石英玻璃及石英光纤的抗辐射性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,石英玻璃及石英光纤在辐射环境下的应用逐渐引起了人们的广泛关注,但研究者们在关于材料组成对两者的抗辐射性能的影响、不同辐射条件下的辐致损伤等问题的理解上存在一定的分歧。为了进一步研究石英玻璃及光纤的辐致损伤机制和影响因素,为制备具有较高抗辐射性能的石英光纤奠定理论基础,本文以等离子体化学气相沉积工艺(PCVD)制备的高纯、掺杂石英玻璃及石英光纤为研究对象,分析了掺杂对石英玻璃结构以及抗辐射性能的影响,对比了不同材料组成的石英光纤的抗辐射性能,研究了辐致损耗与辐射条件之间的相关性,同时就石英光纤抗辐射性能的优化开展了一些研究工作。主要研究内容和结论如下:
     (1)红外光谱及Raman光谱测试结果表明,氟在石英玻璃中的存在状态为[SiO3F],氟的引入将增大断网几率,减少石英玻璃中的三元环与四元环等结构。石英玻璃的抗辐射能力随着掺F量的增加而增加。电子自旋共振谱(ESR)测试结果表明,纯石英玻璃及掺氟石英玻璃在200-900nm波段的吸收主要来自于SiE’心,对SiE’心的形成机制进行了解释,并给出了SiE’心吸收与辐照剂量之间的函数关系。
     (2)在掺锗石英玻璃Raman光谱中,既出现了[SiO4]、[GeO4]的特征振动峰,如Si-O-Si伸缩振动峰(1060cm-1)以及Si-O-Si弯曲振动(420cm-1)与Ge-O-Ge弯曲振动(440cm-1)相叠加后的强峰,同时也出现了Ge-O-Si的振动峰(675cm-1),说明出现了[SiO4]和[GeO4]之间的相互连接现象,同时采用二能级理论模型对三元环与四元环特征峰的变化进行了解释。单掺锗石英玻璃的抗辐射能力随着锗含量的增加而恶化,辐照之后出现了大量与锗有关的色心,色心的吸收主要在193nm、213nm、242nm以及300nm附近,这些色心使得石英玻璃在紫外波段的吸收增加、透过率下降。此外,将ESR结果与吸收光谱结果进行了关联,对掺锗石英玻璃中的缺陷进行了辨认。研究表明:300nm的吸收与Ge(1)心的浓度符合良好的线性,而213nm的吸收与GeE’心浓度之间不存在线性关系。
     (3)在介绍石英光纤材料组成与结构的基础上,提出了PCVD工艺在制备抗辐射光纤方面的优势,简要分析了抗辐射光纤产品的开发思路。对比研究了三种不同结构组成的单模光纤的抗辐射性能,它们的抗辐射能力由高到低顺序为:纯硅芯光纤>采用功能梯度概念设计制造的氟锗共掺单模光纤>单掺锗石英芯单模光纤。同时评估了一种普通多模光纤在不同辐照条件下抗辐射能力。光纤的折射率剖面测试结果表明,即使较高剂量(10kGy/h×10h)的Gamma射线辐照也不会对光纤的波导结构造成明显影响。此外,结合ESR结果给出了光纤中引起辐致吸收的缺陷的转变过程,得到了单模光纤在1550nm、多模光纤在1300nm波段的辐致损耗与辐照条件之间的函数关系,借由此关系可以对光纤的抗辐射能力给出预估。
     (4)研究纯硅芯单模光纤以及氟锗共掺单模光纤的抗辐射性能对拉丝工艺的依赖性发现,前者受拉丝工艺影响较大,后者受拉丝工艺影响小,因而更适合规模生产。对比单独载氢以及预辐照结合载氢对光纤抗辐射性能的优化效果,结果表明预辐照结合载氢更有助于改善光纤的抗辐射性能。这对于图象传输用光纤具有较大意义。
In recent years, the applications of silica glass and silica optical fibres in the radiation environment aroused extensive attention of the researchers. There are different opinions of the influence of material structure on the radiation resistance properties of silica glass and silica optical fibres. Arguments are never stopped on the radiation-induced defect in different radiation conditions. In this dissertation, the pure silica glass, doped silica glass and optical fibres fabricated with PCVD process are taken as the study objects, in order to further study the radiation-induced defect mechanism and concerned influence factors, to lay a foundation for the production of high quality radiation resistance optical fibres. The dopant influences on the structure of silica glass and radiation resistance properties are researched. The radiation resistance propertiesof optical fibres with different structures are compared. The relationship between radiation-induced losses of optical fibres and radiation conditions is studied. The improvement of optical fibre's radiation resistance properties is considered as well. The main contents and conclusions are as follows:
     (1) By analyzing the Si-F bond vibration absorption bands from the infra-red spectrum and Raman spectrum of Fluorine doped silica glass, it was found that Fluorine exists in silica networks as the formation of [SiO3F]. The introduction of Fluorine will increase the probability of bond broken, and decrease the structures of 3-fold rings and 4-fold rings. Consequently, the radiation resistance properties of silica glass will be improved with the increase of the Fluorine doped quantity. According to the UV-VIS spectrum combined with ESR test results, the absorptions of the pure silica glass and doped silica glass in 200 to 900 nm are mainly contributed by SiE' centers. In this dissertation, the formation principle of SiE' centers was researched. The functional relation of the SiE'absorbance and radiation dose was explained as well.
     (2) By analyzing the Raman spectrum of Ge doped silica glass, the Si-O-Si stretching band (1060cm-1), the overlap of bending vibration of Si-O-Si(420cm-1) and Ge-O-Ge(440cm-1) were observed. The vibration band of Ge-O-Si at 675cm-1 were observed as well. It has been proved that the linkage between [SiO4] and [GeO4] in Ge-doped silica glass exists. Based on the two level energy model, the change of 3-fold rings and 4-fold rings band was explained. The radiation resistance properties of silica glass will be deteriorated with the increase of the Germanium doped quantity. After radiation, plenty of Ge-related color centers were found. The Ge-related color centers are mainly located around 193nm,213nm,242nm and 300nm which will cause the absorption increase and permeation decrease in the ultraviolet band. Combined the ESR test results and optical absorption spectrum, the flaws in Ge-doped silica glass were identified. After calculation, it was demonstrated that there is linear relationship between the absorption peak value at 300nm and the Ge(1) center concentration. Besides, no linear relationship was found between the absorption peak value at 213nm and the GeE'center concentration.
     (3) With the introduction of material structure of silica optical fibre, the advantages of PCVD process used for the fabrication of radiation resistant optical fibre are analyzed. Three kinds of single mode optical fibres with different structures were compared:the pure silica core optical fibre has the best radiation resistance, the F-Ge co-doped optical fibre with functional graded material design takes the second place, and the Ge-doped silica core optical fibre is the worst. Different radiation conditions on the same multimode optical fibres were evaluated as well. Based on the refractive index (RI) test results, it has been proved that even with high radiation dose (10kGy/h×10h), the Gamma irradiation will not influence the waveguide structures obviously. Based on the ESR test results, the transition process of radiation induced defects in optical fibres was researched. Functional relation between the radiation induced losses (SMF at 1550nm and MMF at 1300nm) and radiation conditions was concluded. It could be used for the pre-evaluation of the radiation resistance properties of the optical fibres.
     (4) The radiation resistance properties are dependent of the drawing process. The pure silica core optical fibre is more sensitive with the drawing process, and the Ge-F co-doped single mode fibre is insensitive with the drawing process, which is more suitable for large scale production. Comparing the effect of hydrogen treatment with that of pre-radiation plus hydrogen treatment, it has been proved that the later is more effective on optimizing the radiation resistance properties of the optical fibre. This is especially meaningful for the image-guide-used optical fibres.
引文
[1]Tatsuo Shikama, Tsunemi Kakuta, et al. Growth of optical transmission loss at 850 nm in silica core optical fibres during fission reactor irradiation[J]. Journal of Nuclear Materials, 1998,253:180-189.
    [2]B. Brichard. A. Fernandez, F. Berghmans. Origin of the Radiation-Induced OH Vibration Band in Polymer-Coated Optical Fibers Irradiated in a Nuclear Fission Reactor[J]. IEEE Transaction on Nuclear Science,2002,49(6):2852-2856.
    [3]T. Shikama, T. Kakuta. Optical properties in fibers during irradiation in a fission reactor[J]. Journal of Nuclear Materials,1995,225:324-327.
    [4]K. Toh, T. Shikama, et al. Optical characteristics of aluminum coated fused silica core fibers under 14 MeV fusion neutron irradiation[J]. Journal of Nuclear Materials,2004,329-333: 1495-1498.
    [5]S. Yamamoto, T. Shikama, et al. Impact of irradiation effects on design solutions for ITER diagnostics[J]. Journal of Nuclear Materials,2000,283-287:60-69.
    [6]M. Van Uffelen, S. Girard, B. Brichard, et al. Gamma Radiation Effects in Er Doped Silica Fibers[J]. IEEE Transaction on Nuclear Science,2004,51(5),:2763-2769.
    [7]Friebele, E. J., K. L. Dorsey. et al. Optical Fiber Waveguides for Spacecraft applications, Fiber Optics in Adverse Environments Ⅲ[J]. SPIE Proceedings 1986,721-01:98-103
    [8]Greenwell, R. A., C. E. Barners et al. Optical fibers in the Adverse Space Environment:The Space Station[C]. Proceedings of Fiber Optics'90, Apr.1990, London, England. SPIE Vol.1314-14 pages 100-104,24-26
    [9]E.J. Friebele, M. E. Gingerich, D. L. Griscom. Survivability of optical fibers in space[C]. SPIE, Optical Materials Reliability and Testing,1992,1791:177-188
    [10]Yuichi Watanabe, Hiroshi Kawazoe, et al. Structure and Mechanism of Formation of Drawing-or Radiation-induced Defects in SiO2:GeO2 Optical Fiber[J]. Japanese Journal of Applied Physics,1986,25(3):425-431
    [11]Kakuta, T. K. Sakasai, et al. Absorption and fluorescence phenomena of optical fibers under heavy neutron irradiation[J]. Journal of Nuclear Materials,1998,258-263:1893-1896.
    [12]T. Kakuta, T. Shikama. Behavior of optical fibers under heavy irradiation [J]. Fusion Engineering and Design,1998,41:201-205.
    [13]B. Brichard, P. Borgermans, et al. Radiation Effect in Silica Optical Fiber Exposed to Intense Mixed Neutron-Gamma Radiation Field[J]. IEEE Transaction on Nuclear Science,2001, 48(6):2069-2073.
    [14]高学民.核辐射对光纤的影响及改善光纤抗辐照性的一些措施[J].光纤光缆极其应用技术.1881:27-38
    [15]E. J. Friebele, R. J. Ginther, and G. H. Sigel Jr. Radiation protection of fiber optic materials: Effects of oxidation and reduction[J]. Applied Physics Letters,1974,24(9):412-414
    [16]E. J. Friebele, D. L. Griscom, et al. Fundamental defect centers in glass:The peroxy radical in irradiated, high-purity, fused silica[J]. Physical Review Letters,1979,42(20):1346-1349
    [17]葛世名.石英玻璃的耐辐照性能[J].原子能科学技术,1983,72(2):170-173
    [18]李宗民,张辰华,汪勇.光纤γ辐照损耗效应及缺陷机制的研究[J].半导体光电,1991,12(1):76-81
    [19]刘方新, 张辰华.光纤辐照缺陷的电子自旋共振研究[J].物理学报,1994,43(11):1872-1875
    [20]刘锐,殷宗敏,李荣玉等.石英光纤受γ射线辐照实验[J].光学技术,2000,26(1):81-83
    [21]李荣玉,殷宗敏,王建华等.石英光纤抗辐照加固的研究[J].上海交通大学学报,2000,34(2):215-217
    [22]邓都才,何书平.耐瞬态核辐照光纤的制备和测试[J].光通信研究,1995,78(1):37-41
    [23]Zabezhailov, M. O. The Role of Fluorine-Doped Cladding in Radiation Induced Absorption of Silica Optical Fibers[J]. IEEE Transaction on Nuclear Science,2002,49(3):1410-1413
    [24]Griscom, D. L. γ-Ray-induced visible/infrared optical absorption bands in pure and F-doped silica-core fibers:are they due to self-trapped holes?[J] Journal of Non-Crystalline Solids, 2004,349:139-147.
    [25]Griscom, D. L. Determination of the visible range optical absorption spectrum of peroxy radicals in gamma-irradiated fused silica[J]. Journal of Non-Crystalline Solids,1998,239: 66-77.
    [26]Griscom, D. L.. Evaluation of Fast-Neutron Radiation Effects in Optical Fibers for Fusion Reactor Diagnostics [J]. Journal of Non-Crystalline Solids,1994:280-286.
    [27]O. Deparis, P. Megret, et al. The Radiation-Induced Absorption Band at 600 nm and its Impact in Fibroscopy[J]. IEEE Transaction on Nuclear Science,1996:507-511.
    [28]O. Deparis, P. Megret. Gamma Radiation Tests of Potential Optical Fiber Candidates for Fibroscopy[J]. IEEE Transaction on Nuclear Science,1996,43(6):3027-3031.
    [29]O. Deparis.660 and 760nm bands evidenced in a low-OH low-Cl fibre by Gaussian deconvolution of radiation-induced loss spectra[J]. Electronics Letters,1997,33(6):522-523.
    [30]Tomashuk, A. L. Radiation-Induced Absorption and Luminescence in Specially Hardened Large-Core Silica Optical Fibers[J]. IEEE Transaction on Nuclear Science,1998:471-476.
    [31]T. Kakuta, T. Shikama, et al. Round-robin irradiation test of radiation resistant optical fibers for ITER diagnostic application [J]. Journal of Nuclear Materials,2002:307-311:1277-1281.
    [32]T. Shikama, T. Kakuta, et al. Behavior of developed radiation-resistant silica-core Behavior of developed radiation-resistant silica-core[J]. Fusion Engineering and Design,2000, 51-52:179-183.
    [33]N. Shamoto, A. Wada, et al. Application of Silica Core Optical Fibers to Diagnostics in Heavy Irradiation Environments[J]. IEEE Transaction on Nuclear Science,1993:1478-1481.
    [34]E M Dianov, K M Golant, R R Khrapko et al. Nitrogen doped silica core fibres:A new type of radiation-resistant fibre[J]. Electronics Letters,1995,37 (77):1490-1491
    [35]R. H. West, S. Dowling. Radiation effects on a Lithium Tantalite optical waveguide structure[J]. Electronics Letters,1993,29(11):970-971
    [36]H.舒尔兹.玻璃的本质结构和性质[M].中国建筑工业出版社.1984,1,1:6-10
    [37]作花济夫.玻璃非晶态科学[M].中国建筑工业出版社.1983,12,1:2-7
    [38]Koichi Kajihara. Improvement of Vacauum-Ultraviolet transparency of silica glass by modification of point defects[J]. Journal of the ceramic society of Japan.2007,115(2):85-91
    [39]L.Skuja, M.Hirano, H.Hosono, et al. Defect in oxide glass[J]. Phys.stat.sol.(c),2005,2(1): 15-24
    [40]S. Girard, J. Keurinck, et al. Gamma-rays and pulsed X-ray radiation responses of nitrogen-, germanium-doped and pure silica core optical fibers[J]. Nuclear Instruments and Methods in Physics Research B,2004,215:187-195.
    [41]S.Girard. Properties of phosphorus-related defects induced by y-rays and pulsed X-ray irradiation in germanosilicate optical fibers[J]. Journal of Non-Crystalline Solids,2003,322: 78-83.
    [42]A. Anedda, et al. Absorption spectrum of Ge-doped silica samples and fiber preforms in the vacuum ultraviolet region[J]. Journal of Non-Crystalline Solids,2001,280:281-286.
    [43]P. Borgermans, B. Brichard, et al. On-line gamma dosimetry with phosphorous and germanium co-doped optical fibers[J]. IEEE Transaction on Nuclear Science,2000:477-482
    [44]T. Kakuta, et al. Round-robin irradiation test of radiation resistant optical fibers for ITER diagnostic application[J]. Journal of Nuclear Materials,2002:1277-1281.
    [45]T. Kakuta, et al. Radiation Resistance Characteristics of Optical Fibers[J]. Journal of Lightwave Technology,1986, LT-4(8):1139-1143.
    [46]O.A. Plaksin, T. S. Effect of OH-group content on optical properties of silica core fiber waveguides during reactor irradiation[J]. Journal of Nuclear Materials,2002,307-311: 1242-1245.
    [47]Gurzhiev, A. N, et al. Radiation damage in optical fibers[J]. Nuclear Instruments and Methods in Physics Research A:1997:417-421.
    [48]R. A. Weeks, C. M. Nelson. Trapped electrons in irradiated quartz and silica:Ⅱ,Electron spin resonance[J]. Journal of The American Ceramic Society.1960,43(8):399-404wee
    [49]H. Henschel, et al. Comparison between fast neutron and gamma irradiation of optical fibres[J]. IEEE Transaction on Nuclear Science 1998,45(3):1543-1551.
    [50]S. Girard, B. Brichard, F. Berghmans. Comparative Study of Pulsed X-Ray and y-Ray Radiation-Induced Effects in Pure-Silica-Core Optical Fibers[J]. IEEE Transaction on Nuclear Science,2006,53(4):1756-1763.
    [51]Morita, Y, et al. Dose rate effect on radiation induced attenuation of pure silica core optical fibers[J]. IEEE Transactions on Nuclear Science 36,1995,1:584-592.
    [52]David L. Griscom. Defect structure of glass[J]. Journal of Non-Crystalline Solids.1985,73: 51-77
    [53]David L. Griscom, M.E. Gingerich, A. E. J. F. Model for the Dose, Dose-Rate and Temperature Dependence of Radiation-Induced Loss in Optical Fibers [J]. IEEE Transaction on Nuclear Science,1994,41(3):523-527.
    [54]Garcia-Matos, M, et al. KU1 quartz glass for remote handling and LIDAR diagnostic optical transmission systems[J]. Journal of Nuclear Materials,2000,283-287:890-893.
    [55]H. Henschel. Optical fibres for high radiation dose environments [J]. IEEE Transaction on Nuclear Science,1994,41(3):510-516.
    [56]S. M. Akhtar.A study of neutron and gamma radiation effects on transmission of various types of glass, optical coatings, cemented optics and fiber[J]. Optical Materials.2006.
    [57]周宇清.非晶态TiO2-SiO的网络缺陷与紫外吸收机制的研究[J].原子与分子物理学报.1990,7(1): 1348-1351
    [58]Marco Van Uffelen. Radiation Resistance of Fiberoptic Components and Predictive Models for Optical Fiber Systems in Nuclear Environments [J]. IEEE Transaction on Nuclear Science, 1998,45(3):1558-1565.
    [59]Marco Van Uffelen, F. Berghmans, et al. Evaluation of a pragmatic approach for the prediction of radiation induced losses in optical fibers exposed to a gamma ray environment[C]. Proceedings of SPIE,2000,4134:96-104
    [60]Marco Van Uffelen, F. Berghmans, B. Long-term prediction of radiation induced losses in single mode optical fibers exposed to gamma rays using a pragmatic approach[J]. IEEE, 2000:80-84.
    [61]Laudernet, Y. Ab initio molecular dynamics simulations of oxygen-deficient centers in pure and Ge-doped silica glass:Structure and optical properties[J]. Journal of Non-Crystalline Solids,2006,352:2596-2600.
    [62]S. Girard, D.L. Griscom. Transient optical absorption in pulsed-X-ray-irradiated pure-silica-core optical fibers:Influence of self-trapped holes[J]. Journal of Non-Crystalline Solids,2006,352:2637-2642.
    [63]Cooke, D. W. Optical absorption of neutron-irradiated silica fibers[J]. Journal of Nuclear Materials,1996,232:214-218.
    [64]Sanada, K. Radiation resistance characteristics of graded-index fibers with a core of Ge-, F-doped or B and F-codoped SiO2 glass. Journal of Non-Crystalline Solids,1995,189: 283-290.
    [65]T. Shikama. Behavior of developed radiation-resistant silica-core Behavior of developed radiation-resistant silica-core[J]. Fusion Engineering and Design:2000:179-183.
    [66]E. J. Friebele, Peter B. Lyons, et al. Interlaboratory Comparison of Radiation-Induced Attenuation in Optical Fibers. Part Ⅲ:Transient exposures[J]. Journal of Lightwave
    Technology,1990,8(6):977-989.
    [67]陈光辉.掺杂二氧化硅玻璃光敏性及光纤光栅器件研究[D].上海,博士论文,2004,7:9-12
    [68]饶云江,王义平,朱涛.光纤光栅原理及应用[M].科学出版社,2006,8:28-32
    [69]何伟,汤风帆,李剑芝,等.光纤光敏性的研究[J].武汉理工大学学报,2004,26(7):11-13
    [70]Mourad Essid. Correlation between oxygen-deficient center concentration and KrF excimer laser induced defects in thermally annealed Ge-doped optical fiber performs [J].Journal of Non-Crystalline Solids,1999,246:39-45
    [71]M. Kyoto, Y. Chigusa, M. Ooe, et al. Gamma-ray radiation hardened properties of pure silica core single-mode fiber and its data link system in radioactive environments [J]. J. Lightwave Technol,1992,10(3):289-294.
    [72]韩庆荣.PCVD单模光纤的材料组成、结构与性能研究[D].武汉,博士论文,2006,12:83
    [73]杨慧红外光纤材料硫卤玻璃的组成结构与性能研究[D].武汉:硕士论文,2004
    [74]日江藤秀雄祝,崔朝晖译.辐射防护[M].1986,北京,原子能出版社,36-37
    [75]曹志峰.特种光学玻璃[M].兵器工业出版社,1993,北京:53
    [76]Graham R. Atkins, Zhen Hua Wang, et al. Control of defects in optical fibers-a study using cathodoluminescence spectroscopy[J]. J. Lightwave Technol.,1993,11(11):1793-1801
    [77]B. Brichard. Radiation-hardening techniques of dedicated optical fibres used in plasma diagnostic systems in ITER[J]. Journal of Nuclear Materials,2004,329-333:1456-1460.
    [78]Christppher D.Marshall,Joel A. Speth.et al. Induced optical absorption in gamma, neutron and ultraviolet irradiated fused quartz and silica[J]. Journal of Non-Crystalline Solid 212(1997,59-73)
    [79]Kaya Nagasawa etc. Gamma-ray-induced absorption in pure-silica-core fibres[J]. J. J. of Appl.Phys.1986:23(12),1608
    [80]Kaya Nagasawa etc. Gamma-ray-induced absorption in at 770nm in pure-silica-core fibres[J]. J. J. of Appl. Phys.1988:23(5),606
    [81]Sakurai, Y. Photoluminescence of oxygen-deficient-type defects in irradiated silica glass[J]. Journal of Non-Crystalline Solids,2006,352:5391-5398.
    [82]D. L Griscom. Determination of the visible range optical absorption spectrum of peroxy radicals in gamma-irradiated fused silica[J]. Journal of Non-Crystalline Solids,1998,239: 66-77.
    [83]D. L.Griscom. Electron spin resonance studies of defect centers induced in a high-level nuclear waste glass simulate by gamma-irradiation and ion-implantation[J]. Journal of Non-Crystalline Solid,1999,258:34-47.
    [84]Yoshinori Hibino, Hiroaki Hanafusa. ESR study on E'-centers induced by optical fiber drawing process[J].Japanese Journal of Applied Physics,1983,22(12):766-768
    [85]Okamoto, K. Temperature dependence of radiation induced optical transmission loss in fused silica core optical fibers [J]. Journal of Nuclear Materials,2004:1503-1506.
    [86]Henschel, H. Radiation Hardening of Pure Silica Optical Fibers by High-Pressure Hydrogen Treatment[J]. IEEE Transaction on Nuclear Science,2002,49(3):1401-1410.
    [87]Kazuo Sanada, Naoki Shamoto, Kouichi Inada. Radiation Resistance of Fluorine-doped Silica-core fibers[J]. J. Non-Crys. Solids,1994,179:339-344
    [88]Constantinescu, B. Studies on proton irradiation-induced modifications of KU1 quartz glass ultraviolet transmission properties[J]. Nuclear Instruments and Methods in Physics Research A,2006,562:692-694.
    [89]Mulder C A M, Damen A A J. The origin of the "defect" 490cm-1 Raman peak in silica gel[J]. J Non-Crys Solids,1987,93:387-394
    [90]Shibata S, Kitagawa T, Horiguchi M. Fabrication of fluorine-doped silica glass by the sol-gel method[J]. J Non-Crys Solids,1988,100:269-273
    [91]Newman C., Oloane J K, Polo S R, et al. Infrared spectra and molecular structures of SiH3F, SiH3Cl, and SiH3Br. J Chem Phys,1956,25:85
    [92]Dumas P, Corset J, Carvalho W, et al. Fluorine doped vitreous silica analysis of fiber optic preforms by vibrational spectroscopy[J]. J Non-Crys Solids,1982,47(2):239-242
    [93]干福熹著 玻璃的光学和光谱性质,上海科学技术出版社,1992,11:66-67
    [94]Gao Sijian, Gu zhenan. Study of Silica Glass Doped with Fluorine[J]. Journal of the Chinese Ceramic Society,1992,20(5):442-448
    [95]P. Dumas, J.Corset, W. Carvalho et al. Fluorine Doped Vitreous Silica Analysis of Fiber Optic Preforms by Vibrational Spectroscopy[J]. J. Non-Crys. Solids,1982,47(2):239-242
    [96]B. Brichard, Alberto Fernandez, Hans Ooms et al. Dependence of the POR and NBOHC defects as function of the dose in hydrogen-treated and untreated KU1 glass fibers[J]. IEEE Transaction on Nuclear Science,2003,50(6):2024-2029
    [97]Charlene M. Smith, Lisa A. Moore. Properties and production of F-doped silica glass[J]. Journal of Fluorine Chemistry,2003,122:81-86
    [98]David L. Griscom. Radiation hardening of pure-silica-core fibers reduction of induced absorption bands associated with self-trapped holes[J]. Appl. Phys. Lett.,1997, 71(2):175-177
    [99]Michihisa Kyoto, Yoshiki Chigusa, Masaharu Ohe, et al.Gamma-ray radiation hardened properties of pure silica core SM fiber and its data link system in radioactive environments[J]. Journal of Lightwave Technology,1992,10(3):289-294
    [100]H. Itoh, M.Shimizu, Y. Ohmori, et al. Reaction property of diffused H2with defect Centers in GeO2-doped fiber[J]. Journal of Lightwave Technology,1987, LT-5(3):134-139
    [101]H. Itoh, Y. Ohmori, M. Nakahara. Gamma-ray radiation effects on hydroxyl absorption increase in optical fibers[J]. Journal of Lightwave Technology,1986, LT-4(4):473-477
    [102]E.J. Friebele, M. E. Gingerich, K. J. Long. Radiation damage of optical fiber waveguides at long wavelengths[J]. Applied Optics,21(3):547-553
    [103]H.Hanafusa, Y. Hibino, F. Yamamoto. Formation mechanism of drawing-induced E centers in silica optical fibers[J]. J. Appl. Phys.,1985,58(3):1356-1361
    [104]Yoshinori Hibino, Hiroaki Hanafusa. Defect structure and formation mechanism of drawing-induced absorption at 630 nm in silica optical fibers[J]. J. Appl. Phys.,1986,60(5): 1797-1801
    [105]Duncan T.H. Liu and Alan R. Johnston. Theory of radiation-induced absorption in optical fibers[C]. SPIE Vol.2215, Photonics for space environments,1994:58-62
    [106]魏强,何世禹,刘海,等.石英玻璃低能质子辐照损伤动力学研究[J].光学学报,2005,25(1):83-87
    [107]S.Sakaguchi, S.Todoroki, Viscosity of silica core optical fiber[J]. Journal of Non-Crystalline Solids,244 (1999), p.232-237
    [108]U.C.Paek, C.M.Schroeder, C.R.Kurkjian, Determination of the viscosity of high silica glass during fibre drawing[J]. Glass Technology. Vol.29 No.6,1988 (12), p.263-266
    [109]周秦岭.飞秒激光照射引起玻璃结构变化的研究[D].上海,博士论文.2003
    [110]M. Tateda, M. Ohashi, and K. Shiraki,Design of viscosity-matched optical fiber[J]. IEEE Photon. Technol. Lett., Vol.4,1992, pp.1023-1025
    [111]干福熹.现代玻璃科学技术[M].上海:上海科学技术出版社,1990,194-195
    [112]Shuichi Shibata, Takeshi Kitagawa, Masaharu Horiguchi. Fabrication of Fluorine-doped Silica Glass by the Sol-Gel Method[J]. J. Non-Crys. Solids,1988,100:269-273
    [113]Taria T. Volotinen, Anu E.Konkarikoski, C.Bertil Arvidsson and Thomas K. Ericsson, Impact of silica glass structure on transmission properties of Ge-doped single-mode fibers [C]. Proceedings of SPIE Vol.4940 (2003):1-13
    [114]Agarwal and M. Tomozawa, "Correction of silica glass properties with the infrared spectra" [J]. J.Non-Cryst. Solids 209(1997):166-174
    [115]P. W. Anderson, B. I. Halperin.Anomalous Low Temperature ThermalProperties of Glass an d Spin Glass[J]. Philosophical Magazine.1992,25,1
    [116]K. Tsujikawa, M. Ohashi, K. Shiraki,et al. Effect of thermal treatment on rayleigh scattering property in silica-based glass[J]. Electro. Lett.31, (1995), p.1940-1941
    [117]K. Tsujikawa, M. Ohashi, K. Shiraki, et al. Scattering property of F and GeO2 codoped silica glass[J]. Electro. Lett.30 (1994), p.351-352
    [118]West, R. H. A Local View of Radiation Effects in Fiber Optics[J]. Journal of Lightwave Technology,1988,6(2):155-164.
    [119]H. Fabian, U.Grzesik, et al. Radiation resistance of optical fibers correlation between UV-attention and radiation induced loss[C]. SPIE, Optical Materials Reliability and Testing, 1992,1791:297-305
    [120]XIE Jun-lin, DENG Tao, LUO Jie, HAN Qing-rong. U.V Laser Induced Transmission Change of Pure and Doped Silica Glass[J].Journal of Wuhan University of
    Technology-Materials Science Edition.2008,23(6):879-882.
    [121]Griscom, D. L.. Self-trapped holes in pure-silica glass:A history of their discovery and characterization and an example of their critical significance to industry[J]. Journal of Non-Crystalline Solids,2006,352:2601-2617.
    [122]A. Calderon, et al. Effects of gamma and neutron irradiation on the optical absorption of pure silica core single-mode optical fibres from Nufern[J]. Nuclear Instruments and Methods in Physics Research A,2006,565:599-602.
    [123]徐公权,段锟,廖光裕等.光纤通信技术[M].机械工业出版社,2002:52-53.
    [124]饶云江.光纤技术[M].科学出版社.2006:22-23
    [125]P. Borgermans, B. Brichard, F. B. Kinetic models and spectral dependencies of the radiation induced attenuation in pure silica and phosphorous doped fibres [J]. Journal of Nuclear Materials,2001,386-387:1022-1026.
    [126]S. Shibata. Fluorine and Chlorine Effects on Radiation-Induced Loss for Ge02-Doped Silica Optical Fibers [J]. Journal of Lightwave Technology,1985. LT-3(4):860-863.
    [127]D. L. Griscom. Radiation hardening of pure-silica-core optical fibers by ultra-high dose ray pre-irradiation[J]. J. Appl. Phys.,1995,77(10):5008-5013.
    [128]N. G. Craik. γ and fission-reactor radiation effects on the visible-range transparency of aluminum-jacketed, all-silica optical fibers [J]. J. Appl. Phys.,1996,80(4):2142-2155.
    [129]M. Kyoto, Y. Chigusa, M. Ooe, et al. Gamma-ray irradiation effect on loss increase of single mode optical fibers (I)[J]. J. Nucl. Sci. Technol.,1989,26(5):507-515.
    [130]Yoshinori Hibino. Drawing condition dependences of optical absorption and photoluminescence in pure silica optical fibers[J]. J.Appl. Phys.1989,65(1):30-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700