA.RNA interference againse a glioma derived allele of EGFR induces blockade at G2-M[J].Oncogene, 2005,24(5):829-837.
    [142] Singer O,Man RA,Rochenstein E,et al.Targeting BACE1 with siRNAs ameliorates Alzbeimer disease neuropathology in a transgenic model[J].Nat Neurosei,2005,8(10): 1343-1349
    [143] Urban Klein B,Werth S,Abuharbied S,et al.RNA imediated genetargeting through ystemic application of polyethylenimine PEI-complexed siRNA in vivo[J].Gene Ther,2005,12(5):461- 466.
    [144] Mei FC,Young TW,Liu J,et al.RAS-mediated epigenetic inactivation of OPCML in transformation of human ovarian suface epithelial cells[J].FASEB,2006,20(6):497-499.
    [145] Lakka SS,Gondi cs,Dinh DH,et al.Specific interference of urokinase type plasminogen activator receptor and matrix metalloproteinase-9 gene expression induced by double-stranded RNA results in decrease invasion,tumor growth and angiogenesis in gliomas[J].J Biol Chem,2005,280(23):21882-21892.
    [146] Ray K M,Paul A.RNA interference:from gene silencing to gene specific therapeutics[J]. Pharmacology Therapeutics,2005,107(2):222-239.
    [147] Dodier P,Piche A.Bcl-X-L is functionally non-equivalent for the regulation of growth and survival in human ovarian cancer cells[J].Gynecolonco,2006,100(2): 254-263.
    [148] Chen Z J,Kren B T,Wong PY,et al.Sleeping beauty-mediated down regulation of huntingtin expression by RNA interference[J]. Biochem Biophys Res Commun, 2005, 329(2):646-652.
    [149] Cheng SQ,Wang WL,Yan W,et al.Knockdown of surviving gene expression by RNAi induces apoptosis in huan hepatocellular carcinoma cell line SMMC-7721[J].World J Gastroenterol,2005,11(5): 756-759.
    [150] Giridhar Rao Jangati,Rajakrishnan Veluthakal,Anjaneyulu Kowluru,et al.siRNA-mediated depletion of endogenous protein phosphatase 2Acα markedly attenuates ceramide activated protein phosphatase activity in insulin secreting INS-832/13 cells[J].Biochemical and Biophysical Research Communications, 2006,348(2):649-652.
    [151] Jie Hong,Yingchun Zhao,Weida Huang.Blocking c-myc and stat3 by E. coli expressed and enzymedigested siRNA in mouse melanoma[J].Biochemical and Biophysical Research Communications, 2006,348(2):600-605.
    [152] Xuerong Shi,Lin Leng,Tian Wang,et al.CD44 Is the Signaling Component of the Macrophage Migration Inhibitory Factor CD74 Receptor Complex.Immunity,2006,25(4) :595-606.
    [153] Masahiro Sugano,Keiko Tsuchida,Toyoki Maeda,et al.SiRNA targeting SHP-1 accelerates angiogenesis in a rat model of hindlimb ischemia[J]. Atherosclerosis,2007,91(1):33-39.
    [154] Shigeru Kanda,Hiroshi Kanetake,Yasuyoshi.Miyata.Role of Src in angiopoietin 1 induced capillary morphogenesis of endothelial cells: Effect of chronic hypoxia on Src inhibition by PP2[J].Cellular Signalling,2007,19(3):472-480.
    [155] Yoon Jin Lee,Arisa Imsumran,Mi Young,et al.ParkAdenovirus expressing shRNA to IGF-1R enhances the chemosensitivity of lung cancer cell lines by blocking IGF-1 pathway[J].Lung Cancer,2007,55(3):279-286.
    [156] Eun Young Choi,SungGa Lee,Hyun Mee Oh,et al.nvolvement of protein kinase Cδ in iron chelator induced IL-8 production in human intestinal epithelial cells[J].Life Science,2007: 436-445.
    [157] Karin K?rehed, Anna Dimberg, Staffan Dahl,et al.IFN-γ induced upregulation of Fcγreceptor-I during activation of monocytic cells requires the PKR and NFκB pathways[J]. Molecular Immunology,2007, 44(4):615-624.
    [158] Jianfeng Xu, Lin Li, Jie Hong,et al.Effects of small interference RNA against PTP1B and TCPTP on insulin signaling pathway in mouse liver: Evidence for non-synergetic cooperation[J].Cell Biology International,2007,31(1):88-91.
    [159] Velkey J M and O’Shea K S. Oct4 RNA interference induces trophectoderm differentiation in mouse embryonic stem cells [J].Genesis,2003,37:18-24.
    [160] Kathy K Niakan, Emily C. Davis, Robert C. Clipsham,et al.Novel role for the orphan nuclear receptor Dax1 in embryogenesis, different from steroidogenesis[J].Molecular Genetics and Metabolism, 2006,88(3):261-271.
    [161]Bei Bei Wang, Rui Lu, Wei Cheng Wang,et al.Inducible and reversible suppression of Npm1 gene expression using stably integrated small interfering RNA vector in mouse embryonic stem cells[J].Biochemical and Biophysical Research Communications,2006,3 47(4,8):1129-1137.
    [162] Dana Zeineddine, Evangelia Papadimou,Karim Chebli,et al.Oct-3/4 Dose Dependently Regulates Specification of Embryonic Stem Cells toward a Cardiac Lineage and Early Heart Development[J]. Developmental Cell,2006, 4(11):535-546.
    [163] Henrietta Szutorisz, Andrew Georgiou, László Tora,et al.The Proteasome Restricts Permissive Transcription at Tissue Specific Gene Loci in Embryonic Stem Cells[J].Cell,2006, 127(7) :1375-1388
    [164]Hee Young Yang, Sue Hee Kim, Seok Ho Kim,et al.The suppression of zfpm-1 accelerates the erythropoietic differentiation of human CD34+ cells[J].Biochemical and Biophysical Research Communications,2007,353(4):978-984.
    [165] Roman M. Salasznyk, Robert F. Klees, William A. Williams,et al.Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells[J].Experimental Cell Research,2007,313(1) :22-37.
    [166] 殷震,刘景华.动物病毒学(第二版)[M],科学出版社,1997.
    [167] 谢庆阁,翟中和.畜禽重大疫病免疫研究进展[M].中国农业科技出版社,1996.
    [168] 李成.应用电镜技术对猪瘟病毒的研究[J].中国兽医科技,1989,7:24-25.
    [169] Harkness J W. Classical swine fever and its diagnosis: A current view[J].Vet Rec,1985,16: 288-293.
    [170] 蔡宝祥.家畜传染病学(第四版)[M],中国农业出版社,2001.
    [171] Freitas T R,Caldas L A,Rebello M A. Protaglandin A1 inhibits replication of classical swine fever virus[J]. Mem Inst Oswaldo Cruz,1998, 93(6):815-818.
    [172] Moenning V.The hog cholera virus.Comp Immun Microbiol Infect Disease,1992, 15(3):189-201.
    [173] 肖明,张楚瑜,祝志展,等.猪瘟病毒基因组非编码区的定性、定量与结构分析[J].科学通报,2001,46(7):544-551
    [174]王镇,丁明孝.猪瘟病毒的分子生物学研究进展[J].微生物学通报,1998,25(1):57-59.
    [175] Meyers.G,T Rümenapf, H J Thiel.Molecular cloning and nucleotide sequence of the genome of Hog Cholera virus[J].Virology.1987,171:555-567.
    [176] Moormann R G M, P A M Warmendarm, Vander Mer,et al.Molecular cloning and nucleotide sequence of hog cholera virus strain Brescia and mapping of the genomic region encoding envelop glycoprotein E1[J].Virology,1990,177:184-198.
    [177] Moormann R J M, H J P Van Gennip, G K W Midema,et al. Infectious RNA transcribed from an engineered full-length cDNA template of the genome of a pestivirus[J].J Virol,1996, 70:763-770.
    [178] Wong ML,Peng BY, Liu JJ,et al.Cloning and sequencing of full-length cDNA of classical swine fever virus LPC strain.Virus Genes,2001,23(2):187-92.
    [179] 聂玉春,柯叶艳,陈建国,等.CSFV 中国标准强毒株—石门 F114 株全长 cDNA 的构建[J].微生物学报,2001,41(4):452-456.
    [180] Wensvoort G. Topographical and functional mapping of epitopes on hog cholera virus with monoclonal antibodies[J].J Gen Virol,1989,70:2865-2876.
    [181] Van Rijn PA, van Gennip HGP, de Meijer EJ,et al.Epitope mapping of envelope glycoprotein E1 of hog cholera virus strain Brecia[J]. J Gen Virol,1993,74:2053-2060.
    [182] 韩雪清,李红卫,刘湘涛.中国猪瘟兔化弱毒株(C2 株)兔脾组织毒主要保护性抗原 E2(gp55)基因序列分析[J].畜牧兽医学报,2001,32(1),52-57.
    [183] 张富强,李志华,张念祖.猪瘟病毒囊膜糖蛋白 E2 中和表位的定位及其免疫反应性分析[J].病毒学报,2005,2(21):118-123.
    [184] Bruschke CJM, Hulst MM, Moormann RJM,et al. Glycoprotein Erns of pestivirus induces apoptosis in lymphocytes of several species[J]. J Virol. 1997,71:6692-6696.
    [185] Hulst MM, Panoto FE, Hoekman A,et al. Inactivation of the RNase activity of glycoprotein E(rns) of classical swine fever virus results in a cytopathogenic virus[J].J Virol,1998,72 (1):151-157
    [186] Meyers G, Saalmuller A, Buttner M.Mutations abrogating the RNase activity in glycoprotein Erns of the pestivirus classical swine fever virus[J]. J Virol,1999,73(12):10224-10235.
    [187] 金扩世,涂长春,殷震.猪瘟病毒保护性囊膜糖蛋白 E1 基因的研究进展[J].病毒学报,1996,12(3):287-290.
    [188] Stark R. Processing of pestivirus polyprotein: cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus[J]. J Virol.1993, 67:7088-7095.
    [189] Tratschin JD, Moser C, Ruggli N,et al. Classical swine fever virus leader proteinase Npro is not required for viral replication in cell culture[J]. J Virol, 1998,72(9):7681-7684.
    [190] Bakkali Kassimi L, Gonzague M, Boutrouille A,et al. Expression and characterization of part of hogcholera virus non-structural proteins[J].Zentralbl Veterinarmed.1996,43(3):167-177.
    [191] Warrener P,Collectt MS.Pestivirus NS3 (p80) protein possesses RNA helicase activity[J]. J Virol,1995,69(3):1720-1726.
    [192] Meyers G,Thiel H J,Cytopathogenicity of classical swine fever virus caused by defective interfering particles[J].J Viol,1995,69:3683-3689.
    [193] Moser C,Stettler P,Tratschin J D,et al.Cytopathogenic and noncytopathogenic RNA replicons of classical swine fever virus[J]. J Virol,1999,73(9):7781-7794.
    [194] Shimizu Y,Yamaji K,Masuho Y,et al. Identification of the sequence on NS4A required for enhanced cleavage of the NS5A/5B site by hepatitis C virus proteinase[J].J Virol,1996, 70:127-132.
    [195] Tomei L,Failla C,Vifale RL,et al.A central hydrophobic domain of the hepatitis C virus NS4A protein is necessary and sufficient for the activation of the NS3 proteinase[J].J.Gen. Virol,1996, 77:1065-1070. [196 ]Muramatsu S,Ishido M,Fujta T,et al. Nuclear localization of the NS3 protein of hepatitis C virus and factors affecting the localization[J]. J Virol,1997,71:4954-4961.
    [197] Chen CJ, Kuo MD,Chien LJ.et al. RNA-protein interactions:involvement of NS3,NS5 and 3′-noncoding region of Japanese encephalitis virus genomic RNA[J].J.Virol,1997,71:3466-3473.
    [198] Sakamurno D, Furukawa T, Takegami T,et al.Hepatitis C virus nonstructural protein NS3 transforms NIH3T3 cells[J]. J.Virol,1995,69:3893-3896.
    [199] Muramatsu S, Ishido M,Fujta T,et al.Nuclear localization of the NS3 protein of hepatitis C virus and factors affecting the localization[J]. J.Virol,1997,71:4954-4961.
    [200] Xu J,Mendez E,Caron P R,et al.Bovine viral diarrhae virus NS3 serine proteinase: polyprotein cleavage sites, cofactor requirements and molecular model of an enzyme essential for pestivirus replication[J]. J Virol,997,71:5312-5322.
    [201] Young R S,Seeyoung C H,Jong Seok L,et al.Immunogenincity of the E1 E2 proteins of hepatitis C virus expressed by recombinant adenoviruses[J].Vaccine,2001,19:2955-2964.
    [202]Steffeus S, Thiel H J, Behrens S E,et al. The RNA-dependent RNA polymerase of different members of the family flaviviridae exhibit similar properities in vitro[J].J Gen Virol,1999,80: 2583-2590
    [203] Laevens H. A thioredoxin gene fusion expression system that circumventsbody formation in the E.coli cytoplasm[J].Vet Rec,1999,145:243-248.
    [204] Trautwein G. Pathology and pathogenesis of the diease, Martins Nijhoff publishing. Boston, USA,1988,27-54.
    [205] Flores E F. Swine and ruminant pestiviruses require the same cellular factors to enter bovine cells[J].J Gen Virol,1996,77:1295-1303.
    [206] Koenting S M,Summerfield A,Spagnuolo Weaver M,et al.Immunopathogenesis of classical swine fever.role of monocytic[J].Immunology,1999,97(2):359-366.
    [207] Carrasco CP,Rigden RC,Vincent E,et al.Interaction of Classical swine fever virus with dendritic cells[J].J Gen Virol,2004,85:1633-1641.
    [208] Larocca SA,Herbert RJ,Crooke H,et al.Loss of interferion regulatory factor 3 in cells infected with Classical swine fever virus involves the N-terminal protease,Npro[J].J Virol,2005,79: 7239-7247.
    [209] Kosmidou A,Buttner M,Meyers G.Isolation and characterization of cytopathogenic classical swine fever virus (CSFV)[J]. Arch Virol,1998,143(7):1295-1309.
    [210] Kummerer BM,Tautz N,Becher P,et al.The genetic basis for cytopathogenicity of pestiviruses[J].Vet Microbiol,2000,77(1-2):117-128.
    [211] Mittelholzer C,Moser C,Tratschin JD,et al. Analysis of classical swine fever virus replication kinetics allows differentiation of highly virulent from avirulent strains[J].Vet Microbiol,2000,74(4):293-308.
    [212] Moormann R J M,Bouma A,Kramp S J A,et al. Development of a classical swine fever subunit marker vaccine and companion diagnostic test[J]. J Virol,2001,132:763-770.
    [213] Summerfield A,Hofmann M A,Mccullough K C.Low density blood granulocytic cells induced during classical swine fever are targets for virus infection[J].Vet Immunol Immunopathol, 1998, 63(3):289-301.
    [214] Wilke I G,Dittmar K E,Moening V.Heterogeneous expression of the non-structural protein p80/p125 inells infected with different pestiviruses[J].J Gen Virol,1992,73:47-52.
    [215] Meyer G,Tautz N,Stark R,et al.Rearrangement of viral sequences in cytopathohenic pestivirus[J].J Virol,1992,191: 368-369.
    [216] Hulst MM, Panoto FE, Hoekman A,et al.Inactivation of the RNase activity of glycoprotein E(rns) of classical swine fever virus results in a cytopathogenic virus[J].J Virol,1998,72 (1):151-157.
    [217] Beacher P,Orlich M,Thiel H J.RNA recombination between persisting pestivirus and a vaccine strain: generation of cytopathogenic virus and induction of lethal disease[J].J Virol,2001,75(14):6256-6264.
    [218] Meyers G,Thiel H J,Rumenapf T.Classical swine fever virus: recovery of infectious viruses from cDNA constructs and generation of recombinant cytopathogenic defective interfering particles[J].J Virol,1996, 70: 1588-1595.
    [219] McClurkin AW,Littledike ET,Cutlip RC,et al. Production of cattle immunotolerant to bovine viral diarrhea virus.Can J Comp Med. 1984,48(2):156-161.
    [220] GE Jones. Human Cell Culture Protocols[M] Totowa, USA: Humana Press, 1996. 101-110.
    [221] 王镇,陆宇,周鹏程,等.猪瘟病毒在 PK 细胞和 MPK 细胞中繁殖过程的研究[J].微生物学报,1999.39(3):189-195.
    [222] Holen T,Amarzguioui M,Wiiger M T,et al.Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor[J].Nucleic Acids Res,2002,30(8): 1757-1766.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700