稀土掺杂纳米TiO_2的制备、性能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本项研究以超声波-溶胶-凝胶法制备了Y3+、La3+掺杂TiO2粉体与薄膜,探讨了胶凝过程的主要影响因素与动力学,获得了优化的制备工艺条件。应用XRD、SEM、TEM、EDAX、FT-IR、UV-vis等现代测试手段对样品的组成、结构与性能进行了表征。基于实验、测试并结合理论分析,对稀土掺杂的机理进行了探讨。结果表明:稀土掺杂纳米材料具有锐钛矿相结构,晶粒度在18nm以下,稀土离子主要以稀土氧化物(RE2O3)形式均匀分布在TiO2晶格中,稀土掺杂引起了TiO2光学吸收边的“红移”。以铀酰离子与甲基橙为对象,系统地探讨了稀土掺杂纳米材料的吸附性能与吸附机理,结果表明稀土掺杂纳米材料具有很强的吸附能力,吸附动力学符合Lagergren准二级反应模型,吸附等温式都符合Langmuir方程,为物理吸附与化学吸附共同作用的结果。稀土离子掺杂降低了TiO2晶格中空穴和电子重新复合的几率,稀土掺杂纳米材料对甲基橙的降解在紫外光与可见光下均表现出良好的光催化活性;光催化降解过程符合Langmuir-Hinshelwood拟一级动力学模型与Langmuir方程。稀土掺杂薄膜在紫外光与可见光下也具有良好的光生亲水性,是薄膜表面的污染物光催化降解与薄膜表面结构改变共同作用的结果。
Y3+ and La3+ doped TiO2 powders and films were prepared through ultrasonic-sol-gel method. The primary influence factor of gelling process was investigated and the optimum technological conditions were obtained. The composition, structure and performance of the obtained material were characterized by XRD、SEM、TEM、EDAX、FT-IR and UV-vis. The results showed that the crystalling phase of rare-earth ion doped nanomaterials had the similar structure of anatase, and the particle sizes of these materials were less than 18nm. Rare-earth ions were dispersed uniformly in the crystal lattice of TiO2 in the form of rare-earth oxide (RE2O3). In addition, rare-earth ion doping also resulted in the red shift of the optical absorption edge of TiO2. Based on the experiment and test results and the theoretical analysis, the mechanism of rare-earth ion doping was investigated detailedly. The adsorption performance and mechanism to UO22+ and methyl orange adsorbed by rare-earth ion doped nanomaterials were investigated systematically. The results indicated that Y3+ and La3+ doped TiO2 powders and films exhibited excellent adsorbability, and the adsorption dynamics was in a good accordance with the law of the pseudo-second-order model of Lagergren. The adsorption isotherm fitted the Langmuir equation well. The adsorption mechanism was confirmed to be the combined action of physisorption and chemisorption. Owing to rare-earth ion doping, the compounding probability of electron and cavity was decreased in the crystal lattice of TiO2. Rare-earth ion doped nanomaterials exhibited favorable photocatalysis activity for the degradation of methyl orange under ultraviolet and visible light. The process of photo-catalytic degradation was in line with the law of the pseudo-first-order model of Langmuir-Hinshelwood and Langmuir equation. Y3+ and La3+ doped TiO2 films also possessed favorable photo-induced hydrophilicity under ultraviolet and visible light, which mostly attributed to the coaction of photo-catalytic degradation and the change of film surface structure.
引文
1. Wilde G. Nanostructured Materials. Amsterdam:Elsevier Science Publishers,2009
    2. Koch C C. Nanocrystalline Materials. Amsterdam:Elsevier Science Publishers,2006
    3.纳米材料的结构及其性能http://emuch.net/html/200610/336099.html
    4.范崇政,肖建平,丁延伟.纳米二氧化钛的制备和光催化反应研究进展.科学通报,2001,46(4):265-271
    5. Bickley I B, Lees J S. A structural investigation of titanium dioxide photocatalysts. Journal of Solids and State Chemisty,1991,92:178-190
    6. Patil K C, Hegde M S, Rattan T, et al. Chemistry of Nanocrystalline Oxide Materials. Singapore:World Scientific Publishing Co. Pte. Ltd.,2008:179-188
    7. Keichi T. Effect of crystallinity of TiO2 on its photocatalytic action. Chemical physics Letters,1991,187(1-2): 73-76
    8.霍爱群,谭欣,丛培君,等.纳米TiO2-x光催化膜中的缺陷结构与性能关系初探.化学通报,1998,11:31-32
    9. Kumar K N, Keizer P K. Dcnsification of nanostrctured titania assisted by a phase transformation. Nature,1992, 358(2):48-51
    10.高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002:40-41
    11. Gratzel M.Heterogeneous Photochemical Electron Transfer. Baton Rouge:C RC Press,1998
    12. Zhang H, Banfield J F. Thermodynamic analysis of phase stability of nanocrystalline titania. Journal of Materials Chemistry,1998,8(9):2073-2076
    13. Zhang H, Banfield J F. Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates:Insights from TiO2. J. Phys. Chem. B,2000,104(15):3481-3487
    14. Matthews R W. Photooxidation of organic impurities in water using thin films of titanium dioxide. Journal of Physical Chemistry,1987,91 (12):3328-3333
    15. Giolli C, Borgioli F, Credi A, et al. Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system. Surface and Coatings Technology,2007,202:13-22
    16. Sun H F, Wang C Y, Pang S H, et al. Photocatalytic TiO2 films prepared by chemical vapor deposition at atmosphere pressure. Journal of Non-Crystalline Solids,2008,354:1440-1443
    17. Park H, Jie H S, Chae K H, et al. Improvement of photocatalytic behavior of chemical-vapor-synthesized TiO2 nanopowders by post-heat treatment. Current Applied Physics,2008,8:778-783
    18. Akhtar M K, Pratsinis S E. Dopants in Vapor-phase synthesis of titanium powers. Journal of material research, 1994,99(50):1241-1249
    19. Li C Z, Shi L Y, Xie D M, et al. Morphology and crystal structure of Al-doped TiO2 nanoparticles synthesized by vapor phase oxidation of titanium tetrachloride. Journal of Non-Crystalline Solids,2006,352:4128-4135
    20. Xia B, Huang H Z, Xie Y C. Heat treatment on TiO2 nanoparticles prepared by vapor-phase hydrolysis. Materials Science and Engineering B,1999,57:150-154
    21. Payakgul W, Mekasuwandumrong O, Pavarajarn V, et al. Effects of reaction medium on the synthesis of TiO2 nanocrystals by thermal decomposition of titanium (IV) n-butoxide. Ceramics International,2005,31:391-397
    22. Morooka S, Yasutakae T, Kobata A, et al. A mechanism for the production of ultrafine partices of TiO2 by a gas-phase reaction. International Chemical Engineering,1989,29(1):119-126
    23. Wang H, Liu P G, Cheng X S, et al. Effect of surfactants on synthesis of TiO2 nano-particles by homogeneous precipitation method. Powder Technology,2008,188:52-54
    24. Bae H S, Lee M K, Kim W W, et al. Dispersion properties of TiO2 nano-powder synthesized by homogeneous precipitation process at low temperatures. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2003,220:169-177
    25. Mori K, Maki K, Kawasaki S, et al. Hydrothermal synthesis of TiO2 photocatalysts in the presence of NH4F and their application for degradation of organic compounds. Chemical Engineering Science,2008,63: 5066-5070
    26. Zhao X, Liu M H, Zhu Y F. Fabrication of porous TiO2 film via hydrothermal method and its photocatalytic performances. Thin Solid Films,2007,515:7127-7134
    27. Pomoni K, Vomvas A, Trapalis C. Electrical conductivity and photoconductivity studies of TiO2 sol-gel thin films and the effect of N-doping. Journal of Non-Crystalline Solids,2008,354:4448-4457
    28. Mahshid S, Askari M, Ghamsari M. S, et al. Mixed-phase TiO2 nanoparticles preparation using sol-gel method. Journal of Alloys and Compounds,2009,478:586-589
    29. Lee M S, Park S S, Lee G D, et al. Synthesis of TiO2 particles by reverse microemulsion method using nonionic surfactants with different hydrophilic and hydrophobic group and their photocatalytic activity. Catalysis Today,2005,101:283-290
    30. Wang J S, Sun J Q, Bian X F. Preparation of oriented TiO2 nanobelts by microemulsion technique. Materials Science and Engineering:A,2004,379:7-10
    31. Mahshid S, Askari M, Ghamsari M S. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. Journal of Materials Processing Technology,2007,189:296-300
    32. Tong T Z, Zhang, J L, Tian B Z, et al. Preparation and characterization of anatase TiO2 microspheres with porous frameworks via controlled hydrolysis of titanium alkoxide followed by hydrothermal treatment. Materials Letters,2008,62:2970-2972
    33. Acik I O, Katerski A, Mere A, et al. Nanostructured solar cell by spray pyrolysis:Effect of titania barrier layer on the cell performance. Thin Solid Films,2009,517:2443-2447
    34. Chiarello G L, Selli E, Forni L. Photocatalytic hydrogen production over flame spray pyrolysis-synthesised TiO2 and Au/TiO2. Applied Catalysis B:Environmental,2008,84:332-339
    35. Dodd A, McKinley A, Tsuzuki T, et al. Optical and photocatalytic properties of nanocrystalline TiO2 synthesised by solid-state chemical reaction. Journal of Physics and Chemistry of Solids,2007,68:2341-2348
    36. Liu G G, Zhang X Z, Xu Y J, et al. The preparation of Zn2+-doped TiO2 nanoparticles by sol-gel and solid phase reaction methods respectively and their photocatalytic activities. Chemosphere,2005,59:1367-1371
    37. Lotnyk A, Senz S, Hesse D. Formation of BaTiO2 thin films from (110) TiO2 rutile single crystals and BaCO3 by solid state reactions. Solid State Ionics,2006,177:429-436
    38. Liu H X, Guo L L, Zou L, et al. Theoretical and experimental study on solid chemical reaction between BaCO3 and TiO2 in microwave field. Materials Science and Engineering B,2004,113:161-165
    39. Welham N J. Mechanical activation of the solid-state reaction between Al and TiO2. Materials Science and Engineering A,1998,255:81-89
    40.沈伟韧,赵文宽,贺飞,等.TiO2光谱化反应及其在废水处理中的应用.化学进展,1998,10:349-361
    41.段建田,魏世强,刘峰.半导体二氧化钛光催化氧化的研究进展.化学工业与工程技术,2008,29(5):30-35
    42. Anpo M, Shima T, Kodama S, et al. Photocatalytic hydrogenation of propyne with water on small-particle titania:size quantization effects and reaction intermediates. Journal of Physical Chemistry,1987,91: 4305-4310
    43. Shalil N B, Sugunan S. Photoinduced oxidation of benzhydrol over lanthana modified sol-gel titania. Journal of Sol-Gel Science and Technology,2007,42:101-105
    44. Yu J C, Lin J, Lo D, et al. Influence of Thermal Treatment on the Adsorption of Oxygen and Photocatalytic Activity of TiO2. Langmuir,2000,16(18),7304-7308
    45. Paola A D, Garcia-Lopez E, Marci G, et al. Surface characterisation of metal ions loaded TiO2 photocatalysts: structure-activity relationship. Applied Catalysis B:Environmental,2004,48:223-233
    46. Yamashita H, Harada M, Misaka J, et al. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts:Fe ion-implanted TiO2. Catalysis Today, 2003,84:191-196
    47. Wang Y Q, Cheng H M, Hao Y Z, et al. Photoelectrochemical properties of metal-ion-doped TiO2 nanocrystalline electrodes. Thin Solid Films,1999; 349:120-125
    48. Lee C W, Hong S B, Shin C H, et al. The photocatalytic effects of TiO2 based catalysts modified by transition metals for removal of pollutants in liquid phase. Studies in Surface Science and Catalysis,2006,159:469-472
    49. Blake D M, Webb J, Turchi C, et al. Kinetic and mechanistic overview of TiO2-photocatalyzed oxidation reactions in aqueous solution. Solar Energy Materials,1991,24:584-593
    50. Kim D H, Choi D K, Kim S J, et al. The effect of phase type on photocatalytic activity in transition metal doped TiO2 nanoparticles. Catalysis Communications,2008,9:654-657
    51. Woo S H, Kim W W, Kim S J, et al. Photocatalytic behaviors of transition metal ion doped TiO2 powder synthesized by mechanical alloying. Materials Science and Engineering:A,2007:449-451:1151-1154
    52. Wang Y Q, Cheng H M, Zhang L, et al. The preparation, characterization, photoelectrochemical and photocatalytic properties of lanthanide metal-ion-doped TiO2 nanoparticles. Journal of Molecular Catalysis A: Chemical,2000,151:205-216
    53. Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge-carrier recombination dynamics. Journal of Physical Chemistry,1994,98, 13669-13679
    54. Serpone N, Lawless D, Disdier J. Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids: Naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations. Langmuir,1994,10:643-652
    55. Suialu A, Aarik J, Mandar H. Spectroscopic study of nanocrystalline TiO2 thin films grown by atomic layer deposition. Thin solid films,1998,336:295-298
    56. Mardare D, Tasca M, Delibas M, et al. On the structural properties and optical transmittance of TiO2 r. f. sputtered thin films. Applied surface science,2000,156:200-206
    57. Rahman M M, Krishna K M, Soga T, et al. Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films. Journal of physics and chemistry of solids,1999,60:201-210
    58. Krishna K M. Optical properties of Pb doped TiO2 nanocrystalline thin films:A photoluminescence spectroscopic study. Applied surface science,1997,113:149-154
    59.吴树新,马智,秦永宁,等.掺杂纳米TiO2光催化性能的研究.物理化学学报,2004,20(2):138-140
    60. Wu G G, Chao C C, Kuo F T. Enhancement of the photo catalytic performance of TiO2 catalysts via transition metal modification. Catalysis Today,2004,97,103-112
    61. Li F B, Li X Z, Hou M F. Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-Ti02 suspension for odor control. Appllied Catalysis B:Environmental,2004,48:185-194
    62. Li F B, Li X Z, Hou M F, et al. Enhanced photocatalytic activity of Ce3+-TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control. Appllied Catalysis A:Genernal,2005,285:181-189
    63. Hou M F, Li F B, Li R F, et al. Mechanisms of enhancement of photo-catalytic properties and activity of Nd3+-Doped TiO2 for Methyl orange degradation. Journal of rare earths,2004,4(22):542-546
    64.向阳,程继健,杨阳,等.稀土掺杂对TiO2光催化性能的影响.华东理工大学学报,2000,26(3):287-289
    65.王朋,陈文新,刘应亮,等.稀土离子掺杂对TiO2结构和光催化性能的影响.暨南大学学报(自然科学版),2003,24(5):81-87
    66.陈俊涛,李新军,杨莹,等.稀土元素掺杂对TiO2薄膜光催化性能的影响.中国稀土学报,2003,2l(s1):61-71
    67. Xu A, Gae Y, Liu H Q. The Preparation, Characterization, and their Photocatalytie Activities of Rare-Earth-Doped TiO2 Nanopartieles. Journal of Catalysis,2002,207:151-157
    68. Zhang Y H, Zhang H X, Xu Y X, et al. Significant effect of lanthanide doping on the texture and properties of nanoerystalline mesoporous TiO2. Journal of Solid State Chemistry,2004,177:3490-3498
    69. Lin J, Yu J C. An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air. Journal of Photochemistry and Photobiology A:Chemistry,1998,116:63-67
    70. Ranjit K T, Willner I, Bossmann S H, et al. Lanthanide Oxide-Doped Titanium Dioxide Photocatalysts:Novel Photocatalysts for the Enhanced Degradation of p-Chlorophenoxyacetic Acid. Environmental Science & Technology,2001,35:1544-1549
    71. Yuan Z F, Zhang J L, Li B, et al. Effect of metal ion dopants on photochemical properties of anatase TiO2 films synthesized by a modified sol-gel method. Thin Solid Films,2007,515:7091-7095
    72. Nishikawa T, Nakajima T, Shinohara Y. An exploratory study on effect of the isomorphic replacement of Ti4+ ions by various metal ions on the light absorption character of TiO2. Journal of Molecular Structure:Theochem,2001,545:67-74
    73.徐顺,杨鹏飞,杜宝石,等.掺杂TiO2的光催化性能研究进展.化学研究与应用,2003,15(2):146-150
    74.刘畅,暴宁钟,杨祝红,等.过渡金属离子掺杂改性TiO2的光催化性能研究进展.催化学报,2001,22(2),215-218
    75. Yang Y Z, Chang C H, Idriss H. Photo-catalytic production of hydrogen form ethanol over M/TiO2 catalysts (M= Pd, Pt or Rh). Applied Catalysis B:Environmental,2006,67:217-222
    76. Jin Z L, Zhang X J, Lu G X, et al. Improved quantum yield for photocatalytic hydrogen generation under visible light irradiation over eosin sensitized TiO2-Investigation of different noble metal loading. Journal of Molecular Catalysis A:Chemical,2006,259:275-280
    77. Mizukoshi Y, Makise Y, Shuto T, et al. Immobilization of noble metal nanoparticles on the surface of TiO2 by the sonochemical method:Photocatalytic production of hydrogen from an aqueous solution of ethanol. Ultrasonics Sonochemistry,2007,14:387-392
    78. Hosseini M, Tidahy H L, Siffert S, et al. Effects of the treatment and the mesoporosity of mesostructured TiO2 impregnated with noble metal for VOCs oxidation. Studies in Surface Science and Catalysis,2008:174: 1323-1326
    79. Martra G. Lewis acid and base sites at the surface of microcrystalline TiO2 anatase:relationships between surface morphology and chemical behaviour. Applied Catalysis A:General,2000,200(2):275-285
    80. Serponel N, Texier I, Emeline A V, et al. Post-irradiation effect and reductive dechlorination of chlorophenols at oxygen-free TiO2/water interfaces in the presence of prominent hole scavengers. Journal of Photochemistry and Photobiology A:Chemistry,2000,136(3):145-147
    81. Wang J A, Cuan A, Salmones J, et al. Studies of sol-gel TiO2 and Pt/TiO2 catalysts for NO reduction by CO in an oxygen-rich condition. Applied Surface Science,2004,230:94-105
    82. Kim S C, Heo M C, Hahn S H, et al. Optical and photocatalytic properties of Pt-photodeposited sol-gel TiO2 thin films. Materials Letters,2005,59:2059-2063
    83. Huang M L, Xu C F, Wu Z B, et al. Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes and Pigments,2008:77:327-334
    84. Ishibai Y, Sato J, Nishikawa T, et al. Synthesis of visible-light active TiO2 photocatalyst with Pt-modification: Role of TiO2 substrate for high photocatalytic activity. Applied Catalysis B:Environmental,2008,79:117-121
    85. Sun L, Li J, Wang C L, et al. Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity. Journal of Hazardous Materials,2009, In Press
    86. Ren L L, Zeng Y P, Jiang D L. Preparation, characterization and photocatalytic activities of Ag-deposited porous TiO2 sheets. Catalysis Communications,2009:10:645-649
    87. Okumura M, Masuyama N, Konishi E, et al. CO Oxidation below Room Temperature over Ir/TiO2 Catalyst Prepared by Deposition Precipitation Method. Journal of Catalysis,2002,208:485-489
    88. Kumar P S S, Sivakumar R, Anandan S, et al. Photocatalytic degradation of Acid Red 88 using Au-TiO2 nanoparticles in aqueous solutions. Water Research,2008:42:4878-4884
    89. Overbury S H, Schwartz V, Mullins D R, et al. Evaluation of the Au size effect:CO oxidation catalyzed by Au/TiO2. Journal of Catalysis,2006,241:56-65
    90. Rodriguez-Gonzalez V, Zanella R. MTBE visible-light photocatalytic decomposition over Au/TiO2 and Au/TiO2-Al2O3 sol-gel prepared catalysts. Journal of Molecular Catalysis A:Chemical,2008,281:93-98.
    91.张金龙,安保正一.贵金属负载催化剂在丙炔光催化水解反应中的研究(Ⅲ).高等学校化学学报, 2004,25(4):733-736
    92. Schiaveuo M. Sol-gel chemistry of transition metal oxides. Electrochemical Acta,1993,38:1056-1062
    93. Liu J, Crittenden J C, Hand D W, et al. Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidation. Journal of Environmental Engineering,1996,4:456-462
    94. Tanaka T, Ito T, Takenaka S, et al. Photocatalytic oxidation of alkane at a steady rate over alkali-ion-modified vanadium oxide supported on silica. Catalysis Today,2000,61:109-115
    95. Testa J J, Grela M A, Litter M I. Experimental Evidence in Favor of an Initial One-Electron Transfer Process in the Heterogeneous Photocatalytic Reduction of Chromium (VI) over TiO2. Langmuir,2001,17:3515-3517
    96. Kang M G Han H E, Kim K J. Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO2. Journal of Photochemistry and Photobiology A:Chemistry,1999,125:119-125
    97. Vogel R, Hoyer P, Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as sensitizers for various nanoporous wide-band gap semiconductors. Journal of Physics and Chemistry,1994,98(12): 3183-3188
    98. Sukharev V, Kershaw R. Concerning the role of oxygen in photocatalytic decomposition of salicylic acid in water. Journal of Photochemistry and Photobiology:Chemical,1996,98(3):165-169
    99. Park N G Comparison of Dye-Sensitized Rutile-and Anatase-Based TiO2 Solar Cells. Journal of Physical Chemistry B,2000,104:8989
    100. Asahi R, Morikawa T, Ohwaki T, etal. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001,293:269-271
    101. Ihara T, Miyoshi M, Iriyama Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Applied Catalysis B:Environmental,2003,42:403-409
    102. Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. Journal of Physical Chemistry B,2003,107(23):5483-5486
    103. Sakatani Y, Koike H. JP 72 419A,2001
    104. Yin S, Zhang Q W, Saito F, et al. Preparation of visible light-activated titania photocatalyst by mechanochemical method. Chemistry Letters,2003,32(4):358-359
    105. Yin S, Yamaki H, Komatsu M, et al. Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine. Journal of Materials Chemistry,2003,13:2996-3001
    106. Gomez R, Lopez T Effect of sulfation on the photoactivity of TiO2 sol-gel derived catalysts. Journal of Molecular Catalysis A:Chemical,2003,193:217-226
    107. Khan S U M, Al-Shahry M, Ingler W B Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science,2002,297(5590):2243-2245
    108. Hattori A, Hiroaki T. High Photocatalytic Activity of F-Doped TiO2 Film on Glass. Journal of Sol-Gel Science and Technology,2001,22:47-52
    109. Yu J C, Yu J G,Ho W K, et al. Effects of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. Chemistry of Materials,2002,14(9):3808-3816
    110. Hoffmann M R, Martinb S T, Choi W, et al. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews,1995,95:69-96
    111. Chen X B, Mao S S. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications. Chemical Reviews,2007,107:2891-2959
    112. Pecchi Q Reyes P, Sanhueza P, et al. Photocatalytic degradation of pentachlorophenol on TiO2 sol-gel catalysts. Chemosphere,2001,43(2):141-147
    113. Tanaka K, Capule M F V, Hisanage T, et al. Effect of crystallinity of TiO2 on its photocatalytic action. Chemical Physics Letters,1991,187:73-76
    114.范崇政,肖建平,丁延伟.纳米TiO2的制备与光催化反应研究进展.科学通报,2001,46(4):265-273
    115. Bickley I B, Gonzalea-Carreno T, Lees J. A structural investigation of titanium dioxide photocatalysts. Journal of Solid State Chemistry,1991,92(1):178-190
    116.韩世同,付贤智.半导体光催化研究进展与展望.化学物理学报,2003,16(5):339-349
    117.曹茂盛,关长斌,徐甲强,等.纳米材料导论.哈尔滨:哈尔滨工业大学出版社,2001,6-13
    118.沈伟韧,赵文宽,贺飞,等.TiO2光催化反应及其在废水处理中的应用.化学进展,1998,10(4):349-361
    119.高伟,吴凤清,罗臻,等.TiO2晶型与光催化活性关系的研究.高等学校化学学报,2001,22(4):660-662
    120. Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces. Nature,1997,388:431-432
    121. Miyashita K, Kuroda S, Ubukata T, et al. Enhanced effect of vacuum-deposited SiO2 overlayer on photo-induced hydrophilicity of TiO2 film. Journal of Materials Science,2001,36:3877-3884
    122. Ohshima T, Thareja R K, Yamagata Y, et al. Laser-ablated plasma for deposition of ZnO thin films on various substrates. Science and Technology of Advanced Materials,2001,2:517-523
    123.余家国,赵修建,赵青南.光催化多孔TiO2薄膜的表面形貌对亲水性的影响.硅酸盐学报,2000,28(3):245-250
    124.沈杰,董昊,张永熙,等.溶胶-凝胶法制备二氧化钛薄膜的亲水性研究.真空科学与技术,2000,20(6):385-389
    125. Satoko H, Yasuaki K, Isao Y, et al. Development of hydrophilic outside mirrorcoated with titania photocatalyst. JSAE Review,2000,21:97-102
    126. Wang L Q, Baer D R, Engelhard M H. Creation of variable concentrations of defects on TiO2(110) using low-density electron beams. Surface Science,1994,320:295-306
    127. Sun R, Nakajima A, Fujishima A, et al. Photoinduced surface wettability conversion of ZnO and TiO2 thin films. Journal of Physical Chemistry B,2001,205:1984-1990
    128. Miyauchi M, Nakajima A, Hashimoto K, Watanabe T. A highly hydrophilic thin film under 1μW/cm2 UV illumination. Advanced Materials,2000,12(24):1923-1927
    129. Satoko H, Yasuaki K, Isao Y, et al. Development of hydrophilic outside mirrorcoated with titania photocatalyst. JSAE Review,2000,21:97-102
    130. Machida M, Norimoto K, Watanabe T, et al. The effect of SiO2 addition in super-hydrophilic property of TiO2 photocatalyst. Journal of Materials Science,1999,34:2569-2574
    131. Lian N, Chang X, Zhen H, et al. Application of dithizone-modified TiO2 nanoparticles in the preconcentration of trace chromium and lead from sample solution and determination by inductively coupled plasma atomic emission spectrometry. Microchimica Acta,2005,151(1-2):81-88
    132. Zheng H, Chang X, Lian N, et al. Sulfanilamide-modified nanometer-sized TiO2 microcolumn for the enrichment of trace Cr (Ⅲ) and Pb (Ⅱ). Annali di Chimica,2005,95(7-8):601-606
    133. Pu X, Hu B, Jian Z, et al. Speciation of dissolved iron (Ⅱ) and iron (Ⅲ) in enviromental water sampless by gallic acid-modified nanometer-sized alumina micro-column separation and ICP-MS determination. Analyst, 2005,130(8):1175-1181
    134.刘正华,周方钦,黄荣辉,等.纳米二氧化钛对痕量铅的吸附性能研究.分析试验室,2006,25(11):63-66
    135.施踏青.纳米二氧化钛材料对金属离子吸附行为的研究及其应用.武汉:华中师范大学出版社,2003
    136.梁沛,李春香,秦永超,等.纳米二氧化钛分离富集和ICP-AES测定水样中Cr(Ⅵ)/Cr(Ⅲ).分析科学学报,2000,16(4):300-302
    137.肖亚兵,钱沙华,黄淦泉,等.纳米二氧化钛对砷(Ⅲ)和砷(Ⅴ)吸附性能的研究.分析科学学报,2003,19(2):172-175
    138.杭义萍,秦永超,江祖成,等.ICP-AES研究纳米TiO2材料对Ga, In, Tl的吸附性能.光谱学与光谱分析,2005,25(7):1131-1134
    139.杭义萍,秦永超,江祖成,等.纳米TiO2材料分离富集、悬浮体进样氟化辅助ETV-ICP-AES直接分析痕量稀土元素.高等学校化学学报,2003,24(11):1980-1983
    140.施踏青,梁沛,李静,等.纳米二氧化钛分离富集ICP-AES测定镉、钻、锌的研究,光谱学与光谱分析,25(3):444-446
    141. Li S X, Deng N S,Zheng F Y, et al. Spectrophotometric determination of tungsten(VI) enricned by nanometer-rize titanium dioxide in water and sediment. Talanta,2003,60:1097-1104
    142. Liang P, Qin Y C, Hu B,et al. Nanometer-size titanium dioxide microcolumn on-line preconcentration of trace metals and their determination by inductively coupled plasma atomic emission spectromety in water. Analytica Chimica Acta,2001,440:207-213
    143. Jimmy C Y, Wu X J, Chen Z L. Separation and determination of Cr(III)by titanium dioxide-filled column and inductively coupled plasma mass spetrometry. Analytica Chimica Acta,2001,436:59-67
    144.刘艳,梁沛,郭丽,等.负载型纳米二氧化钛对重金属离子吸附性能的研究.化学学报,2005,63(4):312-316
    145.梁沛,刘蕊.负载型纳米二氧化钛分离富集ICP-AES测定痕量稀土元素.中国化学会第九届分析化学年会暨全国原子光谱学术会议,2006
    146. Gaya U I, Abdullah A H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide:A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2008,9(1):1-12
    147. Zhao J, Yang X D. Photocatalytic oxidation for indoor air purification:a literature review. Building and Environment,2003,38(5):645-654
    148. Mo J H, Zhang Y P, Xu Q J, et al. Photocatalytic purification of volatile organic compounds in indoor air:A literature review. Atmospheric Environment,2009,43 (14):2229-2246
    149. Ni M, Leung M K H, Leung D Y C, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews,2007,11(3):401-425
    150. Jing L Q, Qu Y C, Wang B Q, et al. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Solar Energy Materials and Solar Cells,2006, 90(12):1773-1787
    151. Gerven T V, Mul G, Moulijn J, et al. A review of intensification of photocatalytie processes. Chemical Engineering and Processing,2007,46(9):781-789
    152. Kanna M, Wongnawa S. Mixed amorphous and nanocrystalline TiO2 powders prepared by sol-gel method: Characterization and photocatalytic study. Materials Chemistry and Physics,2008,110(1):166-175
    153. Boujday S, Wunsch F, Portes P, et al. Photocatalytic and electronic properties of TiO2 powders elaborated by sol-gel route and supercritical drying. Solar Energy Materials and Solar Cells,2004,83:421-433
    154. Bessekhouad Y, Robert D, Weber J V. Synthesis of photocatalytic TiO2 nanoparticles:optimization of the preparation conditions. Journal of Photochemistry and Photobiology A:Chemisty,2003,157:47-53
    155.祖庸,李晓娥,卫志贤.超细TiO2的合成研究—溶胶-凝胶法.西北大学学报(自然科学版),1998,28(1):51-56
    156.何寿杰,哈静,王云明,等.超声化学在纳米材料制备中的应用.化学通报,2008,(11):846-851
    157. Perez-Rodriguez J L, Wiewiora A, Drapala J, et al. The effect of sonication on dioctahedral and trioctahedral micas. Ultrasonics Sonochemistry,2006,13:61-67
    158.李廷盛,尹其光.超声化学.北京:科学出版社,1995
    159. Didenko Y T, Mcnamara W B, Suslick K S. Hot spot condition during cavitations in water. Journal of the American Chemical Society,1999,121:5817
    160. Cullity B D, Stock S R. Elements of X-Ray Diffraction,3rd Edition. London:Prentice-Hall Inc.,2001: 167-171
    161.田宝柱,童天中,陈锋,等.明胶对纳米二氧化钛相变和光催化活性的影响.感光科学与光化学,2006,24(2):93-100
    162. Spurr R A, Myers H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffactometer. Analytical Chemistry,1957,29:760-762
    163.陈国珍,黄贤智,刘文远,等.紫外-可见分光光度法.北京:原子能出版社,1983:1-5
    164. Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline systems. Chemical Reviews,1995, 95:49-68
    165. Livage J, Henry M, Sanchez C. Sol Gel Chemistry of Transition Metal Oxide, Progress in Solid State Chemistry,1988,18:259-342
    166.尹荔松,周歧发,唐新桂,等.溶胶-凝胶法制备纳米TiO2的胶凝过程机理研究.功能材料,1999,30(4):407-409
    167.余桂郁,杨南如.溶胶-凝胶法简介:第三讲溶胶-凝胶法工艺过程.硅酸盐通报,1993,12(6):60-66
    168.陈奇,崔景巍,宋鹂,等.Ti(OC4H9)4水解制备TiO2纤维的凝胶化和热处理研究.无机材料学报,1991,6(2):249-255
    169.杨南如,余桂郁.溶胶-凝胶法简介第一讲—溶胶-凝胶法的基本原理与过程.硅酸盐通报,1993,(2):56-63
    170. Docuff S, Henry M, Sanchez C, et al. Hydrolysis of Titanium Alkoxides:Modification of the Molecular Precursor by Acetic Acid. Journal of Non-Crystalline Solids,1987,89:206-216
    171.罗伍文.溶胶-凝胶法简介第二讲—用于溶胶-凝胶法的主要原料.硅酸盐通报,1993,12(4):60-68
    172.李光明,徐子颉,甘礼华,等.TiO2凝胶形成的动力学研究.同济大学学报,1999,27(3):347-350
    173. Yamada K, Chow T Y, Horihata T. et al. A low temperature synthesis of zireonium oxide coating using chelating agents. Journal of Non-Crystalline Solids,1988:100-316
    174. Brinker J C, Scherer G W. Sol-Gel Science-The Physics and Chemistry of Sol-Gel Processing. New York: Academic Press,1990:43-49
    175.李光明,徐子颉,甘礼华,等.TiO2凝胶形成的动力学研究.同济大学学报,1999,27(3):347-350
    176.陈龙武,甘礼华,岳天仪,等.超临界干燥法制备SiO2气凝胶的研究.高等学校化学学报,1996,16(6):840-843
    177.李春燕,李懋强.TiO2的溶胶-凝胶过程研究.硅酸盐学报,1996,24(3):338-341
    178. Bradley D C. Kinetics of hydrolysis and condensation of tetrabutyltitanium. Journal of the Chemical Society, 1985,(1):721-726
    179.胡黎明,顾燕芳,顾家建,等.烷氧基钛水解制备TiO2超细粒子.华东化工学院学报,1990,6(3):265-269
    180. Fricke J, Emmerling A. Aerogels:preparation, properties and application. Structure and Bonding,1992,77: 89-121
    181. Stauffer D, Coniglio A, Adam M. Gelation and critical phenomena. Advances in Polymer Science,1982,44: 103-158
    182. Family F, Landau D P. Perspectives in the kinetics of aggregation and gelation. Kinetics of aggregation and gelation. New York:Elsevier Science Publishers B V,1984:265-266
    183. Brinker C J, Schere G W. Sol-gel science. The physics and chemistry of sol-gel processing. San Diego: Academic Press Inc.,1991:331-342
    184. Weitz D A. Huang J S, Lin M Y, et al. Dynamics of diffusion-limited kinetic aggregation. Physical Review Letters,1984,53(17):1657-1660
    185.蒲敏,王海霞,周根树,等.溶胶-凝胶成膜过程Monte Carlo模拟软件的设计与应用.计算机与应用化学,1998,15(4):253-254
    186. Ishino T, Minami S. Hydrolysis process of tetrabutyl titanium. Technology Reports of the Osaka University, 1983 (3):357-360
    187. Neppolian B, Wang Q, Jung H, et al. Ultrasonic-assisted sol-gel method of preparation of TiO2 nano-particles: Characterization, properties and4-chlorophenol removal application. Ultrasonics Sonochemistry,2008,15: 649-658
    188. Suslick K S. Sonochemistry. Science,1990,247:1439-1445
    189. Zhu L, Li Q, LiuX D, et al. Morphological Control and Luminescent Properties of CeF3 Nanocrystals. Journal of Physical Chemistry C,2007,111(16):5898-5903
    190.岳林海,水焱,徐铸德,等.稀土掺杂二氧化钛的相变和光催化活性.浙江大学学报(理学版),2000,27(1):69-74
    191. Hou M F, Li F B, Li R F, et al. Mechanisms of enhancement of photocatalytic properties and activity of Nd3+-doped TiO2 for methyl orange degradation. Journal of Rare Earths,2004,22(4):542-546
    192. Li F B, Li X Z, Hou M F. Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-TiO2 suspension for odor control. Applied Catalysis B:Environmental,2004,48(3):185-194
    193. Edelson L H, Glaeser A M. Role of particle substructure in the sintering of nanosized titania. Journal of the American Ceramic Society,1988,71 (2):225-235
    194.刘粤惠,刘平安.X-射线衍射分析原理与应用.北京:化学工业出版社,2003
    195. Cerrato G, Marchese L, Morterra C. Structural and morphological modifications of sintering microcrystalline TiO2:An XRD, HRTEM and FTIR study. Applied Surface Science,1993,70-71:200-205
    196. Paola A D, Marei G, Palmisano L, et al. Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions:characterization and photocatalytic activity for the degradation of 4-nitrophenol. Journal of Physical Chemistry B,2002,106:637-645
    197. Woolfson M M. An Introduction to X-Ray Crystallography. Cambridge:Cambridge University Press,1997
    198. Hammond C. Basics of Crystallography and Diffraction. Oxford:Oxford University Press,2001
    199. Snyder R L, Fiala J, Bunge H J. Defect and Microstructure Analysis by Diffraction. Oxford:Oxford University Press,2000
    200. Massa W. Crystal Structure Determination. Berlin:Springer,2004
    201. Auzel F. Spectroscopy of Solid-state Laser-type Materials. New York:Plemum,1987
    202. Xu A W, Gao Y, Liu H Q. The preparation, characterization and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. Journal of Catalysis,2002,207(2):151-157
    203. Rodriguez-Talaverra R, Vargas S, Aarroyo-Murillo R, et al. Modification of the phase transition temperatures in titania doped with various cations. Journal of Materials Research,1997,12(3):439-442
    204. Penn R L, Banfield J F. Imperfect oriented attachment:a mechanism for dislocation generation in defect-free nanocrystals. Science,1998,281:969-971
    205. Zhang H, Banfield J F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates:insights from TiO2. Journal of Physical Chemistry B,2000,104:3481-3487
    206. Gribb A A, Banfield J F. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. American Mineralogist,1997,82:717-729
    207. Zhang H, Banfield J F. A model for exploring particle size and temperature dependence of excess heat capacities of nanocrystalline substances. NanoStructured Materials,1998,10:184-195
    208. Zhang H, Banfield J F. A new kinetic model for the anatase-to-rutile phase transformation in nanocrystalline material revealing a second order dependence on the number of particles. American Mineralogist,1999,84: 528-535
    209. Penn R L, Banfield J F. Formation of rutile nuclei at anatase{112} twin interfaces and the phase transformation mechanism in nanocrystalline titania, American Mineralogist,1999,84:871-876
    210. McHale J M, Auroux A, Perrotta A J, et al. Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas. Science,1997,277,788-791
    211. Nuth J A. Small-particle physics and interstellar diamonds. Nature,1987,329:589
    212. Zhang H, Banfield J F. Thermodynamic analysis of phase stability in nanocrystalline titania. Journal of Materials Chemistry,1998,8:2073-2076
    213.王达健,谢刚,张雄飞,等.电合成纳米晶二氧化钛相和尺寸稳定性.功能材料,2004,35(s1):2739-2742
    214.Frank S N, Bard A J. Heterogeneous Photocatalytic Oxidation of Cyanide Ion in Aqueous Solutions at TiO2 Powder. Journal of the American Chemical Society,1977,99:303-304
    215. FactSage 5.0 Thermochemical database (www.factsage.com), CRCT, Montreal, Canada,2000
    216. Daniels J, Hardtl K H, Wernicke R. The PTC Effect of Barium Ti-tanate. Philips Technical Review,1978, 38(3):73-82
    217. Zhang Q H, Gao L, Zheng S. Preparation of Mesoporous TiO2 Photocatalyst by Selective Dissolving of Titania-Silica Binary Oxides. Chemistry Letters,2001,30(11):1124-1125
    218.朱广.掺杂稀土离子的纳米TiO2粉末制备及性能的研究.西安理工大学硕士学位论文,2008:34-35
    219.杨迈之,张雯,蔡生民.包覆硬脂酸膜a-Fe2O3超微粒子的光谱及光电化学研究.高等学校化学学报,1996,17(2):274-278
    220.侯廷红,毛健,杨玲,等.稀土离子掺杂纳米TiO2的谱学特性研究.四川大学学报(工程科学版),2006,38(5):117-120
    221. Mangalaraja R V, Mouzon J. Microwave assisted combustion synthesis of nanocrystalline yttria and its powder characteristics. Powder Technology,2009,191:309-314
    222.刑明铭,曹望和,付姚.络合沉淀法合成纳米Y2O3:Yb,Er及其上转换发光性能.功能材料,2006,37(9):1375-1378
    223. Gao X, Wachs I E. Titania-silica as catalysts:Molecular structural characteristics and physico-chemical properties. Catalysis Today,1999,51:233-254
    224. Nakaoka Y, Nosaka Y. ESR investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder. Journal of Photochemistry and Photobiology A:Chemistry,1997, 110:299-305
    225. Yin J B, Zhao X P. Preparation and electrorheological activity of mesoporous rare-earth-doped TiO2. Chemistry of Materials,2002,14 (11):4633-4640
    226.刘守新,孙承林.热处理对纳米TiO2光催化活性的影响.化学工业与工程,2004,21(3):161-164
    227.方舒玫,欧延,林敬东.La2O3掺杂低温合成介孔锐钛矿相二氧化钛,2006,24(s1):32-36
    228. Pecchi Q Reyes P, Sanhueza P, et al. Photocatalytic degradation of pentachlorophenol on TiO2 sol-gel catalysts. Chemospher,2001,43:141-146
    229.许可,吕德义,郇昌永,等.离子掺杂对纳米二氧化钛晶型转变的影响.材料科学与工程学报,2005,23(4):629-632
    230. Cerrato G, Marchese L, Morterra C. Structural and morphological modifications of sintering microcrystalline TiO2:An XRD, HRTEM and FTIR study. Applied Surface Science,1993,70-71:200-205
    231.姜洪泉,王鹏,卢丹丹,等.TiO2/Gd2O3纳米粉体的制备、表征及光催化活性.无机化学学报,2006,22(1):73-78
    232.唐志坚,张平,左社强.低浓度含铀废水处理技术的研究进展.工业用水与废水,2003,34(4):9-12
    233. Sylwester E R, Hudson E A, Allen PG The structure of uranium (Ⅵ) sorption complexes on silica, alumina, and montmorillonite. Geochin Cosmochimi Acta,2000,64 (14):2431-2438
    234. Chisholm-Brause C J, Berg J M, Matzner R A, et al. Uranium(Ⅵ) sorption complexes on montmorillonite as a function of solution chemistry. Journal of Colloid and Interface Science,2001,233:38-49
    235. Boult K A, Cowper M M, Heath T G, eta.l Towards an understanding of the sorption of U (Ⅵ) and Se(Ⅳ) on sodium bentonite. Journal of Contaminant Hydrology J Contam Hydrol,1998,35:141-150
    236. Jeon B H, Dempsey B A, Burgos W D, et al. Chemical reduction of U (Ⅵ) by Fe (Ⅱ) at the solid-water interface using natural and synthetic Fe (Ⅲ) oxides. Environmental Science & Technology,2005,39, 5642-5649
    237. Fabio B, Ceren K, Vincenzo V R, et al. Can carbon nanotubes play a role in the field of nuclear waste management. Environmental Science & Technology,2009,43 (5),1250-1255
    238:Hui Z, Abhas S, Soubir B, et al. Nanoscale Size Effects on Uranium(Ⅵ) Adsorption to Hematite. Environmental Science & Technology,2009,43 (5),1373-1378
    239. Khalil L B, Rophael M W, Mourad W E. The removal of the toxic Hg(Ⅱ) salts from water by photocatalysis. Applied Catalysis B:Environmental,2002,36:125-130
    240:Tel H, Altas Y, Taner M S. Adsorption characteristics and separation of Cr (Ⅲ) and Cr (Ⅳ) on hydrous titanium (Ⅳ) oxide. Journal of Hazardous Materials,2004,112(3):225-231
    241. Liang P, Liu R. Speciation analysis of inorganic arsenic in water samples by immobilized nanometer titanium dioxide separation and graphite furnace atomic absorption spectrometric determination. Analytical Chemical Acta,2007,602(1):32-36
    242. Li W, Pan G, Zhang M Y, et al. EXAFS studies on adsorption irreversibility of Zn (Ⅱ) on TiO2:temperature dependence. Journal of Colloid and Interface Science,2008,319 (2):385-391
    243. Testa J J, Grela M A, Litter M I. Heterogeneous photocatalytic reduction of chromium(VI) over TiO2 particles in the presence of oxalate:involvement of Cr(Ⅴ) species. Environmental Science & Technology,2004, 38(5):1589-94
    244. Hennin C, Reich T, Dahn R, et al. Structure of uranium sorption complexes at montmorillonite edge site. Radiochimica Acta,2002,90:653-657.
    245. Wenjing Shao, Xiaomin Li, Qilin Cao, Fang Luo, Jianmei Li. Adsorption of arsenate and arsenite anions from aqueous medium by using metal(Ⅲ)-loaded amberlite resins. Hydrometallurgy,2008,91:138-143
    246. Labo L S, Bernardo C A. Adsorption isotherms and surface reaction kinetics. Journal of Chemical Education, 1974,51:723-728
    247. Kinniburgh D G General purpose adsorption isotherms. Environmental Science & Technology,1986,20: 895-904
    248. Ghiaci M, Kia L, Kalbasi RJ, et al. Investigation of thermodynamic Parameters of Cetylpyridinium bromide sorption onto ZSM-5 and Natural Clinoptilolite. Journal of Chemical Thermodynamics,2004,36:95-100
    249. Ho Y S, Huang C T, Huang H W.Equilibrium sorption isotherm for metal ions on the tree fern.Process Biochemistry,2002,37:1421-1430
    250. Poots V J P, Mckay G, Hcaly J J. Removal of basic dye from effluent using wood as an adsorbent. Journal Water Pollution Control Federation,1978,50:296-305
    251. Peter A, De P. Physical Chemistry (8th edition). San Francisco:W.H. Freeman and Company,2006:212
    252.彭书传,王诗生,陈天虎,等.凹凸棒石吸附水溶性染料的热力学研究.硅酸盐学报,2005,33(8):579
    253. Hendrik N, Murielle R, Pierre L, et al. Removal of PCBs from wastewater using fly ash. Chemosphere,2003, 53 (6):655-665
    254. Ozcan A S, Erdem B, Ozcan A. Adsorption of Acid Blue 193 from aqueous solutions onto Na-bentonite and DTM A-bentonite. Journal of Colloid and Interface Science,2004,280 (1):44-54
    255.周新木,李炳伟,李永绣,徐小丽.铈抛光粉表面电性及悬浮液分散稳定性研究.稀土,2007,28(1):12-16
    256. Yu Y, Zhuang Y Y, Wang Z H, et al.Adsorption of water-soluble dyes onto modified resin. Chemosphere, 2004,54(3):425-430
    257. Yu Y, Zhuang Y Y, Wang Z H. Adsorption of water-soluble dyes onto functionalized resin. Journal of Colloid and Interface Science,2001,242(2):288-293
    258. Linsebigler A L, LU G, Yates J R, et al. Photocatalyst on TiO2 surfaces:principles, mechanisms and selected results. Chemical Reviews,1995,95:735-758
    259. Hadjiivanov K, Klissurski D G Surface chemistry of titania (anatase) and titaniua-supported catalysts. Chemical Society Reviews,1996,25:61-69
    260. Fujishima A, Rao T, Teyk D. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology, C: Photochemistry Reviews,2000,1:1-21
    261. Karakitsou K E, Verykios X E. Effects of Altervalent Cation Doping of TiO2 on Its Performance as a Photocatalyst for Water Cleavage. Journal of Physical Chemistry,1993,97(3):1184-1189
    262. Borgarello E, Kiwi J, Gratzel M. Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. Journal of the American Chemical Society,1982,104:2996-3002
    263. Jun L, Jimmy C Y. An investigation on photo catalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air. Journal of Photochemistry and Photobiology A:Chemistry,1998,116:63-67
    264. Li X Z, Li F B. Study of Au/Au3+-TiO2 photo catalysts toward visible photo oxidation for water and wastewater treatment. Environmental Science & Technology,2001,35:2381-2387
    265. Paola A, Marci G, Palmisano, et al. Preparation of polycrystalline TiO2 photo catalysts impregnated with various transition metal ions:characterization and photo catalytic activityfor the degradation of 4-nitrophenol. Journal of Physical Chemistry B,2002,106:637-645
    266.高伟,吴凤清,罗臻,等.TiO2晶型与光催化活性关系的研究.高等学校化学学报,2001,22(4):660-662
    267. Konstantinou I K, Albanis T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations:A review. Applied Catalysis B:Environmental,2004,49(1):1-14
    268. Lettmann C, Heike H, Maier W F. Combinatorial discovery of new photocatalysts for water purification with visible light. Angewandte Chemie International Edition,2001,40(17):3160-3164
    269. Shannon R D. Phase transformation studies in TiO2 supporting different defect mechanisms in vacuum-reduced and hydrogen-reduced rutile. Journal of Applied Physics,1964,35:341-416
    270. Kurtz R L, Stockbauer R, Madey T E, et al. Synchrotron radiation studies of H2O adsorption on TiO2(110). Surface Science,1989,218:178-200
    271.区泽棠,徐富春,王水菊,等.甲醇、甲酸和甲醛在多晶钛和TiO2(100)表面吸附的ESCA研究.化学物理学报,1998,(4):5-7
    272. Linsebiger A L, Lu G Q. Photocatalysis is on TiO2 surface, principles, mechanism and selected results. Chemical Reviews,1995,95(3):735-758
    273.胡春,王怡中,汤鸿霄.多相光催化氧化的理论与实践.环境科学进展,1995,3(1):55-64
    274. Ying Y, Jimmy C Y, Cho Y C, et al. Enhancement of adsorption and photocatalytic activity of TiO2by using carbon nantubes for the treatment of azo dye. Applied Catalysis B:Environmental,2005,61:1-11
    275. Murugandham M, Swaminathan M. Photocatalytic decolourisation and degradation of reactive orange 4 by TiO2-UV process, Dyes and Pigments,2006,68:133-142
    276. Alaton I A, Balcioglu I A, Bahnemann D W. Advanced Oxidation of a reactive dye bath effluent:Comparison of O3, H2O2/UV-C and TiO2/UV-A process. Water Researth,2002,36:1143-1154
    277. Akpan U G, Hameed B H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts:A review. Journal of Hazardous Materials,2009,170(2-3):520-529
    278. MeKay G, HO Y S. Pseudo-seeond order model for sorption process. Proeess Bioehemistry,1999, 34(5):451-465
    279. Chiou M S. Ho P Y, Li H Y. Adsorption of anionic dyes in acid solutions using ehemically cross-linked chitosan beads. Dyes and Pigments,2004,60(1):69-84
    280. Ghosh D, Bhattaeharyya K G Adsorption of methylene blue on kaolinite. Applied Clay Seienee,2002,20(6): 295-300
    281.曹江林,冷文华,张鉴清.氢氧根离子在TiO2薄膜电极上的吸附行为和光氧化动力学.物理化学学报,2004,20(7):735-739
    282. Davis J A, James R O, Leckie J O. Surface Ionization and Complexation at the Sphalerite/Water Interface. I. Computation of electrical double layer properties in simple electrolytes. Journal of Colloid and Interface Science,1978,63(3):480-499
    283.程刚,周孝德,李艳,等.La2O3-ZnO-TiO2光催化降解活性艳红及其动力学研究.水处理技术,2008,34(12):32-35
    284. Legrini O, Oliveros E, Braun A M. Photochemical process for water treatment. Chemical Reviews,1993, 93(2):671-698
    285.陈非力,刘晓国.太阳能光催化降解法去除水中罗丹明染料的研究.化工环保,1997,17(01):3-5
    286. Siham A Q, Saman R S. Photocatalytic degradation of methyl orange as a model compound. Journal of Photochemistry and Photobiology A:Chemistry,2002,148 (3):161-168
    287. Wang C, Zhan J C, Wang X M, et al. Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photcatalysts. Applied Catalysis B:Environmental,2002,39 (3):269-279
    288.张雯,王绪绪,李旦振,等.半导体多相光催化降解反应的外场效应.化学通报,2005,68:1-6
    289. Guan K S, Yin Y S. Effect of rare earth addition on super-hydrophilic property of TiO2/SiO2 composite film. Materials Chemistry and Physics,2005,92(1):10-15
    290.刘转年,蔡倩倩,韩晓刚,等.赵西成纳米TiO2光催化剂的改性研究.材料导报网刊,2008,3(5):11-14
    291. Spadaro J T, Isabelle L, Renganathan V. Hydroxyl radical mediated degradation of azo dyes:evidence for benzene generation Environmental Science and Technology,1994,28(7),1389-1393
    292. Spadaro J T, Renganathan V. Peroxidase-catalyzed oxidation of azo dyes:mechanism of disperse yellow 3 degradation. Archives of Biochemistry and Biophysics,1994,312(1),301-307
    293. Vinodgopal K, Kamat P V. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films. Environmental Science and Technology,1995,29:841-845
    294.朱馨乐,谢一兵,李萍.纳米TiO2光催化降解水中有机物机理研究进展.化学通报,2003,66(2):w10
    295. Zhang Z B, Wang C C, Zakria R. Role of particle size in nanocrystalline TiO2-based photocatalysts. Journal of Physical Chemistry B,1998,102:10871-10878
    296. Behnemann D W, Kholuiskaya S N, Dillert R, et al. Photodestruction of dichloroacetic acid actalyzed by nano-sized TiO2 particles. Applied Catalysis B:Environmental,2002,36:161-169
    297. Zayim E O. Effect of calcination and pH value on the structural and optical properties of titanium oxide thin film. Journal of Materials Science,2005,40:1345-1352
    298. Ohya T, Ito M, Yamada K, et al. Aqueous titanate sols from Ti alkoxide-α-hydroxycarboxylic acid system and preparation of titania films from the sols. Journal of Sol-Gel Science and Technology,2004, 30:7181-7184
    299. Burgos M, Langlet M. Condensation and densification mechanism of sol-gel TiO2 layers at low temperature. Journal of Sol-Gel Science and Technology,1999,16:267-276
    300. Yu J G, Cheng B, Zhao X J, et al. Atomic force microscopic studies of porous TiO2 thin films. Journal of Sol-Gel Science and Technology,2002,24:229-240
    301. Nishide T, SatoM, Hara H. Crystal structure and optical property of TiO2 gels and films prepared from Ti-edta complexes as titania precursors. Journal of Materials Science,2000,35:456-469
    302.程侣柏.精细化工产品的合成与应用.大连:大连理工大学出版社,2005
    303.井立强,孙晓君,辛柏福,等.掺杂镧和铈的TiO2纳米粒子的结构相变.材料科学与工艺,2004,12(2):145-152
    304.张华星,张玉红,徐永熙,等.铽(Ⅲ)掺杂二氧化钛相变和光催化性质研究.化学学报,2003,61:1813-1818
    305.吴腊英.纳米二氧化钛粒子分散性能的研究.中国稀土学报,2003,21(5,):546-549
    306.杨秋景,徐自力,谢超,等.铕掺杂对纳米TiO2的光催化活性的影响.高等学校化学学报,2004,25(9):1711-2714
    307.刘雪峰,张利,涂铭旌.载铈纳米TiO2粉体的制备及其反射光谱特性研究.光谱学与光谱分析,2005,25(2):274-276
    308. Xie Y B, Yuan C W. Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation. Applied Catalysis B:Environmental,2003,46:251-259
    309.崔玉民,范少华,张颖.稀土掺杂TiO2纳米微粒的合成、表征及光催化活性.北京科技大学学报,2006,28(10):956-958
    310.高远,徐安武,祝静艳,等.RE/TiO2用于NO2-光催化氧化的研究.催化学报,2001,22(1):53-56
    311.刘丽秀,储伟.稀土掺杂纳米TiO2光催化的研究进展.资源开发与市场,2006,22(2):147-157
    312.梁金生,金宗哲,王静.稀土/纳米TiO2的表面电子结构.中国稀土学报,2002,20(2):74-76
    313. Xie Y B, Yuan C W. Photocatalysis of neodymium ion modified TiO2 sol under visible light irradiation. Applied Surface Science,2004,221(1-4):17-24
    314. Harada K, Hisanaga T. Tanaka K. Photocatalytic degradation of organophosphorous insecticides in aqueous semiconductor suspensions. Water Research,1990,24(11):1415-1417
    315.王怡中.二氧化钛悬浆体系中八种染料的太阳光催化氧化降解.催化学报,2000,21(4):327-331
    316.刘凡新,崔作林,张志琨.纳米TiO2复合薄膜光催化降解甲基橙的研究.感光科学与光化学,2003,21(2):119-125
    317.张颖,王桂茹,李朝晖,等.光催化法处理活性染料水溶液.精细化工,2000,17(2):79-81
    318.王九思,赵红花.负载型纳米TiO2光催化降解活性艳红X-3B染料.应用化学,2002,19(8):792-794
    319. Pena M, Meng X G. Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environmental Science & Technology,2006,40(4):1257-1262
    320. Ragai J, Selim S I. Ion-exchange and surface properties of titania gels from Ti (III) solutions. Journal of Colloid and Interface Science,1986,115(1):139-146
    321. Bleam W F. McBride M B. The chemistry of adsorbed Cu (II) and Mn (II) in aqueous titanium dioxide suspensions.1986,110(2):335-346
    322. Fuerstenau D W, Osseo-Asare K. Adsorption of Copper, Nickel and Cobalt by Oxide Adsorbents from Aqueous Ammoniacal Solutions.1987,118(2):524-542
    323. Al-Ghouti M A, Khraishen M A M, Allen S J, et al. The removal of dyes from textile wastewater:a study of the physical characteristic and adsorption mechanisms of diatomaceous earth. Journal of Environmental Management,2003,69(3):229-238
    324. Shawabkeh R A, Tutunji M F. Experimental study and modeling of basic dye sorption by diatomaceous clay. Applied Clay Seience,2003,24(3):111-120
    325.陈天虎.苏皖凹凸棒石粘土纳米尺度矿物学及地球化学.合肥:合肥工业大学,2003
    326. Gonzale F, Pesquera C, Benito I. Mechanism of acid activation magnesia palygorskite. Clays and Clay Minerals,1989,37,(3):258-262
    327. Yu J Q Yu J C, Cheng B, et al. Photocatalytic activity and characterization of the sol-gel derived Pb-doped TiO2 thin films. Journal of Sol-Gel Science and Technology,2002,24(1):39-48
    328. Arslan I, Balcioglu I A, Bahnemann D W. Heterogeneous photocatalytic treatment of simulated dyehouse effluents using novel TiO2-photocatalysts. Applied Catalysis B:Environmental,2000,26(3):193-206
    329. Guillard C, Lachheb H, Houas A, et al. Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2. Journal of Photochemistry and Photobiology A:Chemistry,2003,158(1):27-36
    330.尹荔松,朱剑,闻立时,等.稀土掺杂纳米TiO2光催化降解氯胺磷,中南大学学报(自然科学版),2009,40(1):139-144
    331. Chao H, Yun Y, Xingfang H, et al. Influence of silver doping on the photocatalytic activity of titania films. Applied Surface Science,2002,200:239-247
    332.梁春华.稀土掺杂二氧化钛的制备、表征和光催化活性研究.杨凌:西北农林科技大学博士学位论文,2007
    333. Liang C H, Hou M F, Li F B, et al. The effect of erbium on the adsorption and photodegradation of orange I in aqueous Er3+-Ti02 suspension. Journal of Hazardous Materials,2006,138(3):471-478
    334. Liang C H, Li F B, Liu C S, et al.The enhancement of adsorption and photocatalytic activity of rare earth ions doped TiO2 for the degradation of Orange I. Dyes and Pigments,2008,76(2):477-484
    335.周武艺,唐绍裘,张世英,等.制备不同稀土掺杂的纳米氧化钛光催化剂及其光催化活性.硅酸盐学报,2004,32(10):1203-1208
    336. Mills A, Davies R H, Worsley D. Water purification by semiconductor photocatalysis. Chemical Society Reviews,1993,22,417-425
    337. Schneider Q Wohrle D, Spiller W, et al. Photooxidation of 2-mercaptoethanol by various water-soluble phthalocyanines in aqueous alkaline-solution under irradiation with visible-light. Photochemistry and Photobiology,1994,60(4):333-342
    338. Wu T X, Liu G M, Zhao J C. Evidence for H2O2 generation during the TiO2-assisted photodegradation of dyes in aqueous dispersion under visible light illumination. The Journal of Physical Chemistry B,1999,103: 4862-4867
    339. Cho Y M, CHoi W Y, Lee C H, et al. Visible iight-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environmental Science & Technology,2001,35:966-970
    340 He J J, Zhao J C, Shen T, et al. Photosensitization of colloidal titania particles by electron injection from an excited organic dye-antennae function. Journal of Physical Chemistry B,1997,101:9027-9034
    341. Yu J C, Xie Y D, Tang H Y, et al. Visible light-assisted bactericidal effect of metalphthalocyanine-sensitized titanium dioxide films. Journal of Photochemistry and Photobiology A:Chemistry,2003,156:235-241
    342. Stylidi M, Kondarides D I,Verykios X E. Visible light-induced photocatalytic degradation of acid orange 7 in aqueous TiO2 suspensions. Applied catalysis B:Environmental,2004,47:189-201
    343. Vinodgopal K, Wynkoop D E, Kamat P V. Environmental photochemistry on semiconductor surfaces: photosensitized degradation of a textile azo dye,acid orange 7, on particles using visible light. Environmental Science and Technology,1996,30:1660-1666
    344. Zhang F L, Zhao J C, Zang L, et al. Hydrogenation of nitroaromatics by polymer-anchored bimetallic palladium-ruthenium and palladium-platinum catalysts under mild conditions. Journal of Molecular Catalysis A:Chemical,1997,120:247-255
    345. Liu G M, Wu T X, Zhao J C, et al. Photo-Assisted Degradation of Dye Pollutants.8:Irreversible Degradation of Alizarin Red under Visible Light Irradiation in Air-Equilibrated Aqueous TiO2 Dispersions. Environmental Science & Technology,1999,33(12):2081-2087
    346. Chen C C, Zhao W, Li J Y, et al. Formation and identification of intermediates visible-light-assisted photodegradation sulforhodamine-B dye in aqueous TiO2 dispersion. Environmental Science & Technology, 2002,36(16):3604-3611
    347.李葵英,郭静,刘通,等.掺镧多孔TiO2纳米晶表面电子结构与能量转换机制.物理化学学报,2008,24(11):2096-2101
    348. Shannon R D. Phase transformation studies in TiO2 supporting different defect methanisms in vacuum-reduces hydrogen-reduced rutile. Journal of Applied Physics,1964,35:341-416
    349.洪伟.稀土改性TiO2光催化氧化苯类有机废气研究.广州:华南理工大学博士学位论文,2003
    350. Liu H, Ma H T, Li X Z, et al. The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment. Chemsphere,2003,50(1):39-46
    351. Kumar P M, Badrinarayanan S, Sastry M. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy:correlation to presence of surface states. Thin SolidFilms,2000, 358(1-2):122-130
    352. Watanabe T, Nakajima A, Wang R, et al. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films,1999,351:260-263
    353. Machida M, Norimoto K, Watanabe T, et al. The effect of SiO2 addition in super-hydrophilic property of TiO2 photocatalyst. Journal of Materials Science,1999,34:2569-2574
    354. Wang R, Hashimoto K, Fujishima A. Photogeneration of highly amphiphilic TiO2 surfaces. Advanced Materials,1998,10(2):135-138
    355.刘平,凌岚,林华香,等.光催化抗雾膜材料的制备及其亲水性研究.高等学校化学学报,2000,21(3): 462-465
    356. Sugawara S, Nakamura I, Kai Y, et al. JP9227158C,1997:4-5
    357. Sirghi L, Hatanaka Y. Hydrophilicity of amorphous TiO2 ultra-thin films. Surface Science,2003,530:323-327
    358.柳清菊,吴兴惠,刘强,等.TiO2薄膜超亲水特性的研究.功能材料与器件学报,2002,8(3):238-242
    359.朱王步瑶,赵振国.界面化学基础.北京:化学工业出版社,1996
    360.殷好勇,金振声,张顺利,等.在玻璃的TiO2涂膜上有机物分子的吸附及光催化分解对水接触角的影响.感光科学与光化学,2001,19(2):81-86
    361. Ragai J, Selim S I. Ion-exchange and surface properties of titania gels from Ti (Ⅲ) solutions. Journal of Colloid and Interface Science,1987,115(1):139-146
    362. Bleam W F, McBride B The chemistry of adsorbed Cu (Ⅱ) and Mn (Ⅱ) in aqueous titanium dioxide suspensions. Journal of Colloid and Interface Science,1986,110:335-340
    363.樊耀亭,吕秉玲,徐杰.水溶液中二氧化锰对铀的吸附.环境科学学报,1999,19(1):42-46
    364.辜家芳,陆春海,陈文凯,等.气相和水溶液中铀酰配合物UO2L2-n*a(L=F-,CO32-,NO3-;n=0-6,a=1,2)的结构与振动光谱.物理化学学报,2009,25(4):655-660

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700