投喂云芝多糖对银鲫免疫机能和生理生化特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以银鲫(Carassius auratus)为试验对象,在饲料中分别添加不同浓度的云芝多糖(Coriolus versciclor polysaccharides,CVP),研究云芝多糖对银鲫非特异性免疫机能、免疫应答能力及血液生理生化特性的影响。主要研究结果如下:
     1.在研究云芝多糖对银鲫非特异性免疫机能影响的试验中,云芝多糖在饲料中的添加量分别为:0g/kg(C_0组)、0.25g/kg(C_(0.25)组)、0.5g/kg(C_(0.5)组)、1.0g/kg(C_(1.0)组)、2.0g/kg(C_(2.0)组)和4.0g/kg(C_(4.0)组)。各组分别投喂相应的饲料,于试验开始前(第0d)和试验开始后第7d、14d、21d、28d、35d、42d和56d取样检测供试鱼血液的白细胞吞噬活性、血清溶菌酶活力、血清SOD活性和补体C3、C4的含量。结果显示:饲料中添加0.25g/kg的云芝多糖,对银鲫的白细胞吞噬活性、血清溶菌酶活力、血清SOD酶活性和补体C3、C4的含量影响不显著(P>0.05);添加0.5g/kg和1.0g/kg的云芝多糖,对供试鱼上述指标都有一定程度的提高,并当添加量为1.0g/kg时,在14d~21d内效果最显著(P<0.05);而添加2.0g/kg和4.0g/kg的云芝多糖,上述指标在试验的后期均显著低于对照组。本研究结果说明在银鲫饲料中添加0.5g/kg~1.0g/kg的云芝多糖对银鲫的非特异性免疫机能有增强作用。
     2.在研究云芝多糖对银鲫免疫应答能力影响的试验中,Ⅰ_0组、Ⅰ_(0.5)组、Ⅰ_(1.0)组和Ⅰ_(2.0)组注射灭活的嗜水气单胞菌(Aeromonas hydrophila)疫苗作为免疫组,C_0组、C_(0.5)组、C_(1.0)组和C_(2.0)组注射无菌生理盐水作为对照组。其中Ⅰ_(0.5)组与C_(0.5)组饲料中云芝多糖添加量为0.5g/kg,Ⅰ_(1.0)组与C_(1.0)组饲料中云芝多糖添加量为1.0g/kg,Ⅰ_(2.0)组与C_(2.0)组饲料中云芝多糖添加量为2.0g/kg,Ⅰ_0组与C_0组投喂基础饲料。各组分别投喂相应的饲料,于免疫前(第0d)和免疫后第7d、14d、21d、28d和35d测定银鲫的血液白细胞吞噬活性、血清溶菌酶活性、补体C_3、C_4含量、凝集抗体效价、RBC-C_(3b)受体花环率、RBC-IC花环率和攻毒后的免疫保护率。结果显示:
     (1)饲料中添加0.5g/kg和1.0g/kg的云芝多糖可显著提高受免银鲫的血液白细胞吞噬活性、血清溶菌酶活性及补体C3、C4含量(P<0.05);而饲料中添加2.0g/kg的云芝多糖在试验的后期对银鲫的上述指标起抑制作用。
     (2)与对受免银鲫血液白细胞吞噬活性、血清溶菌酶活性及补体C3、C4含量的影响相似,云芝多糖也能提高非受免组银鲫的上述指标,影响趋势基本一致;但与受免组银鲫相比,非受免组银鲫的上述指标均低于相应的免疫组。
     (3)饲料中添加0.5g/kg和1.0g/kg的云芝多糖在第21d和28d能显著提高银鲫的RBC-C_(3b)受体花环率和降低RBC-IC花环率;而饲料中添加2.0g/kg的云芝多糖在试验后期会降低银鲫RBC-C_(3b)受体花环率和提高RBC-IC花环率,但与对照组差异不显著(P>0.05)。
     (4)云芝多糖能提高银鲫的凝集抗体效价。其中,当云芝多糖浓度为1.0g/kg,投喂时间为21d时,受免银鲫的平均凝集抗体效价最高,为597.3。
     (5)投喂云芝多糖能提高银鲫经嗜水气单胞菌活菌攻毒后的存活率。其中,当云芝多糖在饲料中的添加浓度为1.0g/kg时,受免银鲫的存活率和免疫保护率最高,分别为85%和57.14。
     3.在研究云芝多糖对银鲫血液生理生化特性影响的试验中,云芝多糖在饲料中的添加量分别为:0g/kg(C_0组)、0.25g/kg(C_(0.25)组)、0.5g/kg(C_(0.5)组)、1.0g/kg(C_(1.0)组)、2.0g/kg(C_(2.0)组)和4.0g/kg(C_(4.0)组)。各组分别投喂相应的饲料,于试验开始前(第0d)和试验开始后第14d、28d、42d和56d取样检测供试鱼血液的红细胞数、白细胞数、血红蛋白含量和红细胞沉降率等生理指标,以及血清血糖、胆固醇、甘油三酯、白蛋白、总蛋白、尿素氮、谷草转氨酶、谷丙转氨酶和碱性磷酸酶等生化指标。结果显示:投喂0.25g/kg的云芝多糖对银鲫的血液各个指标无显著影响(P>0.05),对机体的生理状态影响较小。持续投喂0.5g/kg~1.0g/kg的云芝多糖,短期内(14d或28d)可使银鲫血细胞数量和血红蛋白含量升高,红细胞沉降率下降;长时间投喂(42d或56d),可使银鲫血清血糖、尿素、胆固醇和甘油三酯含量及谷草转氨酶、谷丙转氨酶活性降低,血清总蛋白和白蛋白含量及血清碱性磷酸酶活性升高;表明0.5g/kg~1.0g/kg的云芝多糖在一定程度上可改善银鲫的生理机能,提高机体的代谢强度。长时间持续投喂2.0g/kg~4.0g/kg的云芝多糖,银鲫血细胞数量、血红蛋白、血清总蛋白、白蛋白含量和碱性磷酸酶活性下降,血液红细胞沉降率、血清血糖、尿素氮、胆固醇和甘油三酯含量及谷草转氨酶、谷丙转氨酶活性升高,表明机体氧运输能力减弱,消化排泄功能减退。
The paper studied effects of Coriolus versciclor polysaccharides (CVP) on the non-specific immune function, the ability of immune response and the physiological and biochemical characteristic in blood of Carassius auratus. The main results were summarized as follows:
     1. In order to study the effects of CVP on the non-specific immune function of C. auratus, the concentrations of CVP in six groups were respectively 0g/kg (group C_0), 0.25g/kg (group C_(0.25)), 0.5g/kg (group C_(0.5)), 1. 0g/kg (group C_(1.0)), 2.0g/kg (group C_(2.0)) and 4.0g/kg (group C_(4.0)). During the experiment, fishes of different groups were fed with appropriate feed separately and the phagocytic activity of leukocytes, lysozyme activity, Superoxide dismutase (SOD) activity and the content of complement C3, C4 in serum of C. auratus were tested at 0 day, 7~(th) day, 14~(th) day, 21~(st) day, 28~(th) day, 35~(th) day, 42~(th) day and 56~(th) day. The results showed that the addition of 0.25g/kg CVP in diet had no siginificant effect on the fish of phagocytic activity of leukocytes, lysozyme activity, SOD activity, the content of complement C3, C4 in serum of C. auratus (P>0.05). However, the non-specific immune function was markedly enhanced by dietary 0.5g/kg and 1.0g/kg CVP, especially, the effects of 1.0g/kg CVP were best during 14-21 days (P<0.05). When the addition was 2.0g/kg and 4.0/kg, these indexes were much lower than that in the control group at the anaphase of the experiment. And the results indicated that the non-specific immune function of C. auratus was enhanced by dietary 0.5g/kg to 1 .0g/kg CVP.
     2. In the test to study the effects of CVP on the ability of immune response of C. auratus, the influences were determined by the phagocytic activity of leukocytes, lysozyme activity in serum, the content of serum complement C3, C4, the red blood cell C_(3b) receptors rosette forming rate (RBC-C_(3b)RR), the red blood cell immunocomplex rosette forming rate (RBC-ICR), agglutinating antibody titer in the serum and relative percent survival (RPS) by challenging with Aeromonas hydrophila. Fishes were divided into 8 groups, and fishes in group C_0, group C_(0.5), group C_(1.0) and group C_(2.0) were injected with physiological saline and in group I_0, group I_(0.5), group I_(1.0) and group I_(2.0) they were all inoculated with formalin killed A. hydrophila The concentrations of CVP in group C_(0.5) and group I_(0.5) was 0.5g/kg, which in group C_(1.0) and groupI_(1.0) was 1.0g/kg, which in group C_(2.0) and groupI_(2.0) was 2.0g/kg, and the feed of group C_0 and group I_0 didn't contain CVP. The immune indexes were tested on the 0 day, 7~(th) day, 14~(th) day, 21~(st) day, 28~(th) day, and 35~(th) day of the experiment and the RPS was also recorded after challeng with A. hydrophila. The results showed that:
     (1) The phagocytic activity of leukocytes, lysozyme activity and the content of serum complement C3, C4 in serum of the immunized C. auratus were markedly enhanced by dietary 0.5g/kg and 1.0g/kg CVP (P<0.05). Howere, these indexes were restrained by dietary 2.0g/kg CVP at the anaphase of the experiment.
     (2) CVP could improve the phagocytic activity of leukocytes, lysozyme activity and the content of serum complement C3, C4 in serum of non-immunized C. auratus, and the trend is the same as the effects of CVP on immunized C. auratus. But these indexes of non-immunized C. auratus is lower than that were immunized.
     (3) RBC-C_(3b)RR of C.auratus was markedly improved and RBC-ICR was markedly debased by dietary 0.5g/kg and 1.0g/kg CVP at 21~(st) day and 28~(th) day. RBC-C_(3b)RR of C. auratus was debased and RBC-ICR was improved by dietary 2.0g/kg CVP, but there were no significant differences in RBC-C_(3b)RR and RBC-ICR among control group and other testing group (P>0.05).
     (4) CVP could improve agglutinating antibody titer of C. auratus. The agglutinating antibody titer of immunized C. auratus was highest by dietary 1.0g/kg CVP at 21~(th) day, and the highest agglutinating antibody titer was 597.3
     (5) CVP could improve the survival rate of C. auratus after challenged with A. hydrophila. Meantime, the survival rate and RPS of immunized C. auratus was highest by dietary 1 .0g/kg CVP, and they was respectively 85%, 57.14.
     3. In order to study the effects of CVP on the physiological and biochemical characteristic in blood of C. auratus, the concentrations of CVP in six groups were respectively 0g/kg (group C_0), 0.25g/kg (group C_(0.25)), 0.5g/kg (group C_(0.5)), 1.0g/kg (group C_(1.0)), 2.0g/kg (group C_(2.0)) and 4.0g/kg (group C_(4.0)). Some physiological parameters such as the number of red blood cell, he number of white blood cell, the content of hemoglobin, sedimentation rate of red blood cell and some biochemical parameters such as the concent of Glucose, Cholesterol, Triglycerides, Total protein, Albumin, Urea and the activity of Glutamate-oxaloacetate transaminase (GOT), the activity of Glutamate-pyruvate transaminase (GPT) and the activity of Alkaline phosphatase(ALP) in the serum were assayed at 0 day, 14~(th) day, 28~(th) day, 42~(th) day and 56~(th) day. The results showed that: When the concentrations of CVP was 0.25g/kg, there were no significant differences in the physiological parameters and biochemical parameters of C. auratus, and it had less effects on physiological function of C. auratus. 0.5g/kg~1.0g/kg CVP of dietary could markedly elevated the number of red blood cell, white blood cell, the content of hemoglobin and reduced the sedimentation rate of red blood for 14 days or 28 days. When the experiment continued for more than 42 days or 56 days, the concent of Glucose, Urea, Cholesterol, Triglycerides and the activity of GOT and GPT in the serum declined, but the concent of Total protein, Albumin and the activity of ALP in the serum increased. It indicated that 0.5g/kg-1.0g/kg CVP could improve the physiological function and metabolism intensity of C. auratus. However, when the fishes were fed with 2.0g/kg-4.0g/kg CVP for long time, the number of red blood cell, white blood cell, the content of hemoglobin, the concent of Total protein, Albumin and the activity of ALP in the serum of C. auratus declined, the sedimentation rate of red blood, the concent of Glucose, Urea, Cholesterol, Triglycerides and the activity of GOT and GPT in the serum increased, indicating weakened oxygen transportation, absorption and excretion.
引文
1. 昌鸣先,陈孝煊,吴志新,胡先勤.虫草多糖对日本沼虾免疫功能的影响.华中农业大学 学报,2001,20(3):275-278
    
    2. 常青,梁萌青,王家林,孙静.壳聚糖对花鲈生长和非特异性免疫力的影响.海洋水产研 究,2006,27(5):17-22
    
    3. 陈昌福,姚娟,吴凡,李兆文,熊传喜.免疫多糖(酵母细胞壁)对受免异育银鲫免疫应 答的调节作用.淡水渔业,2004,(4):55-57
    
    4. 陈超然,陈萱,陈昌福,姚娟,梁运祥.酵母β-葡聚糖对受免异育银鲫免疫应答的增强作 用.华中农业大学学报.2003,22(4):380-384
    
    5. 陈红霞.真菌多糖的活性研究进展.生物技术通讯,2005,16(4):460-462
    
    6. 陈书明,杨世恩,王勤,徐建.灵芝含氮多糖对小白鼠细胞免疫功能的影响.中国生化药 物杂志,1997,18(1):38-40
    
    7. 陈云波,周洪琪,华雪铭,黄旭雄,蔡生力.饲料中添加β-葡聚糖对南美白对虾的生长、 存活及饲料系数的影响.淡水渔业,2002,32(5):55-56
    
    8. 邓桦,杨鸿.亚硒酸钠饮水对新城疫免疫雏鸡体液及红细胞免疫功能的影响.中国兽医科 技,1999,29(7):21-22
    
    9. 樊海平,余培建,曾占壮,钟全福,翁祖桐,林煜.吡喹酮和克螨特对欧洲鳗鲡血液指标 的影响.水利渔业,2005,25(1):15-17
    
    10.方静芬.云芝胞内多糖的药理和毒理试验.抗生素,1982,7(3):178
    
    11.方允中,李文杰.自由基与酶.北京:科学出版社,1994:67-69
    
    12.付立霞,蔡完其,刘至治.中华鳖温和气单胞菌病对其免疫功能的影响.上海水产大学学 报,2003,12(3):38-42
    
    13.龚敏,朱勤.冬虫夏草多糖的分子结构与免疫活性.生物化学杂志,1990,6(6):486-491
    
    14.龚全.云芝多糖对奥尼罗非鱼生长及免疫机能的影响.[硕士学位论文].武汉:华中农业 大学,2007
    
    15.龚全,许国焕,付天玺,吴月嫦,王小玉,朱毅菲.云芝多糖对奥尼罗非鱼生长、血清溶 菌酶活性和补体活性的影响.淡水渔业, 2008,38(1):16-19
    
    16.郭峰.红细胞天然免疫与获得性免疫.自然杂志,2004,26(4):194-199
    
    17.郭峰,钱宝华,张乐之.现代红细胞免疫学.上海:第二军医大学出版社,2002,58-75
    
    18.胡旺平,李雪梅,李立中,化长林.云芝多糖对应激大鼠学习记忆障碍的影响.中国中医 药科技,2003,10(1):32-33
    
    19.胡月娟.云芝糖肽抗溃疡作用.中成药,1996,18(2):34
    
    20.黄永春,陈政强,盛伦,陈昌生.四种饲料添加剂对中国龙虾生长的影响.台湾海峡,2002, 21 (1): 63-67
    
    21.黄志江,季晖,李萍,谢林,赵小辰.人工虫草多糖降血糖作用极其机制研究.中国药科 大学学报,2002,33(1):51-54
    
    22.金丽琴,吕建新,袁谦,金晶,陈秀芳.蝉拟青霉对大鼠免疫功能和血液生化指标的影响.温 州医学院学报,2001,31(6):344-346
    
    23.乐毅,陈缓,周政.云芝多糖对受O-LDL攻击的小鼠巨噬细胞的保护作用及其免疫调节作 用.第一军医大学学报,1994,4(1):12-14
    
    24.李丹,尚红,姜拥军,王亚男.香菇多糖体外抗HIV的免疫调节作用的实验研究.中国免疫 学杂志,2004,20(4):253-255
    
    25.李广宙,康白,郭宝强.香菇多糖增强肿瘤浸润淋巴细胞杀伤活性及TNF-α,INF-γ分泌.中 国现代应用药学杂志,2000,17(5):354-355
    
    26.李桂峰,康裕财,孙际佳,何建国.酵母多糖对赤眼鳟非特异性免疫机能的影响.中山大 学学报,2003,42(4):55-58
    
    27.李小定,荣建华,吴谋成.真菌多糖生物活性研究进展.食用菌学报,2002,4(9):50-58
    
    28.李咏梅.云芝胞内多糖调血脂和抗动脉粥样硬化的实验研究.[硕士学位论文].重庆:重 庆医科大学,2002
    
    29.李兆兰,李学信.裂褶菌胞内多糖的分离纯化鉴定及其性质.真菌学报,1994,13(4): 267-272
    
    30.刘树青,江晓路,牟海津,王慧谧,管华诗.免疫多糖对中国对虾血清溶菌酶、磷酸酶和 过氧化物酶的作用.海洋与湖沼,1999,30(3):278-283
    
    31.刘天龙,许剑琴.多糖现代研究及应用进展.中国兽医杂志,2004,3(40):24
    
    32.刘燕,林瑞超,李波.云芝多糖抗肿瘤作用研究进展.中成药,2001,23(10):755-757
    
    33.刘至治,蔡完其,季高华,邓唯唯,黄玲磷.几种免疫增强剂对中华鳖红细胞数量及免疫 功能的影响.上海水产大学学报,2006,15(1):1-6
    
    34.娄宁,周玫,陈缓.云芝多糖对小鼠心、肝、脾、肾和红细胞膜抗氧化能力的影响.中国 药理学通报,1996,12(5):425-426
    
    35.娄宁,周玫,陈缓.云芝多糖对受氧化型低密度脂蛋白攻击的小鼠腹腔巨噬细胞泡沫样变 性及衰减的影响.中国动脉硬化杂志,1995,3(4):287-290
    
    36.鲁进宇,王汉涛,田野苹,徐志工,谭建权,陈海生.云芝多糖对小鼠免疫功能的影响.中 国药学杂志,1995,30(1):10-13
    
    37.陆培新,王能进,张松平.AFB-1建立大鼠肝癌模型以及云芝多糖对肝癌发生阻断作用的 研究.肿瘤防治研究,1992,19(4):217-218
    
    38.罗莉,李英文,林仕梅,牟达莉.半胱胺对草鱼酮体代谢、转氨酶和碱性磷酸酶活性的影 响.饲料广角,2003,16:33-35
    
    39.罗璋,姚鹃,陈昌福,谭斌,汪成竹,王绍辉.酵母免疫多糖对受免斑点叉尾鮰免疫应答 的增强作用.淡水渔业,2007,37(3):23-33
    
    40.牟海津,江晓路,刘树青,管华诗.免疫多糖对栉孔扇贝酸性磷酸酶、碱性磷酸酶和超氧 化物歧化酶活性的影响.青岛海洋大学学报,1999,29(3):463-468
    
    41.莫永炎,陈援,周玫,姜勇.云芝多糖对脑、肝组织的抗氧化作用的研究.中国药理学通 报,2001,17(6):628-631
    
    42.聂国兴,明红,郑俊林,宋东蓥.木聚糖酶对尼罗罗非鱼血液生理生化指标的影响.大连 水产学院学报,2007,22(5):361-365
    
    43.牛晓辉,纪凤兰,张伟,徐惠波,孙晓波,李玉.云芝多糖对小鼠细胞因子的影响.中国 免疫学杂志,2006,20:1124-1126
    
    44.庞战军,陈缓,周玫.云芝多糖对小鼠腹腔巨噬细胞锰超氧化物歧化酶基因表达的调控.中 国动脉硬化杂志,1999,7(2):106-109
    
    45.钱云霞,陈惠群,孙江飞.饥饿对养殖鲈鱼血液生理生化指标的影响.中国水产科学,2002, 9(2):133-137
    
    46.单友亮,庄志锉,李博华.云芝多糖研究进展.中草药,1998,29(5):349-351
    
    47.邵伟.云芝子实体多糖对肝损伤修复的药理作用.医药工业,1983,4(8):24.
    
    48.沈文英,阳会军,柯慧芬,戚兰.β-葡聚糖对凡纳滨对虾免疫相关酶活性的影响.水产科 学,2007,26(7):381-383
    
    49.宋武,蔡海江.老山云芝多糖P对巨噬细胞代谢乙酰低密度脂蛋白的影响.中国药理学通 报,1988,4(4):216
    
    50.孙金艳,刘大森,潘玉武,张鹏.硼对绵羊血液生化的影响.东北农业大学学报,2004, 35(2):154-58
    
    51.谭北平,周歧存,郑石轩,刘立鹤.β-1,3/1,6-葡聚糖制剂对凡纳对虾生长及免疫力的影响.高 技术通讯,2004,5:73-77
    
    52.谭建权,魏文树,陈海生.彩云多糖药理研究进展.中成药,1999,21(5):259-260
    
    53.田庚元,冯宇橙,林额.植物多糖的研究进展.中国中药杂志,1995,20(7):441
    
    54.佟书娟,王宁萍,王大军,张艳丽,周娅.枸杞多糖对小鼠红细胞免疫功能的影响.宁夏 医学杂志,2000,22(5):262-263
    
    55.王高学,白冰,崔婧,李西汉.灰树花多糖对鲫鱼免疫功能的影响.水产科学,2006,25 (1):9-12
    
    56.王瑾雯,陈瑗,周玫,莫永炎,张宝.云芝多糖对巨噬细胞氧化LDL的抑制与iNOS基冈 表达.第一军医大学学报,1999,19(4):292-295
    
    57.王雷,李光友,毛远兴.中国对虾血淋巴细胞中抗菌、溶菌活力与酚氧化酶活力的测定及 其特殊性研究.海洋与湖沼,1995,26(2):179-185
    
    58.汪玲玲,钟士清,方祥,王加龙.虫草多糖研究综述.微生物学杂志,2003,23(1):43-45
    
    59.王振河,霍云凤.裂褶菌及裂褶菌多糖研究进展.微生物学杂志,2006,26(1):73-76
    
    60.王正丽,麦康森,刘付志国,艾庆辉,徐玮,马洪明,张文兵,谭北平.饲料中维生素C??和β-葡聚糖对牙鲆免疫力和抗病力的影响.高科技通讯,2006,16(7): 757-762
    
    61.尾崎久雄.鱼类血液与循环生理.上海:科学技术出版社,1982
    
    62.魏文树,谭建权.云芝多糖对活性氧清除机制的增强作用.中国药学杂志,1997,32(4): 199-201
    
    63.巫冠中,杭秉茜,陆伟.云芝多糖的抗伤害作用.中国药科大学学报, 1991,22(5):301
    
    64.夏尔宁,陈琼华.银耳子实体多糖的分离、分析及生物活性.真菌学报,1988,7(7):166-174
    
    65.肖明松,鲍方印,崔峰,王松,桑宏庆,康健.糖萜素对中华鳖的生长性能及其血清生化 指标的影响.水利渔业,2006,26(6):104-113
    
    66.肖明松,洪玉中,葛威.果寡糖与糖萜素对中华鳖血清生化指标的影响 粮食与饲料工业, 2004,6:35-37
    
    67.肖志猛,姚娟,汪成竹,李兆文,陈昌福.免疫多糖(酵母细胞壁)对黄鳝免疫保护力的 增强作用.长江大学学报(自然科学版),2006,3(2):155-158
    
    68.许国焕,吴月嫦,陶家发.两种多聚糖对彭泽鲫生长影响及免疫促进作用的初步研究.水 利渔业,2002,22(4):49-51.
    
    69.徐仁薇.猪苓多糖与IL-2协同诱导PBMC杀伤肿瘤细胞活性的实驻研究 中国免疫学杂志, 1998,14(2):109-111
    
    70.杨福刚,周洪琪,黄旭雄.不同β-葡聚糖对凡纳滨对虾稚虾生长及非特异 疫功能的影响.上 海水产大学学报,2005,14(3):263-269
    
    71.杨先乐,左文功,陈远新.草鱼出血病细胞培养灭活疫苗的研究—疫苗株 R-854的保藏.淡 水渔业,1990,4:3-5
    
    72.姚思宇,赵鹏,刘荣珍,李凤文,李彬,何为涛,梁坚,王彦武.虫草(?)糖降血脂作用的 动物试验研究.中国热带医学,2004,4(2):197-198
    
    73.翟伟宇.茯苓多糖的药效学研究.齐齐哈尔医学院学报,2005,25(8):935-937
    
    74.张洁,刘景田,党小军.酵母菌活性物质及多糖对红细胞免疫粘附能力的影响.西安医科 大学学报,2000,21(1):18-19
    
    75.张红梅.甘露寡糖对鲤鱼血液生化指标的影响.饲料研究,2006,(1): 9-41
    
    76.张明霞,孙冶,刘兵.云芝多糖的药理研究概况.吉林中医药,1994,(?)44-45
    
    77.张秋胜,陈昌福.异育银鲫对嗜水气单胞菌灭活菌苗的免疫应答.华中农 大学学报,2001, 20(3):271-274
    
    78.张石蕊,易学武,罗先志,魏文贵,李湘.富钾矿物添加剂对猪生产性 及相关生化指标 影响的研究.饲料广角,2005,7:44-47
    
    79.张晓云,杨春清.灵芝的化学成分和药理作用.国外医药(植物药分册)2006,21(4): 152-155
    
    80.张秀娟,季宇彬.真菌多糖的免疫药理作用的研究.哈尔滨商业大学学报,2002,8(1): 63
    
    81.赵景颜.云芝多糖对乙型肝炎血清标记物检测阳性者的治疗观察.辽宁中医杂志,1992, 19(2):26-27
    
    82.郑虹,叶秋焰.香菇多糖的药理及临床应用研究进展.海峡药学,2006,18(4):50-154
    
    83.周海华,马海乐.云芝多糖的体外抗氧化活性研究.食品研究与开发,2008,29(3):44-48
    
    84.朱越雄,魏育红,贡成良.罗氏沼虾两种抗氧化酶活性与云芝多糖的影响.内陆水产,2000, 7: 6-7
    
    85. Adachi Y, Ohno N, Ohsawa M, Yadomae T. Change of biological activities of (1-3)- β-D-glucans from Gnfola frondosa upon molecular weight reduction by heat trealraent. Chemical Pharmaceutical Bulletin, 1990, 38(2): 477-481
    
    86. Alexander J B, Ingram G A. Noncellular nonspecific defence mechanisms of fish. Annual Review of Fish Diseases, 1992,2: 249-280
    
    87. Anderson D P, Siwicki A K. Duration of protection against Aeromonas salmonicida in brook trout immunostimulated with glucan or chitosan by injection or immersion. The Progressive Fish Culturist, 1994, 56: 258-261
    
    88. Arosa F A, Pereira C F, Fonseca A M. Red blood cells as modulators of T cell growth and survival. Current Pharmaceutical Design, 2004, 10(2): 191-201
    
    89. Bagni M, Romano N, Finoia M G, Abelli L, Scapigliati G, Tiscar P G, Sarti M, Marino G Shortand long-term effects of dietary yeast β-glucan (Macrogard) and alginic acid (Ergosan) preparation on immune response in sea bass (Dicentarchus labrax). Fish and Shellfish Immunology, 2005, 18: 311-325
    
    90. Baulny M O D, Quentel C, Fournier V, Lamour F, Gouvello R L. Effect of longterm oral administration of p-glucan as an immunostimulant or adjuvant on nonspecific parameters of the immune response of turbot Scophthalmus maximus. Diseases of Aquatic Organisms, 1996, 26: 139-147
    
    91. Bilodeau A L, Waldbieser G C. Activation of TLR3 and TLR5 in channel catfish exposed to virulent Edwardsiella ictaluri. Developmental and Comparative Immunology, 2005, 29: 713-721
    
    92. Brattgjerd S, Evensen O, Lauve A. Effect of injected yeast glucan on the activity of macrophages in Atlantic salmon, Salmo salar L., as evaluated by in vitro hydrogen peroxide production and phagocytic capacity. Immunolgy, 1994, 83: 288-294
    
    93. Bricknell I, Dalmo R A. The use of immunostimulants in fish larval aquaculture. Fish and Shellfish Iimmunology, 2005, 19: 457-472
    
    94. Chang C F, Su M S, Chen H Y, Liu I C. Dietary β-1, 3-glucan effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus. Fish and Shellfish Immunology, 2003, 15: 297-310
    
    95. Chen D, Ainsworth A J. Glucan adiminstration potentiates immune defense mechanisms of??channel catfish, Ictalurus puncatantus Rafinesque. Journal of Fish Diseases, 1992,15: 295-304
    
    96. Couso N, Castro R, Magarinos B, Obach A, Lamas J. Effect of oral administration of glucans on the resistance of gilthead seabream to pasteurellosis. Aquaculture, 2003,219: 99-109
    
    97. Cuesta A, Ortuno J, Rodrignez A, Esteban M A, Mesegner J. Changes in some innate defense parameters of seabream (Sparus aurata L.) induced by retinol acetate. Fish and Shellfish Immunology, 2002, 13: 279-291
    
    98. Dalmo R A, Ingebrigtsen K, Bogwald J. Non-specific defence mechanism in fish, with particular reference to the reticuloendothelial system. Journal of Fish Diseases, 1997,20: 241-243
    
    99. Dalmo R A, Seljelid R. The immunomodulatory effect of LPS, lamiaran and sulphated laminaran [β(1,3)-D-glucan] on Atlantic salmon, Salmo salar L., macrophages in vitro. Journal of Fish Diseases, 1995,18: 175-185
    
    100. Dalmo R A, Bogwald J, Ingebrigtsen K, Seljelid R. The immunomodulatory effect of laminaran [β(1,3)-D-glucan] on Atlantic salmon, Salmo salar L., anterior kidney leucocytes after intraperitoneal, peroral and peranal administration. Journal of Fish Diseases, 1996, 19(6): 449-457
    
    101. Ellis A E. Immunity to bacteria in fish. Fish and Shellfish Immunology, 1999,9: 291-308
    
    102. Engstad R E, Robertsen B, Frivold E. Yeast glucan induces increase in activity of lysozyme and complement-mediated haemolytic activity in Atlantic salmon blood. Fish and Shellfish Immunology, 1992, 2: 287-297
    
    103. Esteban M A, Cuesta A, Ortuno J, Meseguer J. Immunomodulatory effects of dietary intake of chitin on gilthead seabream (Sparus aurata L.) innate immune system. Fish and Shellfish Immunology, 2001,11: 303-315
    
    104. Fearon D T. Identification of the membrane glycoprotein that is the C_(3b) receptor of the human erythrocyte, polymorphonuclear leukocyte, B lymphocyte, and monocyte. Journal of Experimental Medicine, 1980, 152 (1): 20-30
    
    105. Feng Guo, Hai-Bin Wang, Yu Xu, Yun Lian, Bao-Hua Qian, Mei-Xian Hua. Permonitory value of blood Gorpuscle innate immune reaction activity in cancer patients. Chinese Journal of Clinical Rehabilitation, 2004, 8(26): 5712-5713
    
    106. Figueras A, Santarem M M, Novoa B.Influence of the sequence of administration of β-glucans and a Vibrio damsela vaccine on the immune response of turbot (Scophthalmus maximus L.). Veterinary Immunology and Immunopathology, 1998, 64: 59-68
    
    107. Hashimoto T, Ohno N, Yadomae T. Subgrouping immunomodulating β-glucans by monitoring IFN-γ and NO syntheses. Drug Development Research, 1997,42 (1): 35-40
    
    108. Hikno H, Ishiyama M, Suzuki Y. Mechanisms of hypoglycemic activity of gandodern B: a glycan of ganoderma lucdum fruit bodies. Planta Medica, 1989,55 (2): 423-428
    
    109. Hirono I, Takami M, Miyata M, Miyazaki T, Han H J, Takano T, Endo M, Aoki T. Characterisation of gene structure and expression of two toll-like receptors from Japanese flounder, Paralichtys olivaceus. Immunogenetics, 2004, 56: 38-46
    
    110. Itami T, Takahashi Y, Tsuchihira E, Igusa H. Enhancement of disease resistance of kuruma prawn Penaens japonicus and increase in phagocytic activity of prawn hemocytes after oral administration of β-1,3-glucan (Schizophyllan). Third Asian Fisheries Forum. Asian Fisheries Society, Manila, Philippines, 1996: 375
    
    111. Jault C, Pichon L, Chluba J. Toll-like receptor gene family and TIR-domain adapters in Danio rerio. Molecular immunology, 2004,40: 759-771
    
    112. Jeney G, Galeotti M, Volpatti D, Jeney Z, Volpatti D. Prevention of stress in rainbow trout (Oncorhynchus mykiss) fed diets containing different doses of glucan. Aquaculture, 1997, 154: 1-15
    
    113. Johansson M W, So derh oll K. A cell adhension factor from crayfish haemocytes has degraulating Activity towards crayfish granular cells. Insect Biochemistry, 1989, 19: 183-190
    
    114. Kawakami H, Shinohara N, Sakai M. The non-specefic immunostimulation and adjuvant effects of Vibrio anguillarum bacterin, M-glucan, chitin and Freund's complete adjuvant against Pasteurella piscicida infection in yellowtail. Fish Pathology, 1998 , 33 (3): 283-292
    
    115. Kiho T, Hui J, Yamane A, Ukai S. Polysaccharides in fungi. X X XII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis. Biological and Pharmceutical Buletinl, 1993, 16(12): 1291-1293
    
    116. Kiho T, Yamane A, Hui J, Usui S, Ukai S. Polysaccharides in fungi. X X X VI. Hypoglycemic activity of polysaccharide (CS-F30) form the cultural mycelium of Cordyceps sinensis and its effect on glucose metabolism in mouse liver. Biological and Pharmceutical Buletinl, 1996, 19(2): 294-296
    
    117. Kim Y S, Eo S K, Oh K W, Lee C K, Han S S. Antiherpetic activities of acidic protein bound polysaccharide isolated from Ganoderma lucidum alone and in combinations with interferons. Journal of Ethnopharmacology, 2000, 72 (3): 451-458
    
    118. Kumari J, Sahoo P K. Nonspecific immune response of healthy and immunocompromised Asian catfish (Clarias batrachus) to several immunostimulants. Aquaculture, 2006, 255: 133-141
    
    119. Kyriya K, Nakamurak K, Nomoto K. Mimicking of superoxide dismutase activity by protein-bound Polysaccharide of Coriolus Versicolor QUEL with SOD mimicking activity. Cancer Biother, 1994, 9(1): 55
    
    120. Lapatra S E, Lauda K A, Jones G R, Shewmaker W S, Bayne C J. Resistance to IHN virus infection in rainbow trout is increased by glucan while subsequent production of serum neutralizing activity is decreased. Fish and shellfish Immunology, 1998, 8: 435-446
    
    121. Matsuo K, Miyazano I. The influence of long-term administration of peptidoglucan on disease resistance and growth of juvenile rainbow trout. Nippon Suisan Gakkaishi, 1993,59: 1377-1379
    
    122. Mayell M. Maitake extracts and their therapeutic potential. Alternative Medicine Review, 2001, 6(1): 48-60
    
    123. Matsuyama H, Mangindaan R E P, Yano T. Protective effect of schizophyllan and scleroglucan against Streptococcus sp. infection in yellowtail (Seriola quinqueradiata). Aquaculture, 1992, 101: 197-203
    
    124. Michel C B, Faivte B. Occurrence and significance of agglutinating antibodies in experimental forunculosis of rainbow trout, Salmo gairdneri. Journal of Fish Diseases, 1982, 5: 429-432
    
    125. Misra C K, Das B K, Mukherjee S C, Pattnaik P. Effect of multiple injection of β-glucan on nonspecific immune response and disease resistance in Labeo rohita fingerlings. Fish and Shellfish Immunology, 2006,20: 305-319
    
    126. Ortuno J, Cuesta A, Rodriguze A, Angeles M, Meseguer J. Oral administration of yeast, Saccharomyces cerevisiae, enhances the cellular innate immune response of gilthead seabream (Sparus aurata L.). Veterinary Immunology and Immunopathology, 2002, 85: 41-50
    
    127. Palic D, Andreasen C B, Herolt D M, Menzel B W, Roth J A. Immunomodulatory effects of β-glucan on neutrophil function in fathead minnows (Pimephales promelas Rafinesque, 1820). Developmental and Comparative Immunology, 2006, 30: 817-830
    
    128. Park K. H, Jeong H D. Enhanced resistance against Edwardsiella tarda infection in tilapia (Oreochromis nioticus) by administration of protein-bound polysaccharide. Aquaculture, 1996, 143:135-143
    
    129. Roberts M, Daviees S J, Pulsford A L. The influence ascorbic acid (Vitamin C) on nonspecific immunity in the turbot (Scophthalmus maximus L.). Fish and Shellfish Immumology, 1995, 5: 27-38
    
    130. Robertsen B, Rorstad G, Engstad R, Raa J. Enhancement of non-specific disease resistance in Atlantic salmon, Salmon salar L., by a glucan from Saccharomyces cerevisiae cell wall. Journal of Fish Diseases, 1990, 13: 391-400
    
    131. Sahoo P K, Mukherjee S C. The effect of dietary immunomodulation upon Edwardsiella tarda vaccination in health and immunocomprised Indian major carp (Labeo rohita). Fish and Shellfish Immunology, 2002, 12(1): 1-16
    
    132. Samuel M, Lam T J, Sin Y M. Effect of laminaran [β(1,3)-D-glucan ] on the protective immunity of blue gourami, Trichogaster trichopterus against Aeromonas salmonicida. Fish and Shellfish Immunology, 1996 , 6 (4): 443-454
    
    133. Sakai M. Current research status offish immunostimulants. Aquaculture, 1999, (172): 63-92
    
    134. Sasaki T, Tankasuka N, Chijutra G. Antilumor, or activity of degraded products of lentinan: its??correlation with molccular weight Gann. Journal of Ethnopharmacology, 1976, 67(2): 191-195
    
    135. Scholz U, Garcia Diaz G, Ricque D, Cruz Suarez L E, Vargas Albores F, Latchford J. Enhancement of vibrosis resistance in juvenile Penaeus vannmei by supplementation of diets with different yeast products. Aquaculture, 1999, 176: 271-283
    
    136. Selvaraj V, Sampath K, Sekar V. Administration of yeast glucan enhances survival and some non-specific and specific immune parameters in carp (Cyprinus carpio) infected with Aeromonas hydrophila. Fish and Shellfish Immunology, 2005, 19: 293-306
    
    137. Siegel I, LiuT L, Gieicher N. Thered-cellimmunesystem. Lancet ,1981: 2(8246): 556
    
    138. Siwicki A K. Immunomodulating activity of levamisole in spawner carp, Cyprinus carpio L.. Journal of Fish Biology, 1989, 13: 87-91
    
    139. Solem S T, Jorgensen J B, Robertsen B. Stimulation of respiratory burst and phagocytic activity in Atlantic salmon (Salmo salar L.) macrophages by lipopolysaccaride. Fish and Shellfish Immunology, 1995, 5: 475-491.
    
    140. Song Y L, Hsieh Y T. Immunostirnulation of tiger shrimp (Paneaus monodon) hemocytes for generation of microbicidal substance analysis of reactive oxygen species. Developmental and Comparative Immunology, 1994, 18: 201-209
    
    141. Song Y L, Liu J J, Chan L C, Sung H H. Glucan-induced disease resistance in tiger shrimp (Penaeus monodon). Developments in Biological Standardization, 1997,90: 413-421
    
    142. Stafford J L, Ellestad K K, Magor K E, Belosevic M, Magor B G A toll-like receptor (TLR) gene that is up-regulated in activated goldfish macrophages. Developmental and Comparative Immunology, 2003,27: 685-698
    
    143. Sung H H, Koum G H, Song Y L. Viborsis resistance induced by glucan treantment in tiger shrimp (Paneaus monodon). Fish Pathology, 1994,29: 11-17
    
    144. Thomopson K D, Cachos A, Inglis V. Immunomdulating effects of glucans and oxyteracycline in rainbow trout, Oncorhynchus mykiss, on serum lysozyme and protection. Diseases in Asian Aquaculture, 1995, 11:433-439
    
    145. Unestam T, Soderhall K. Soluble fragments from fungal cell walls elicit defense reactions in crayfish. Nature, 1977, 267:45-46
    
    146. Vargas-Albores F, Yepiz-Plascencia G Beta gulcan binding protein and its role in shrimp immune response. Aquaculture, 2000, 191: 13-21
    
    147. Verlhac V, Obach A, Gabaudan J, Schuep W, Hole R. Immunomodulation by dietary vitamin C and glucan in rainbow trout (Oncorhynchus mykiss). Fish and Shellfish Immunology, 1998, 8: 409-424
    
    148. Wang W S, Wang D H. Enhancement of the resistance of Tilapia and Grass carp to experimengal Aeromonas hydrophila and Edwardsiella tarda infection by several polysaccharides. Comparative??Immunology, Microbiology and Infectious Diseases, 1997,20: 261-270
    
    149. Wei W S, Tan J Q, Guo F. Effects of Coriolus versicolor polysaccharides on superoxide dismutase activities in mice. Zhongguo Yao Li Xue Bao, 1996, 17(2): 174-178
    
    150. Yano T, Matsuyama H, Mangindaan P E P. Polysaccharide-induced protection of carp, Cyprinus cario L., against bacterial infection. Journal of Fish Diseases, 1991,14: 577-582
    
    151.Yeung J H, Chiu L C, Ooi V E. Effect of polysaccharide peptide (PSP) on glutathione and protection against paracetamolinduced hepatotoxicity in the rat. Methods and Findings in Experimental and Clinical Pharmacology, 1996,16(10): 723-727
    
    152. Yoshida T, Kruger R, Inglis V. Augmentation of non-specific protection in African catfish, clarias gariepinus (Burchell), by the long-term oral administration of immunostimulants. Journal of Fish Diseases, 1995,18: 195-198
    
    153. Zhou J, Song X L, Huang J, Wang X H. Effects of dietary supplementation of A3α -peptidoglycan on innate immune responses and defense activity of Japanese flounder. Aquaculture, 2006,251: 172-181

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700