肿瘤肽特异性的同种CD4~+T细胞的诱导及其对荷瘤裸鼠抗瘤作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
T细胞在同种移植物排斥反应和移植物抗宿主病中起主要作用,CD4+和CD8+T细胞都参与了这些反应。T细胞TCR识别的配体是抗原肽和MHCⅠ或MHCⅡ分子形成的复合物(pMHC),分别被CD8+和CD4+T细胞识别。急性排斥反应中T细胞对同种抗原的直接识别起主要作用。研究表明T细胞识别抗原肽/同种MHC复合物和抗原肽/自身MHC复合物一样通常也是pMHC特异性的,并且TCR和同种MHC分子的相互作用方式与传统的自身MHC分子提呈抗原肽给TCR识别是一样的。抗原肽特异性的的同种反应性T细胞被称为同种限制性T细胞。已有研究证实是CD4+而非CD8+T细胞在同种排斥反应中起本质作用:一方面CD4+T可以辅助其他淋巴细胞参加免疫反应,另一方面它本身也是移植物排斥反应的效应细胞。同时,临床资料显示移植物抗白血病反应(GVLR)使白血病病人的病情得以缓解,并且移植物抗肿瘤反应(GVTR)在许多实体瘤的病例中也得到证实,这是由于供者T淋巴细胞对宿主的白血病细胞及肿瘤细胞发生了免疫反应。尽管许多研究都集中于CD8+T细胞在GVLR或者GVTR中的作用并且发现CD8+T细胞在其中发挥效应作用,但实际上在GVLR中需要CD4+T和CD8+T细胞两者共同参与。由于CD4+T细胞在普通免疫反应和同种反应中均发挥重要作用,我们认为同种反应性CD4+T细胞尤其是同种限制性CD4+T细胞可能在GVLR或者GVTR中起重要作用。本研究目的是要建立一个诱生同种限制性CD4+T细胞的方法并且观察这种CD4+T细胞的肿瘤排斥效应。
     本研究先制备出肿瘤抗原肽/HLA-DR15/IgG1-Fc二聚体,再将结合了此二聚体的HLA-DR15阴性的单核细胞和自体的外周血淋巴细胞(PBL)共培养诱导出肿瘤肽特异性的同种CD4+T细胞,并将此细胞过继到荷瘤裸鼠体内,发现其可以明显抑制荷瘤裸鼠体内的肿瘤生长。论文共分为三部分,其主要内容与结果如下:
     一、制备HLA-DR15/IgGl-Fc二聚体,并且该二聚体能有效结合到]HLA-DR15阴性(DR15-ve)个体的单核细胞表面
     采用RT-PCR方法从人宫颈癌细胞系SiHa(为HLA-DR15基因型)中扩增DRa链和DRp链的信号肽及胞外序列以及转录因子Fos和Jun的亮氨酸拉链序列,将扩增的DRa段和DRβ段分别和转录因子Fos和Jun的亮氨酸拉链区连接形成DRa-Fos和DRP-Jun,再将DRa-Fos和人IgG1的Fc段相连,构建出重组载体pFastBacTM(?)ual+[DR15/IgG1-Fc]。将此载体转化大肠杆菌DH10BacTM,得到重组的穿梭质粒Bacmid+[DR15/IgG1-Fc],将此穿梭质粒转入昆虫细胞Sf9中,收获上清得到成熟病毒颗粒,再用此病毒颗粒大量感染Sf9细胞,收集病毒感染的Sf9细胞培养上清,通过葡萄球菌蛋白A (SPA)柱纯化得到可溶性DR15/IgG1-Fc二聚体融合蛋白(简称DR15二聚体)。ELISA和Western-blotting检测均证实DR15二聚体产物由两部分组成:二聚化的DR15的胞外段提供有效的TCR反应部分,IgG1-Fc段能与单核细胞表面高亲和力受体FcyRI结合。
     将纯化的DR15二聚体与DR15-ve个体的单核细胞孵育,用流式细胞术检测具有HLA-DR15阳性表型的单核细胞百分数以确定二聚体与DR15-ve单核细胞的结合能力。流式分析结果显示DR15-ve单核细胞结合DR15二聚体后大多数具有HLA-DR15阳性表型,说明DR15二聚体可以有效结合到DR15-ve单核细胞表面。
     二、结合了抗原肽/HLA-DR15/IgG1-Fc二聚体的单核细胞诱导肽特异性的同种CD4+T细胞的产生为诱导抗原肽特异性的同种CD4+T细胞,本研究建立了一个共培养体系:纯化的DR15二聚体加载其限制性肽后结合到酸洗过的DR15-ve个体的单核细胞表面,形成共培养体系中的刺激细胞;同一个体来源的外周血淋巴细胞(PBLs)作为共培养体系中的效应细胞。共培养7 d后,通过CFSE稀释法由流式细胞仪检测到共培养体系中的CD4+T细胞发生了明显的增殖。再次用同样方法进行二次刺激,7 d后,该体系中淋巴细胞的特异性肽/DR15二聚体染色阳性细胞数显著高于对照,且诱导出的特异性肽/DR15二聚体阳性的CD4+T细胞能特异性的分泌细胞因子IFN-y,这些实验证实本研究所诱导的同种CD4+T细胞具有pMHC特异性。
     三、肿瘤肽特异性的同种CD4+T细胞能有效抑制荷瘤裸鼠的肿瘤生长
     人宫颈癌细胞SiHa是HLA-DR15基因型且高表达E7蛋白,可以作为本研究诱导的E7肽特异性的同种CD4+T的靶细胞。将经过二次刺激的淋巴细胞通过磁珠阴性分选得到较纯的肽特异的同种CD4+T细胞,再将其过继到荷SiHa瘤细胞的裸鼠体内,发现过继肿瘤抗原肽特异性的同种CD4+T细胞的裸鼠体内的肿瘤生长受到抑制,其生存期与对照组相比显著延长。免疫组织化学检测发现在特异性组有明显的人CD4+细胞浸润,而对照组不明显。
     总之,本研究通过将DR15-ve的淋巴细胞和结合了肽/DR15二聚体的自身单核细胞共培养诱导产生了肿瘤肽特异性的同种CD4+T细胞,这种CD4+T细胞在体外具有特异性的生物学功能,在体内可以明显地浸润到肿瘤组织局部,具有抑制肿瘤生长的作用,证实了CD4+T细胞也参与了GVTR (graft versus tumor reaction)并起重要作用。这不仅为诱导同种pMHC限制性CD4+T细胞提供了新的思路,也为肿瘤的过继免疫治疗提供了一种新的策略。
     本研究的创新点和意义:
     1.本研究将加载抗原肽的HLA-DR15/IgGl-Fc二聚体(DR15二聚体)结合到DR15-ve单核细胞表面,使之能够对自身PBLs'‘提呈”单一的同种pMHC,这种“提呈”单一pMHC的单核细胞和自身PBLs在体外共培养,能有效刺激自体PBLs产生同种限制性的CD4+T细胞。
     2.将针对肿瘤抗原的同种限制性CD4+T细胞过继输入到荷瘤裸鼠体内,可以有效抑制肿瘤生长;在肿瘤生长部位,发现有明显的CD4+T细胞浸润,从而证实了同种pMHC限制性CD4+T细胞参与了GVTR。这不仅为诱导同种pMHC限制性CD4+T细胞提供了新的思路,也为肿瘤的过继免疫治疗提供了一种新的策略。
T cell plays a major role in allogeneic graft rejection and graft-versus-host disease (GVHD), both CD4+ and CD8+ T cells are involved in the process. The ligands recognized by T cell receptor (TCR) are formed by antigenic peptide associated with MHC class I or classⅡmolecule, which are recognized by CD8+ T and CD4+ T cells, respectively. Direct T-cell allo-recognition is the principal player in the initial vigorous immune response to allogeneic cells that causes acute rejection. Current studies indicate that allogeneic T-cell responses, like syngeneic T-cell responses, are largely peptide-specific, and that TCRs interact with allogeneic MHC in a manner that is almost indistinguishable from conventional recognition of antigenic peptide presented by self-MHC. The allo-reactive T cells of peptide-dependent and allogeneic MHC-restricted properties are referred to as allo-restricted T cells. It has been observed that CD4+ but not CD8+ T cells are essential for allo-rejection, since CD4+ T cells are generally regarded as helper cells by facilitating other lymphoid cells involved in immunity, as well as effector cells of graft rejection. Meanwhile, it is well-established that leukemia patients can benefit from a graft-versus-leukemia reaction (GVLR), and evidence of graft-versus-tumor reaction (GVTR) has also been reported in many solid tumors, in which donor T lymphocytes mount an immune response against recipients' leukemia or tumor cells. Both CD4+ T cell and CD8+ T cell are required for GVLR, although most studies are focused on the role of CD8+ T cell in GVLR or GVTR and reveal CD8+ T cell is an effective means. Based on the importance of CD4+ T cells in both nominal and allogeneic responses, we suppose that allo-reactive CD4+ T cells, especially allo-restricted CD4+ T cells, would be responsible for GVLR or GVTR. The aim of this study is to set up a strategy to generate allo-restricted CD4+ T cells and observe tumor rejection effects of the CD4+ T cells.
     The tumor-peptide/HLA-DR15/IgGl-Fc dimer was prepared in this study, then the tumor-peptide specific allogeneic CD4+ T cells were induced by the dimer-loaded monocytes co-culturing with autologous HLA-DR15 negative PBLs. The tumor-peptide specific allogeneic CD4+ T cells adoptively transferred into nude mice challenged by human cervical cancer cells can inhibit the growth of the tumor.
     1. Generation of HLA-DR15/IgGl-Fc molecule and its binding to HLA-DR15 negative (DR15-ve) monocytes
     The cDNA coding for the extracellular domains of DRa and DRβas well as the leucine zipper motifs of Fos and Jun were cloned by RT-PCR from SiHa cell which is HLA-DR15 genotype. The extracellular domains of DRa and DRβwere joined with the leucine zipper motifs of Fos and Junm, then the Fc segment of human IgGl was attached to DRa-Fos through the EcoR I restriction site. The recombinant plasmid named pFastBacTM Dual+[DR15/IgGl-Fc] was constructed and transformed to Escherichia coli DH10BacTM and the recombinant shuttle plamid Bacmid+[DR15/IgG1-Fc] was obtained. The shuttle plamid was transfected into the insect cell line Sf9 by lipofection and the expression of HLA-DR15/IgG1-Fc dimer (DR15 dimer) was detected by sandwich ELISA and Western-blotting. The results of ELISA and Western-blotting showed that DR15 dimer molecule consists of two parts:the dimerization of extracelluar fragment of HLA-DR15 molecule which can bind to specific T cell receptor (TCR) and the Fc fragment of IgG1 which binds to FcyRI on the cell membrane of monocytes with high affinity.
     DR15-ve monocytes incubated with purified DR15 dimer and the capacity of DR15 dimer binding to monocytes was confirmed by flow cytometry (FCM). The result showed that the percent of DR15 phenotype monocytes which were DR15-ve genotype significantly increased after incubated with purified DR15 dimer, which indicated that DR15 dimer has the capacity of binding to DR15-ve monocytes.
     2. Raising peptide-specific allogeneic CD4+ T cells from DR15-ve PBLs co-cultured with autologous monocytes loaded with the dimer
     DR15-ve PBLs were co-cultured with the dimer-loaded autologous monocytes for raising alloreactive CD4+ T cells. The autologous monocytes loaded with dimers (pulsed the specific peptide) were served as stimulating cells. PBLs obtained by density gradient centrifugation were served as stimulated cells. Here an allogeneic MHC classⅡmolecule associated with its restricted peptide is attached to monocytes. The DR15 dimer-loaded monocytes "present" the allogeneic epitope and induce autologous PBLs to generate peptide-specific allogeneic CD4+ T cells.
     The results of'CFSE dilution assay in vitro show that the dimer-loaded monocyte is able to stimulate autologous CD4+ T-cell proliferation; and specific dimer staining and ELISPOT assays reveal the allogeneic CD4+ T cells are pMHC specific.
     3. The tumor antigen peptide-specific allogeneic CD4+ T cells can be efficient at tumor rejection in vivo
     The DR15-ve PBLs were stimulated by two cycles of tumor peptide/DR15 dimer-loaded autologous monocytes for 14 d, and the CD4+ T cells purified from the bulk were adoptively transferred into nude mice challenged by SiHa cells. The result showed that the percent of tumor free mice was significantly higher in the specific group than in control groups and the percent survival of mice was also significantly higher in the specific group than in control groups. The result of immunohistochemistry showed that there were much more CD4+ cells infiltrating into tumors in the specific group than in control groups.
     In conclusion, peptide-specific allogeneic CD4+ T cells are induced by cocultruing DR15-ve PBLs and peptide/DR15 dimer-loaded autologous monocytes in this study and the CD4+ T cells have specific biological function in vitro and in vivo. Tumor antigen peptide-specific allogeneic CD4+ T cells infiltrate obviously into the tumor tissue of nude mice and inhibit the growth of the tumor, which verifies alloreactive CD4+ T cells play an important role in GVTR and support the development of clinical strategies focusing on exploiting the function of tumor-reactive CD4+ T cells. This study also affords a new strategy preparing allogenic tumor antigen-specific CD4+ T cells.
引文
1. Hornick P. Direct and indirect allorecognition. Methods Mol Bio.2006;333:145-156.
    2. Benichou G, Valujskikh A, heeger P S. Contributions of direct and indirect T cell alloreactivity dudring allograft rejection in mice. J Immunol.1999;162:352-358.
    3. Kisielow P, von Boehmer H. Development and selection of T cells:facts and puzzles.Adv Immunol.1995; 58:87-209.
    4. Pietra BA, Wiseman A, Bolwerk A, Rizeq M, Gill RG. CD4 T cell-mediated cardiac allograft rejection requires donor but not host MHC class Ⅱ. J Clin Invest.2000; 106: 1003-1010.
    5. Elliott TJ, Eisen HN. Cytotoxic T lymphocytes recognize a reconstituted class I histocompatibility antigen (HLA-A2) as an allogeneic target molecule. Proc Natl Acad Sci USA.1990; 87:5213-5217.
    6. Ljunggren H-G, Stam NJ, Ohlen C, Neefjes JJ, Hoglund P, Heemels M-T et al. Empty MHC class I molecules come out in the cold. Nature.1990;346:476-480.
    7. Germain RN, Hendrix LR. MHC class II structure, occupancy and surface expression determined by post-endoplasmic reticulum antigen binding. Nature.1991;353:134-139.
    8. Crumpacker DB, Alexander J, Cresswell P, Engelhard VH. Role of endogenous peptides in murine allogenic cytotoxic T cell responses assessed using transfectants of the antigenprocessing mutant 174xCEM.T2. J Immunol.1992;148:3004-3011.
    9. Man S, Salter RD, Engelhard VH. Role of endogenous peptide in human alloreactive cytotoxic T cell responses. Int Immunol.1992;4:367-375.
    10. de Koster HS, Vermeulen CJ, Koning F. The majority of HLA-DR3 alloreactive T cells is peptide specific, but does not recognize known DR3-bound sequences. Tissue Antigens.1998;51:88-95.
    11. HeathWR, Hurd ME, Carbone FR, Sherman LA. Peptide-dependent recognition of H-2Kb by alloreactive cytotoxic T lymphocytes. Nature.1989; 341:749-752.
    12. Rotzschke O, Falk K, Faath S, Rammensee HG. On the nature of peptides involved in T cell alloreactivity. J Exp Med.1991; 174:1059-1071.
    13. Kuzushima K, Sun R, van Bleek GM, Vegh Z, Nathenson SG. The role of self peptides in the allogeneic cross-reactivity of CTLs. J Immunol.1995; 155:594-601.
    14. Wang W, Man S, Gulden PH, Hunt DF, Engelhard VH. Class I-restricted alloreactive cytotoxic T lymphocytes recognize a complex array of specific MHC-associated peptides. J Immunol.1998; 160:1091-1097.
    15. Gao L, Yang TH, Tourdot S, Sadovnikova E, Hasserjian R, Stauss HJ. Allo-major histocompatibility complex-restricted cytotoxic T lymphocytes engraft in bone marrow transplant recipients without causing graft-versus-host disease. Blood.1999; 94(9):2999-3006.
    16. Savage P, Gao L, Vento K, Cowburn P, Man S, Steven N, Ogg G, McMichael A, Epenetos A, Goulmy E, Stauss HJ. Use of B cell-bound HLA-A2 class I monomers to generate high-avidity, allo-restricted CTLs against the leukemia-associated protein Wilms tumor antigen. Blood.2004;103(12):4613-4615.
    17. Wilde S, Sommermeyer D, Frankenberger B, Schiemann M, Milosevic S, Spranger S, Pohla H, Uckert W, Busch DH, Schendel DJ.Dendritic cells pulsed with RNA encoding allogeneic MHC and antigen induce T cells with superior antitumor activity and higher TCR functional avidity. Blood.2009;114 (10):2131-2139.
    18. Krieger, N.R., Yin, D.P., and Fathman, C.G. CD4+ but not CD8+ cells are essential for allorejection. J. Exp. Med.1996; 184:2013-2018.
    19. Dalloul AH, Chmouzis E, Ngo K, Fung-Leung WP. Adoptively transferred CD4+ lymphocytes from CD8 -/- mice are sufficient to mediate the rejection of MHC class II or class Ⅰ disparate skin grafts. J Immunol.1996;156(11):4114-4119.
    20. Schoenberger, S.P., Toes, R.E.M., van der Voort, E.I.H., Offringa, R., and Melief, C.J.M. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature.1998; 393:480-483.
    21. VanBuskirk, A.M., Wakely, M.E., and Orosz, C.G. Acute rejection of cardiac allografts by noncytolytic CD4 (+) T cell populations. Transplantation.1996; 62:300-302.
    22. Drobyski WR, Gendelman M, Vodanovic-Jankovic S, Gorski J.Elimination of leukemia in the absence of lethal graft-versus-host disease after allogenic bone marrow transplantation. J Immunol.2003;170 (6):3046-3053.
    23. Hari P, Logan B, Drobyski WR. Temporal discordance between graft-versus-leukemia and graft-versus-host responses:a strategy for the separation of graft-versus-leukemia/graft-versus-host reactivity? Biol Blood Marrow Transplant.2004; 10(11): 743-747.
    24. Kolb, H. J., Schmid, C., Barrett, A. J., Schendel, D. J. Graft-versus leukemia reactions in allogeneic chimeras. Blood.2004; 103:767-776.
    25. Schetelig, J., Kiani, A., Schmitz, M., Ehninger, G., Bornhauser, M. T cell-mediated graft-versus-leukemia reactions after allogeneic stem cell transplantation. Cancer Immunol. Immunother.2005;54:1043-1058.
    26. Yang I, Weiss L, Abdul-Hai A, Kasir J, Reich S, Slavin S.Induction of early post-transplant graft-versus-leukemia effects using intentionally mismatched donor lymphocytes and elimination of alloantigen-primed donor lymphocytes for prevention of graft-versus-host disease. Cancer Res.2005;65(21):9735-9740.
    27. Bondanza A, Ciceri F, Bonini C.Application of donor lymphocytes expressing a suicide gene for early GVL induction and later control of GVH reactions after bone-marrow transplantation. Methods Mol Med.2005; 109:475-486.
    28. Chakraverty R, Eom HS, Sachs J, et al. Host MHC class Ⅱ+ antigen-presenting cells and CD4 cells are required for CD8-mediated graft-versus-leukemia responses following delayed donor leukocyte infusions. Blood.2006;108:2106-2113.
    29. Shlomchik WD, Couzens MS, Tang CB, et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science.1999;285:412-415.
    30. Childs R, Chernoff A, Contentin N, et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stemcell transplantation. N Engl J Med.2000;343:750-758.
    31. Gratwohl A. Baldomero H, Demirer T, et al. Hematopoetic stem cell transplantation for solid tumors in Europe. Ann Oncol.2004; 15:653-660.
    32. Bishop MR, Fowler DH, Marchigiani D, et al. Allogeneic lymphocytes induce tumor regression of advanced metastatic breast cancer. J Clin Oncol.2004;22:3886-3892.
    33. Barkholt L, Bregni M, Remberger M, et al. Allogeneic haematopoietic stem cell transplantation for metastatic renal carcinoma in Europe. Ann Oncol.2006;17: 1134-1140.
    34. Demirer T, Barkholt L, Blaise D, et al. Transplantation of allogeneic hematopoietic stem cells:an emerging treatment modality for solid tumors. Nat Clin Pract Oncol. 2008;5:256-267.
    35. Takahashi Y, Harashima N, Kajigaya S, et al. Regression of human kidney cancer following allogeneic stem cell transplantation is associated with recognition of an HERV-E antigen by T cells. J Clin Invest.2008;118:1099-1109.
    36. Suzuki Y, Adachi Y, Minamino K, et al. A new strategy for treatment of malignant tumor:intra-bone marrow-bone marrow transplantation plus CD4- donor lymphocyte infusion. Stem Cells.2005;23:365-370.
    37. Koike Y, Adachi Y, Suzuki Y, et al. Allogeneic intrabone marrow-bone marrow transplantation plus donor lymphocyte infusion suppresses growth of colon cancer cells implanted in skin and liver of rats. Stem Cells.2007;25:385-391.
    38. Heath WR, Hurd ME, Carbone FR, Sherman LA. Peptide-dependent recognition of H-2Kb by alloreactive cytotoxic T lymphocytes. Nature.1989;341:749-752.
    39. Weng X, Zhong M, Liang Z, Lu S, Hao J, Chen X, et, al. Peptide-dependent inhibition of alloreactive T-cell response by soluble divalent HLA-A2/IgG molecule in vitro. Transplantation.2007;84:1298-1306.
    40. Xueling Chen,Yongxiang Yan,Shengjun Lu, et, al. Raising allo-restricted cytotoxic T lymphocytes by co-culture of murine splenocytes with autologous macrophage bearing the peptide/allo-major histococompatibility complex. Human Immunology. 2009;70:79-84.
    41. Sadovnikova E, Jopling LA, Soo KS, Stauss HJ. Generation of human tumor reactive cytotoxic T cells against peptides presented by non-self HLA class Ⅰ molecules. Eur J Immunol.1998;28:193-200.
    42. Fowler DH. Shared biology of GVHD and GVT effects:Potential methods of separation. Crit Rev Oncol Hematol.2006;57:225-244.
    43. Weng X, Lu S, Zhong M, Liang Z, Shen G, Chen J, Wu X. Allo-restricted CTLs generated by coculturing of PBLs and autologous monocytes loaded with allogeneic peptide/HLA/IgG1-Fc fusion protein. J Leukoc Biol.2009;85:574-581.
    44.孙继丽,杜可明,傅敏,等.20596名汉族造血干细胞供者HLA多态性统计学分析.中国输血杂志.2006;19(5):379-384.
    45.高素青,吴国光,李兴茂,等.安徽汉族HLA-A、B、DRB1基因多态性和单倍型的分布特征.临床输血与检验.2005;7(3):161-169.
    46.潘 杰,周胜利,沈柏均,等.山东脐血库保存4000人份脐血资料的统计分析.中国实验血液学杂志.2002;10(3):257-260.
    47. Kalandadze, A., M. Galleno, L. Foncerrada, J. L. Strominger, and K. W. Wucherpfennig. Expression of recombinant HLA-DR2 molecules:replacement of the hydrophobic transmembrane region by a leucine zipper dimerization motif allows the assembly and secretion of soluble DR ab heterodimers. J. Biol. Chem.1996;271:20156-20162.
    48. Appel, H., L. Gauthier, J. Pyrdol, and K. W. Wucherpfennig. Kinetics of T cell receptor binding by bivalent HLA-DR/peptide complexes that activate antigen-specific human T cells. J. Biol. Chem.2000;275:312-321.
    49. Dominic E. Warrino, Walter C. Olson,William T. Knapp, Meera I. Scarrow, Lori J. D'Ambrosio-Brennan, Richard S. Guido,Robert P. Edwards, W. Martin Kast, Walter J.
    Storkus. Disease-Stage Variance in Functional CD4+ T-Cell Responses Against Novel Pan-Human Leukocyte Antigen-D Region Presented Human Papillomavirus-16 E7 Epitopes.Clinical Cancer Research.2004;10:3301-3308.
    50. Van der Burg SH, Ressing ME, Kwappenberg KM, et al. Natural T-helper immunity against human papillomavirus type 16 (HPV-16) E7-derived peptide epitopes in patients with HPV-16-positive cervical lesions:identification of 3 human leukocyte antigen class Ⅱ-restricted epitopes. Int J Cancer.2001;91:612-618.
    51. Kurane I, Okamoto Y, Dai LC, Zeng LL, Brinton MA, Ennis FA. Flavivirus-cross-reactive, HLA-DR15-restricted epitope on NS3 recognized by human CD4+ CD8+-cytotoxic T lymphocyte clones. J Gen Virol.1995;76:2243-2249.
    52. Gergely J., Sarmay G. The two binding-site models of human IgG binding Fc gamma receptors. FASEB J.1990;4:3275-3283.
    53. Winkel J G and Caple P J. Human IgG Fc receptor heterogeneity:molecular aspects and clinical implications. Immunol Today.1993;14(5):215-221.
    54. Valerius T, Repp R, de Wit TP, et al. Involvement of the high-affinity receptor for IgG (Fc gamma RI; CD64) in enhanced tumor cell cytotoxicity of neutrophils during granulocyte colony-stimulating factor therapy.Blood.1993;82(3):931-939.
    55. Anderson C L and Abraham G N. Characterization of the Fc receptor for IgG on a human macrophage cell line, U937. J Immunol.1980;125(6):2735-2741.
    56. Emma L. Masteller, Matthew R. Warner, Walter Ferlin, Valeria Judkowski, Darcy Wilson, Nicolas Glaichenhaus, Jeffrey A. Bluestone. Peptide-MHC Class II Dimers as Therapeutics to Modulate Antigen-Specific T Cell Responses in Autoimmune Diabetes. J. Immunol.2003;171:5587-5595.
    57. Zaruhi Karabekian, Simon D. Lytton, Phyllis B. Silver, Yuri V. Sergeev, Jonathan P. Schneck, and Rachel R. Caspi. Antigen/MHC Class Ⅱ/Ig Dimers for Study of Uveitogenic T Cells:IRBP p161-180 Presented by both IA and IE Molecules.IOVSi. 2005;46:3769-3776.
    58. Gorga JC, Knudsen PJ, Foran JA, Strominger JL, Burakoff SJ. Immunochemically purified DR antigens in liposomes stimulate xenogeneic cytolytic T cells in secondary in vitro cultures.Cell Immunol.1986;103(1):160-173.
    59. Bunce, M., O'Neill, C. M., Barnardo, M. C., Krausa, P., Browning, M. J., Morris, P. J., Welsh, K. I. Phototyping:comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5& DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP). Tissue Antigens.1995;46:355-367.
    60. Ciccarone VC, Polayes D, Luckow VA. Generation of recombinant baculovirus DNA in E. coli using baculovirus shuttle vector, volume 13, U. Reischt, ed.(Totowa, NJ; Humana Press Inc.).1997(13).
    61. Barry GF. A broad-host-range shuttle system for gene insertion into the chromosomes of gram-negative bacteria.Gene.1988;71(1):75-84.
    62. Vaughn, J. L., Goodwin, R. H., Tompkins, G. J., and McCawley, P.. The Establishment of Two Cell Lines from the Insect Spodoptera frugiperda (Lepidoptera:Noctuidae). In Vitro.1977;13:213-217.
    63. kow VA. Cloning and expression of heterologous genes in insect cells with baculovirus vector. In:Prokop A, Bajpai PK, and Ho C,eds-Recombinant DNA Technology and Applications.New York:McGraw-Hill.1991;97-152.
    64. Jones D H, Nusbacher J, Anderson C L, et al, Fc receptor-mediated binding and endocytosis by human mononuclear phagocytes:monomeric IgG is not endocytosed by U937 cells and monocytes, J.Cell.Biol.1985; 100:558-564.
    65. Harrison P T, Davis W, Norman J C, et al. Binding of monomeric immunoglobulin G triggers FcyRI-mediated endocytosis. J Biol Chem.1994; 269(30):24396-24402.
    66. Matzinger P and Bevan M J. Why do so many lymphocytes respond to major histocompatibility antigens? Cell Immunol.1977; 29:1-5.
    67. Luft T, Rizkalla M,Tsin Y T, et al.Exogenous Peptides Presented by Transporter Associated with Antigen Processing (TAP)-Deficient and TAP-Competent Cells: Intracellular Loading and Kinetics of Presentation1. J Immunol.2001; 167:2529-2537.
    68. Man S, Salter R D and Engelhard V H.Role of endogenous peptide in human alloreactive cytotoxic T cell responses.International Immunology.1992; 4:367-375.
    69. Powis S J, Townsend A R, Deverson E V, et al. Restoration of antigen presentation to the mutant cell line RMA-S by an MHC-linked transporter. Nature.1991; 354(6354):528-531.
    70. Gabathuler R, Reid G, Kolaitis G, et al. Comparison of cell lines deficient in antigen presentation reveals a functional role for TAP-1 alone in antigen processing. J Exp Med.1994;180(4):1415-1425.
    71. Givan AL, Fisher JL, Waugh M, et al. A flow cytometric method to estimate the precursor frequencies of cells proliferating in response to specific antigens. J. Immunol. Methods.1999; 230:99-112.
    72. Bercovici N, Givan AL, Waugh MG, et al. Multiparameter precursor analysis of T-cell responses to antigen.J Immunol Methods.2003; 276:5-17.
    73. Kaur, P., McDougall, J.K., Cone, R. Immortalization of primary human epithelial cells by cloned cervical carcinoma DNA containing human papillomavirus type 16 E6/E7 open reading frames. J. Gen. Virol.1989;70:1261-1266.
    74. Kabelitz D, Herzog W R, Heeg K, et al. Human cytotoxici T lymphocytes. III. Large numbers of peripheral blood T cells clonally develop into allorestricted anti-viral cytotoxic T cell populations in vitro.J Mol Cell Immunol.1987; 3(1):49-60.
    75.谢鑫,金伯泉,张婷婷,等.一株Th2样细胞杂交瘤表型及胞内细胞因子的检测.免疫学杂志.2000;16(2):158.
    76.曹云新,金伯泉,韩卫宁.CD3/CD8设门在FCM检测Th1/Th2亚型中的应用.细胞与分子免疫学杂志.2002;18(6):638-639.
    77. Liu Z, Noh HS, Chen J, Kim JH, Falo LD Jr, You Z. Potent tumor-specific protection ignited by adoptively transferred CD4+ T cells. J Immunol.2008;181(6):4363-4370.
    78. Perez-Diez A, Joncker NT, Choi K, Chan WF, Anderson CC, Lantz O, Matzinger P: CD4+ cells can be more efficient at tumor rejection than CD8+ cells. Blood. 2007;109:5346-5354.
    79. Katrin U. Lundin, Peter O. Hofgaard, Hilde Omholt, Ludvig A. Munthe, Alexandre Corthay, and Bjarne Bogen. Therapeutic effect of idiotype-specific CD4+ T cells against B-cell lymphoma in the absence of anti-idiotypic antibodies. Blood.2003;102:605-612.
    80. Quezada SA, Simpson TR, Peggs KS, Merghoub T, Vider J, Fan X, Blasberg R, Yagita H, Muranski P, Antony PA, Restifo NP, Allison JP. Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med.2010;207:637-650.
    81. Frey AB. Role of host antigen receptor-bearing and antigen receptor-negative cells in immune response to rat adenocarcinoma 13762.J Immunol.1996;15;156:3841-3849.
    82. Frey AB, Cestari S. Killing of rat adenocarcinoma 13762 in situ by adoptive transfer of CD4+ anti-tumor T cells requires tumor expression of cell surface MHC class Ⅱ molecules. Cell Immunol.1997;178:79-90.
    83. Mumberg D, Monach PA, Wanderling S, et al.CD4+ T cells eliminate MHC class Ⅱ-negative cancer cells in vivo by indirect effects of IFN gamma. Proc Natl Acad Sci U S A.1999;96:8633-8638.
    84. Qin Z, Blankenstein T. CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity.2000; 12:677-686.
    85. Nikiforow S, Bottomly K, Miller G, Munz C J.Cytolytic CD4+ T-cell clones reactive to EBNA1 inhibit Epstein-Barr virus-induced B-cell proliferation.Virol.2003;77: 12088-12104.
    86. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H. The central role of CD4 (+) T cells in the antitumor immune response. J Exp Med. 1998;188:2357-2368.
    1. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM et al. Cancer regression and autoimmunity in patients after clonal repopulationwith antitumor lymphocytes. Science. 2002; 298:850-854.
    2. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer.2008; 8:299-308.
    3. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF et al. Adoptive cell therapy for patients with metastatic melanoma:evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol.2008; 26:5233-5239.
    4. Savoldo B, Goss JA, Hammer MM, Zhang L, Lopez T, Gee AP, Lin YF, Quiros-Tejeira RE, Reinke P, Schubert S et al. Treatment of solid organ transplant recipients with autologous Epstein-Barr virus-specific cytotoxic T lymphocytes (CTLs). Blood.2006; 108:2942-2949.
    5. Straathof KC, Bollard CM, Popat U, Huls MH, Lopez T, Morriss MC, Gresik MV, Gee AP, Russell HV, Brenner MK et al. Treatment of nasopharyngeal carcinoma with Epstein-Barr virus-specific T lymphocytes. Blood.2005; 105:1898-1904.
    6. Hanson HL, Donermeyer DL, Ikeda H, et al. Eradication of established tumors by CD8+ T cell adoptive immunotherapy. Immunity.2000; 13:265-276.
    7. Prevost-Blondel A, Neuenhahn M, Rawiel M, Pircher H. Differential requirement of perforin and IFN-gamma in CD8 T cell-mediated immune responses against B16.F10 melanoma cells expressing a viral antigen. Eur J Immunol.2000;30:2507-2515.
    8. Nelson DJ, Mukherjee S, Bundell C, Fisher S, van Hagen D, Robinson B. Tumor progression despite efficient tumor antigen cross-presentation and effective "arming" of tumor antigen-specific CTL. J Immunol.2001:166:5557-5566.
    9. Blank C, Brown I, Peterson AC, et al. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res. 2004;64:1140-1145.
    10. Gattinoni L, Finkelstein SE, Klebanoff CA, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med.2005;202:907-912.
    11. Antony PA, Piccirillo CA, Akpinarli A, et al. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol.2005; 174:2591-2601.
    12. Dobrzanski MJ, Reome JB, Hylind JC, Rewers-Felkins KA. CD8-mediated type 1 antitumor responses selectively modulate endogenous differentiated and nondifferentiated T cell localization, activation, and function in progressive breast cancer. J Immunol.2006;177:8191-8201.
    13. Surman DR, Dudley ME, Overwijk WW, Restifo NP. CD4(+) T cell control of CD8(+) T cell reactivity to a model tumor antigen. J Immunol.2000;164:562-565.
    14. Shedlock DJ, Shen H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science.2003; 300:337-339.
    15. Bourgeois C, Veiga-Fernandes H, Joret AM, Rocha B, Tanchot C. CD8 lethargy in the absence of CD4 help. Eur J Immunol.2002; 32:2199-2207.
    16. Bevan MJ. Helping the CD8(+) T-cell response. Nat Rev Immunol.2004;4:595-602.
    17. Sun JC, Bevan MJ. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science.2003; 300:339-342.
    18. Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA. Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst.1996;88:100-108.
    19. Khong HT, Restifo NP. Natural selection of tumor variants in the generation of "tumor escape" phenotypes. Nat Immuriol.2002; 3:999-1005
    20. Liu ZQ, Noh HS, Chen J, Kim JH, Falo LD, You ZY. Potent tumorspecific protection ignited by adoptively transferred CD4(+) T cells. J Immunol.2008; 181:4363-4370.
    21. Marsh SGE, Albert ED, Bodmer WF, Bontrop RE, Dupont B, Erlich HA, Geraghty DE, Hansen JA, Hurley CK, Mach B et al. Nomenclature for factors of the HLA system,2004. Tissue Antigens.2005; 65:301-369.
    22. Foulds KE, Zenewicz LA, Shedlock DJ, Jiang J, Troy AE, Shen H. Cutting edge:CD4 and CD8 T cells are intrinsically different in their proliferative responses. J Immunol. 2002; 168:1528-1532.
    23. Mumberg D, Monach PA, Wanderling S, et al.CD4(+) T cells eliminate MHC class II-negative cancer cells in vivo by indirect effects of IFNgamma. Proc Natl Acad Sci USA.1999;96:8633-8638.
    24. Qin Z, Blankenstein T. CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity.2000; 12:677-686.
    25. Katrin U. Lundin, Peter O. Hofgaard, Hilde Omholt, Ludvig A. Munthe, Alexandre Corthay, and Bjarne Bogen. Therapeutic effect of idiotype-specific CD4+ T cells against B-cell lymphoma in the absence of anti-idiotypic antibodies. Blood.
    2003;102:605-612.
    26. Nikiforow S, Bottomly K, Miller G, Munz C J.Cytolytic CD4(+)-T-cell clones reactive to EBNA1 inhibit Epstein-Barr virus-induced B-cell proliferation.Virol. 2003;77(22):12088-104.
    27. Perez-Diez A, Joncker NT, Choi K, Chan WF, Anderson CC,Lantz 0, Matzinger P.CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood.2007; 109:5346-5354.
    28. Alan B. Frey, S. Cestari. Killing of Rat Adenocarcinoma 13762 in Situ by Adoptive Transfer of CD4/Anti-tumor T Cells Requires Tumor Expression of Cell Surface MHC Class Ⅱ Molecules. Cell Immunol.1997; 178:79-90.
    29. Frey AB. Role of host antigen receptor-bearing and antigen receptor-negative cells in immune response to rat adenocarcinoma 13762. J Immunol.1996;156(10):3841-3849.
    30. Liu Z, Noh HS, Chen J, Kim JH, Falo LD Jr, You Z. Potent tumor-specific protection ignited by adoptively transferred CD4+ T cells. J Immunol.2008;181(6):4363-4370.
    31. Quezada SA, Simpson TR, Peggs KS, Merghoub T, Vider J, Fan X, Blasberg R, Yagita H, Muranski P, Antony PA, Restifo NP, Allison JP. Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med.2010;207:637-650.
    32. Gill RG, Rosenberg AS, Lafferty KJ, Singer A. Characterization of primary T cell subsets mediating rejection of pancreatic islet grafts. J Immunol. 1989;143(7):2176-2178.
    33. Krieger NR, Yin DP, Fathman CG. CD4+ but not CD8+ cells are essential for allorejection. J. Exp. Med.1996;184:2013-2018.
    34. Dalloul AH, Chmouzis E, Ngo K, Fung-Leung WP. Adoptively transferred CD4+ lymphocytes from CD8 -/- mice are sufficient to mediate the rejection of MHC class II or class I disparate skin grafts. J Immunol.1996;156(11):4114-4119.
    35. Biagio A. Pietra, Alex Wiseman, Amy Bolwerk, Mona Rizeq, Ronald G. Gill. CD4 T cell-mediated cardiac allograft rejection requires donor but not host MHC class Ⅱ. J. Clin. Invest.2000;106:1003-1010.
    36. Abdel-Rahman Youssef, Carolyn Otley, Peter W. Mathieson, Richard M. Smith. Role of CD4+ and CD8+ T cells in murine skin and heart allograft rejection across different antigenic disparities.Transplant Immunology.2004;13:297-304.
    37. Gill,R.G. T-cell-T-cell collaboration in allograft responses. Curr.Opin. Immunol. 1993;5:782-787.
    38. Auchincloss H Jr, Lee R, Shea S, Markowitz JS, Grusby MJ, Glimcher LH. The role of "indirect" recognition in initiating rejection of skin grafts from major histocompatibility complex class Ⅱ-deficient mice. Proc Natl Acad Sci U S A. 1993;90(8):3373-1177.
    39. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature. 1998;393(6684):478-480.
    40. Ridge, J.P., Di Rosa, F., and Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature.1998; 393:474-478.
    41. Schoenberger, S.P., Toes, R.E.M., van der Voort, E.I.H., Offringa, R., and Melief, C.J.M. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature.1998;393:480-483.
    42. Wecker, H., Winn, H., and Auchincloss, H.J. CD4+ T cells, without CD8+ or B lymphocytes, can reject xenogeneic skin grafts. Xenotransplantation.1994;1:8-16.
    43. Gill, R., Wolf, L., Daniel, D., and Coulombe, M. CD4+ T cells are both necessary and sufficient for islet xenograft rejection. Transplant.Proc.1994; 26:1203.
    44. VanBuskirk, A.M., Wakely, M.E., and Orosz, C.G. Acute rejection of cardiac allografts by noncytolytic CD4 (+) T cell populations. Transplantation.1996; 62:300-302.
    45. Drobyski WR, Gendelman M, Vodanovic-Jankovic S, Gorski J.Elimination of leukemia in the absence of lethal graft-versus-host disease after allogenic bone marrow transplantation. J Immunol.2003; 170 (6):3046-53.
    46. Hari P, Logan B, Drobyski WR. Temporal discordance between graft-versus-leukemia and graft-versus-host responses:a strategy for the separation of graft-versus-leukemia/graft-versus-host reactivity? Biol Blood Marrow Transplant. 2004;10(11):743-747.
    47. Kolb, H. J., Schmid, C., Barrett, A. J., Schendel, D. J. Graft-versus leukemia reactions in allogeneic chimeras. Blood.2004; 103:767-776.
    48. Schetelig, J., Kiani, A., Schmitz, M., Ehninger, G., Bornhauser, M. T cell-mediated graft-versus-leukemia reactions after allogeneic stem cell transplantation. Cancer Immunol. Immunother.2005;54:1043-1058.
    49. Yang I, Weiss L, Abdul-Hai A, Kasir J, Reich S, Slavin S.Induction of early post-transplant graft-versus-leukemia effects using intentionally mismatched donor lymphocytes and elimination of alloantigen-primed donor lymphocytes for prevention of graft-versus-host disease. Cancer Res.2005;65(21):9735-9740.
    50. Bondanza A, Ciceri F, Bonini C.Application of donor lymphocytes expressing a suicide gene for early GVL induction and later control of GVH reactions after bone-marrow transplantation. Methods Mol Med.2005;109:475-486.
    51. Chakraverty R, Eom HS, Sachs J, et al. Host MHC class Ⅱ+ antigen-presenting cells and CD4 cells are required for CD8-mediated graft-versus-leukemia responses following delayed donor leukocyte infusions. Blood.2006;108:2106-2113.
    52. Shlomchik WD, Couzens MS, Tang CB, et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science.1999;285:412-415.
    53. Childs R, Chernoff A, Contentin N, et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stemcell transplantation. N Engl J Med.2000;343:750-758.
    54. Gratwohl A, Baldomero H, Demirer T, et al. Hematopoetic stem cell transplantation for solid tumors in Europe. Ann Oncol.2004; 15:653-660.
    55. Bishop MR, Fowler DH, Marchigiani D, et al. Allogeneic lymphocytes induce tumor regression of advanced metastatic breast cancer. J Clin Oncol.2004;22:3886-3892.
    56. Barkholt L, Bregni M, Remberger M, et al. Allogeneic haematopoietic stem cell transplantation for metastatic renal carcinoma in Europe. Ann Oncol. 2006;17:1134-1140.
    57. Demirer T, Barkholt L, Blaise D, et al. Transplantation of allogeneic hematopoietic stem cells:an emerging treatment modality for solid tumors. Nat Clin Pract Oncol. 2008;5:256-267.
    58. Takahashi Y, Harashima N, Kajigaya S, et al. Regression of human kidney cancer following allogeneic stem cell transplantation is associated with recognition of an HERV-E antigen by T cells. J Clin Invest.2008;118:1099-1109.
    59. Suzuki Y, Adachi Y, Minamino K, et al. A new strategy for treatment of malignant tumor:intra-bone marrow-bone marrow transplantation plus CD4-donor lymphocyte infusion. Stem Cells.2005;23:365-370.
    60. Koike Y, Adachi Y, Suzuki Y, et al. Allogeneic intrabone marrow-bone marrow transplantation plus donor lymphocyte infusion suppresses growth of colon cancer cells implanted in skin and liver of rats. Stem Cells.2007;25:385-391.
    61. Heath WR, Hurd ME, Carbone FR, Sherman LA. Peptide-dependent recognition of H-2Kb by alloreactive cytotoxic T lymphocytes. Nature.1989;341.749-752.
    62. Weng X, Zhong M, Liang Z, Lu S, Hao J, Chen X, et, al. Peptide-dependent inhibition of alloreactive T-cell response by soluble divalent HLA-A2/IgG molecule in vitro. Transplantation.2007;84:1298-1306.
    63. Xueling Chen,Yongxiang Yan,Shengjun Lu, et, al.Raising allo-restricted cytotoxic T lymphocytes by co-culture of murine splenocytes with autologous macrophage bearing the peptide/allo-major histococompatibility complex. Human Immunology. 2009;70:79-84.
    64. Sadovnikova E, Jopling LA, Soo KS, Stauss HJ. Generation of human tumor reactive cytotoxic T cells against peptides presented by non-self HLA class Ⅰ molecules. Eur J Immunol.1998;28:193-200.
    65. Fowler DH. Shared biology of GVHD and GVT effects:Potential methods of separation. Crit Rev Oncol Hematol.2006;57:225-244.
    66. Weng X, Lu S, Zhong M, Liang Z, Shen G, Chen J, Wu X. Allo-restricted CTLs generated by coculturing of PBLs and autologous monocytes loaded with allogeneic peptide/HLA/IgGl-Fc fusion protein. J Leukoc Biol.2009;85:574-581.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700