梯度表面能材料上液滴运动及滴状凝结换热
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量研究表明滴状凝结是一种高效传热方式,其传热系数是相应膜状凝结传热系数的几倍至几十倍。凝结表面上液滴的运动和聚合过程对凝结液滴的生长和脱离有重要的影响。相对于传统凝结表面依靠重力排除凝结液滴而言,在梯度表面能材料表面上,凝结液滴可以以自迁移方式运动,从而提供了重力以外的排除凝结液滴方式。因此,对于水平放置或者其它失重状态下的梯度能表面,都能够及时排除其表面上的凝结液滴,有效促进滴状凝结换热系数的提高。此外,梯度表面能材料上的液滴自驱动运动在燃料电池、热管换热器、微机电等领域亦具有潜在的重要应用价值。目前,液滴在梯度表面能材料表面上运动机理及凝结换热特性等方面开展的研究工作还非常有限。
     为了研究液滴聚合影响梯度表面能材料上液滴运动的机理,本文首先采用了可视化实验手段系统的研究了大气环境中等温条件下均质表面上的液滴聚合特性,获得了液滴聚合过程中聚合液滴接触线、液桥半径及接触角随时间变化的规律;分析了界面性质、液滴物性、表面倾角以及液滴大小等因素对液滴聚合的影响,并将等径与非等径液滴的聚合进行了比较。结果表明两个液滴聚合后呈衰减性振荡,这是由两液滴凹凸液面压差造成的振荡,导致液滴内部的粘性耗散,其能量来自于液滴聚合后,气液界面面积的减少而释放出的表面能。固体的表面属性对液滴聚合过程中液桥半径和接触角的变化,以及聚合振荡时间均有显著的影响;对于相同固体表面上液滴聚合,液滴自身属性对聚合过程影响表现为:液滴的粘性的越大,液桥半径和接触角振荡的频率和振幅越小,振荡时间越短,两侧接触线收缩的幅度越小。最后,本文对液滴聚合中液桥半径随时间的变化进行拟合( 0 <τ<τ0),建立实验关联式,结果表明:液滴聚合初始阶段,液桥半径随时间的的变化满足R y= atb形式,符合R y∝tb定律。a和b的值与液滴直径的大小、液滴的粘性、表面性质和表面的倾角等因素有关,一般来说0     在均质表面液滴聚合特性研究的基础上,本文采用化学气相沉积方法制备梯度表面能材料,实现了液滴在该表面上的自迁移,通过对梯度表面能材料表面上液滴运动行为的研究,获得了液滴运动速度、接触角的变化规律,并从能量转换的角度分析了引起液滴自迁移的主要原因。结果表明蒸馏水液滴在水平梯度表面能材料表面上的峰值运动速度能达到42 mm/s,运动距离约为3 mm。同时,液滴的运动可以分为加速运动区和减速运动区两个阶段;当液滴峰值速度较小而减速运动区较大时,液滴运动会呈现蠕动的现象。驱使液滴运动的最主要动力是来自于作用在三相接触线上的非平衡表面张力的合力,由润湿梯度引起的液滴轮廓非对称性分布所导致的液滴内部流体环流的作用也是主要的驱动力之一。从液滴运动过程中能量转换的关系分析,液滴的固-气界面能和重力势能减少,释放出来的能量转化为液滴的动能、液-气界面能、固-液界面能以及耗散功,而固-气界面表面能的减少是促使液滴自发定向运动的主要原因。采用VOF方法对水平梯度表面能材料上液滴运动进行模拟,得到液滴形态变化规律与实验结果基本吻合。
     通过对大气环境中水平梯度表面能材料上液滴聚合过程的实验研究,发现了梯度表面材料上液滴聚合与均质表面上液滴聚合具有显著的区别,结果表明液滴聚合过程是加速液滴在梯度表面上运动的主要原因,同时发现薄液膜的存在亦对液滴运动具有有效的促进作用。通过对饱和水蒸汽在梯度表面能材料表面上滴状凝结换热实验,发现水蒸汽凝结状态下的凝结液滴峰值运动速度达到200 mm/s,表面换热系数先随过冷度增大而增大,到达一个最大值后,反而随之减小;凝结表面倾角变大,表面换热系数也随之增大,且过冷度对表面换热系数的影响越大;表面能梯度越大,表面换热系数也越大。通过改进均质表面上滴状凝结换热理论,并结合梯度表面能材料表面的液滴分布及凝结换热特性,得到了一维水平梯度表面能材料表面上的滴状凝结换热计算模型;通过实验观察确定模型的重要参数-最大液滴半径随过冷度的变化关系,并分别计算得到十二烷基三氯硅烷和辛基三氯硅烷制备的水平梯度表面能材料表面上的滴状凝结平均表面换热系数。模型计算结果与实验值基本吻合。并采用该模型对甲醇和乙醇蒸汽分别在一维矩形梯度表面能材料表面上凝结换热性能进行了预测,对水、甲醇和乙醇蒸汽分别在圆形径向梯度表面能材料表面上凝结换热性能进行了预测。
The boiling and condensation heat transfer, as one of the most efficient cooling method, have been paid more attention. Dropwise condensation is a most efficient heat transfer because of its higher surface heat transfer coefficient. Wettability is one of the most important properties of a solid surface and can be applied to propel drops to spread or move on the solid surface without external force. The characteristics of the droplet movement on the gradient surface energy supply a method of eliminating the condensation expect for the gravity. Therefore, the gradient surface energy could be capable of eliminating the condensation in time and improve the condensation heat transfer as for horizontal surface or other gravity free state surface. It can be expected that the interesting and inspiring research on liquid drops motion on the gradient energy surface will significantly contribute to condensation heat transfer enhancement of heat exchanger, biological applications involving cell cytometry studies as well as design and operation of microfluidic devices. Therefore, this research possesses high learning value and engineering applicable value. Presently, research on this aspect is just in the first step in the international academic, and the experiment and mechanism research on this field is limited.
     In the present study, we adopted the visualized experiments to investigate the coalescence of droplets on the homogenous surface under ambient conditions. The evolution of the three-phase contact line, liquid bridge and contact angle of the coalescing droplets with time were analyzed. The results showed that coalescing drops behaved as a typical damped oscillation after coalescence as a result of differential pressure in concave convex liquid level of the two drops. The energy consumption resulted from viscous dissipation in process of internal flow within liquid drop was compensated by the released surface energy due to the decrease of drop interface area in coalescing. The property of the solid surface had obvious influence on the characters of the coalescence. When the coalescence on the same solid surface, the higher viscosity fluid exhibited the lower oscillation amplitude and frequency of liquid bridge as will as the contact angle, and oscillated for a short time, and decreased the amplitude of the shrinkage of contact lines. Finally, we used a function to fit the evolution of the liquid bridge at the initial rapid growth of a meniscus between the droplets( 0 <τ<τ0), and established experimental correlative equation. The evolution of the liquid bridge with time satisfied with the function, R y= atb. It conformed to the law R y∝tb which could be conveniently governed by adjusting the parameters a, b, and the value of a and b were related with diameter of drops, viscosity, character and inclination of surface, and 0     Following the works, the self-propelled liquid droplet on the gradient surface was recorded by high-speed camera with 500 fps (Redlake MotionXtra HG-100K) and analyzed by professional graphic software. The variation of the velocity and contact angle of the droplet was investigated on the horizontal gradient surface, and system energy transition was used to understand the mechanics of the liquid droplet motion on the gradient energy surface. The main findings and conclusions indicated that the liquid droplets were self-propelled to move horizontally or uphill from hydrophobic zone to hydrophilic zone on both horizontal and inclined surface with gradient surface energy, accompanying with deformation from hemisphere to flat. The peak velocity of water droplet of 2μl in volume reached up to 42 mm/s on the horizontal surface and the distance was 3 mm. The motion of the droplet on the gradient energy surface was divided into accelerating stage and decelerating stage. The velocity of the droplet increased to reach a peak value in accelerating stage and decreased accompanying with creep motion in decelerating stage for a long time on horizontal surface. In addition, the creep motion was visualized significantly in both accelerating and decelerating stages on the inclined gradient energy surface. The driving force was induced to integrate the unbalance surface tension acting on the whole three-phase contact line. The droplet motion was resulted from the energy transition among interfacial energy, kinetic energy, gravitational potential energy, and viscous dissipation energy. The interfacial energy released from the deformation of the droplet is the main source for the droplet motion. But the effect of gravitational potential energy could be neglected in the present study. The VOF method employed to investigate the movement of the droplet on the horizontal gradient surface, the results of the numerical investigation for the variation of the shape of the droplet basically agreed with the results of experiments.
     In the further works, the coalescence of droplets on the gradient surface was studied by the visualizing experiments under ambient conditions. The main conclusion showed that the coalescence process was the primary factor to accelerate droplets moving on the gradient surface. The condensation on the gradient surface was investigated by the visualization experiments, also. Dropwise condensation was conducted on the surfaces with gradient surface energy at various inclination angles of 0o, 30o, 60o, and 90o, respectively. The growth, coalescence, motion, and detachment of the condensate droplets were recorded by the high-speed video imaging system. The results showed that the condensate droplets larger than about 1 mm in diameter could move at a peak speed of 200 mm/s from hydrophobic area to hydrophilic area on the horizontal condensing surface with gradient surface energy. The velocity of the condensate droplet was much higher than that of droplet on the surface without gradient surface energy in ambient conditions. A series of parametric was studied, including the effects of heat transfer temperature difference, inclination angle of condensing surface, and gradient of surface energy on the condensation heat transfer were performed in virtue of the photographic results. The experimental results showed that the condensation heat transfer coefficient increased to reach a maximum value and decreased afterwards with increasing heat transfer temperature difference. Larger inclination angle of the condensing surface induced higher condensation heat transfer coefficient due to the action of gravity on the departure, and the motion of the droplet while larger gradient of surface energy led to earlier departure and faster motion of droplet, hence a higher condensation heat transfer coefficient. Finally, a theoretical model was developed for the dropwise condensation heat transfer on the horizontal surface with gradient surface energy. The performance of the methanol and ethanol vapour condensation on the rectangular surface with gradient surface energy were predicted respectively, and the performance of the water, methanol and ethanol vapour condensation on the rectangular surface with gradient surface energy were predicted respectively also. There are some new ideals about the heat transfer model of individual drop and the size distribution model of condensate drop on homogeneous condensation surface.
引文
[1]沈维道,蒋智敏,童钧耕.工程热力学,高等教育出版社, 2001.
    [2] W. Nusselt. Die Oberflachenkondensation Des Wasserdampfes[J]. Zeitschrifi verein Deutscher lngenieure. 1916, 60:541-546.
    [3] H. Elwing, S. Welin, A. Askendahl, et al. Adsorption of Fibrinogen as a Measure of the Distribution of Methyl Groups on Silicon Surfaces[J]. Journal of Colloid and Interface Science. 1988, 123(1):306-308.
    [4] M. Groll. Heat Pipe Heat Exchangers in Energy Technology Shanghai, China, 1998:235-244.
    [5] I. Sauciuc, G. Chrysler, R. Mahajan, et al. Spreading in the Heat Sink Base: Phase Change Systems or Solid Metals??[J]. IEEE Transactions on Components and Packaging Technologies. 2002, 25(4):621-628.
    [6] E. Yarmak Jr,E. L. Long. Recent Developments in Thermosyphon Technology Anchorage, AK, United States, 2002:656-662.
    [7] M. Wahlgren, S. Welin-Klintstrom, T. Arnebrant, et al. Competition between Fibrinogen and a Non-Ionic Surfactant in Adsorption to Wettability Gradient Surface[J]. Colloids and Surfaces B: Biointerfaces. 1995, 4(1):23.
    [8] H. T. Spijker, R. Bos, W. van Oeveren, et al. Protein Adsorption on Gradient Surfaces on Polyethylene Prepared in a Shielded Gas Plasma[J]. Colloids and Surfaces B: Biointerfaces. 1999, 15(1):89-97.
    [9] A. E. Ivanov, J. Ekeroth, L. Nilsson, et al. Variations of Wettability and Protein Adsorption on Solid Siliceous Carriers Grafted with Poly(N-Isopropylacrylamide)[J]. Journal of Colloid and Interface Science. 2006, 296(2):538-544.
    [10] Y. S. Lin, V. Hlady,C. G. Golander. The Surface Density Gradient of Grafted Poly(Ethylene Glycol): Preparation, Characterization and Protein Adsorption[J]. Colloids and Surfaces B: Biointerfaces. 1994, 3(1-2):49-62.
    [11] H. T. Spijker, R. Bos, H. J. Busscher, et al. Adhesion of Blood Platelets under Flow to Wettability Gradient Polyethylene Surfaces Made in a Shielded Gas Plasma[J]. Journal of Adhesion Science and Technology. 2002, 16(13):1703-1713.
    [12] M. S. Kim, Y. H. Cho, S. Y. Lee, et al. Preparation and Characterization of Amine-Modified Gradient Polyethylene Surfaces[J]. Chemistry Letters. 2006, 35(7):728-729.
    [13] R. G. Nuzzo,D. L. Allara. Adsorption of Bifunctional Organic Disulfides on GoldSurfaces[J]. J Am Chem Soc. 1983, 105(13):4481-4483.
    [14] R. G. Nuzzo, B. R. Zegarski,L. H. Dubois. Fundamental Studies of the Chemisorption of Organosulfur Compounds on Gold(111). Implications for Molecular Self-Assembly on Gold Surfaces[J]. J Am Chem Soc. 1987, 109(3):733-740.
    [15] R. K. Smith, P. A. Lewis,P. S. Weiss. Patterning Self-Assembled Monolayers[J]. Progress in Surface Science. 2004, 75(1-2):68.
    [16] J. He, Z. H. Lu, S. A. Mitchell, et al. Self-Assembly of Alkyl Monolayers on Ge(111)[J]. J Am Chem Soc. 1998, 120(11):2660-2661.
    [17] D. V. Kosynkin,J. M. Tour. Phenylene Ethynylene Diazonium Salts as Potential Self-Assembling Molecular Devices[J]. Org Lett. 2001, 3(7):993-995.
    [18] G.-J. Zhang, T. Tanii, T. Zako, et al. Nanoscale Patterning of Protein Using Electron Beam Lithography of Organosilane Self-Assembled Monolayers[J]. 2005, 1(8-9):833-837.
    [19] A. N. Parikh, M. A. Schivley, E. Koo, et al. N-Alkylsiloxanes: From Single Monolayers to Layered Crystals. The Formation of Crystalline Polymers from the Hydrolysis of N-Octadecyltrichlorosilane[J]. J Am Chem Soc. 1997, 119(13):3135-3143.
    [20] H. P. Greenspan. On the Motion of a Small Viscous Droplet That Wets a Surface[J]. Journal of Fluid Mechanics. 1978, 84(pt 1):125-143.
    [21] M. K. Chaudhury,G. M. Whitesides. How to Make Water Run Uphill[J]. Science. 1992, 256(5063):1539.
    [22] M. K. Chaudhury,G. M. Whitesides. Correlation between Surface Free Energy and Surface Constitution[J]. Science. 1992, 255(5049):1230.
    [23] S. Daniel, M. K. Chaudhury,J. C. Chen. Fast Drop Movements Resulting from the Phase Change on a Gradient Surface[J]. Science. 2001, 291(5504):633-636.
    [24] M. K. Chaudhury. Rate-Dependent Fracture at Adhesive Interface[J]. J Phys Chem B. 1999, 103(31):6562-6566.
    [25] S. Daniel, S. Sircar, J. Gliem, et al. Ratcheting Motion of Liquid Drops on Gradient Surfaces[J]. Langmuir. 2004, 20(10):4085-4092.
    [26] S. Daniel, M. K. Chaudhury,P. G. De Gennes. Vibration-Actuated Drop Motion on Surfaces for Batch Microfluidic Processes[J]. Langmuir. 2005, 21(9):4240-4248.
    [27] M. K. Chaudhury, S. Daniel, M. E. Callow, et al. Settlement Behavior of Swimming Algal Spores on Gradient Surfaces[J]. Biointerphases Journal. 2006, 1(1):18-21.
    [28] L. Dong, A. Chaudhury,M. K. Chaudhury. Lateral Vibration of a Water Drop and Its Motion on a Vibrating Surface[J]. European Physical Journal E. 2006, 21(3):231-242.
    [29] S.-H. Choi,B.-M. Z. Newby. Alternative Method for Determining Surface Energy byUtilizing Polymer Thin Film Dewetting[J]. Langmuir. 2003, 19(4):1419-1428.
    [30] S.-H. Choi,B.-M. Z. Newby. Micrometer-Scaled Gradient Surfaces Generated Using Contact Printing of Octadecyltrichlorosilane[J]. Langmuir. 2003, 19(18):7427-7435.
    [31] S.-H. Choi,B.-m. Zhang Newby. Suppress Polystyrene Thin Film Dewetting by Modifying Substrate Surface with Aminopropyltriethoxysilane[J]. Surface Science. 2006, 600(6):1391-1404.
    [32] A. P. Quist, E. Pavlovic,S. Oscarsson. Recent Advances in Microcontact Printing[J]. Analytical and Bioanalytical Chemistry. 2005, 381(3):591-600.
    [33] Y. Xia, M. Mrksich, E. Kim, et al. Microcontact Printing of Octadecylsiloxane on the Surface of Silicon Dioxide and Its Application in Microfabrication[J]. Journal of the American Chemical Society. 1995, 117(37):9576-9577.
    [34] H. Sugimura, K. Ushiyama, A. Hozumi, et al. (2000). Micropatterning of Alkyl- and Fluoroalkylsilane Self-Assembled Monolayers Using Vacuum Ultraviolet Light, pp. 885-888.
    [35] K. Ichimura, S.-k. Oh,M. Nakagawa. Light-Driven Motion of Liquids on a Photoresponsive Surface[J]. Science. 2000, 288(5471):1624-1626.
    [36] Y. Ito, M. Nogawa, H. Sugimura, et al. Photodegradation Micropatterning of Adsorbed Collagen by Vacuum Ultraviolet Light[J]. Langmuir. 2004, 20(10):4299-4301.
    [37] Y. Ito, M. Heydari, A. Hashimoto, et al. The Movement of a Water Droplet on a Gradient Surface Prepared by Photodegradation[J]. Langmuir. 2007, 23(4):1845-1850.
    [38] J. C. Chen. Surface Contact - Its Significance for Multiphase Heat Transfer: Diverse Examples[J]. Journal of Heat Transfer. 2003, 125(4):549-566.
    [39]薛俊利,许锡恩.化学气相沉积法制备无机分离膜[J].膜科学与技术. 1997, 17(3):19-24.
    [40] N. L. Jeon, R. G. Nuzzo, Y. Xia, et al. Patterned Self-Assembled Monolayers Formed by Microcontact Printing Direct Selective Metallization by Chemical Vapor Deposition on Planar and Nonplanar Substrates[J]. Langmuir. 1995, 11(8):3024.
    [41] Y. Xia,G. M. Whitesides. Extending Microcontact Printing as a Microlithographic Technique[J]. Langmuir. 1997, 13(7):2059-2067.
    [42] S.-H. Choi,B.-M. Z. Newby. Dynamic Contact Angle in Rim Instability of Dewetting Holes[J]. Journal of Chemical Physics. 2006, 124(5):054702.
    [43] N. L. Jeon, J. Hu, G. M. Whitesides, et al. Fabrication of Silicon Mosfets Using Soft Lithography[J]. Advanced Materials. 1998, 10(17):1466-1469.
    [44] Y. Xia,G. M. Whitesides. Soft Lithography[J]. Angewandte Chemie International Edition. 1998, 37(5):550-575.
    [45]程传煊.表面物理化学,科学技术文献出版社, 1995.
    [46] A. Kumar,G. M. Whitesides. Patterned Condensation Figures as Optical Diffraction Gratings[J]. Science. 1994, 263(5143):60-62.
    [47] M. Wu, T. Cubaud,C.-M. Ho. Scaling Law in Liquid Drop Coalescence Driven by Surface Tension[J]. Physics of Fluids. 2004, 16(7):51-54.
    [48] H. A. Stone, A. D. Stroock,A. Ajdari. Engineering Flows in Small Devicesmicrofluidics toward a Lab-on-a-Chip[J]. Annual Review of Fluid Mechanics. 2004, 36(1):381-411.
    [49] J. R. Adam, N. R. Lindblad,C. D. Hendricks. The Collision, Coalescence, and Disruption of Water Droplets[J]. Journal of Applied Physics. 1968, 39(11):5173-5180.
    [50] D. Beysens,C. M. Knobler. Growth of Breath Figures[J]. Physical Review Letters. 1986, 57(12):1433.
    [51] D. Beysens, A. Steyer, P. Guenoun, et al. (1991). How Does Dew Form? (Taylor & Francis), pp. 219 - 246.
    [52] A. Steyer, P. Guenoun,D. Beysens. Coalescence-Induced 1/F2 Noise[J]. Physical Review Letters. 1992, 68(12):1869-1871.
    [53] D. Li. Coalescence between Small Bubbles: Effects of Surface Tension Gradient and Surface Viscosities[J]. Journal of Colloid and Interface Science. 1996, 181(1):34-44.
    [54] D. A. Beysens. Kinetics and Morphology of Phase Separation in Fluids: The Role of Droplet Coalescence[J]. Physica A: Statistical and Theoretical Physics. 1997, 239(1-3):329-339.
    [55] V. S. Nikolayev,D. A. Beysens. Relaxation of Nonspherical Sessile Drops Towards Equilibrium[J]. Physical Review E. 2002, 65(4):046135.
    [56] D. Fritter, C. M. Knobler,D. A. Beysens. Experiments and Simulation of the Growth of Droplets on a Surface (Breath Figures)[J]. Physical Review A. 1991, 43(6):2858.
    [57] J. R. L. a. a. H. A. S. a. JENS EGGERS a1 , F. P. a1 Universit?t Gesamthochschule Essen, 45117 Essen, Germany, U. o. C. a2 Department of Applied Mathematics and Theoretical Physics, Silver St, Cambridge CB3 9EW, UK, et al. Coalescence of Liquid Drops[J]. Journal of Fluid Mechanics. 1999, 401(293-310 ).
    [58] J. Eggers. Theory of Drop Formation[J]. Physics of Fluids. 1995, 7(5):941-953.
    [59] J. Eggers. Coalescence of Spheres by Surface Diffusion[J]. Physical Review Letters. 1998, 80(12):2634.
    [60] J. Eggers. Toward a Description of Contact Line Motion at Higher Capillary Numbers[J]. Physics of Fluids. 2004, 16(9):3491-3494.
    [61] D. Bonn, J. Eggers, J. Indekeu, et al. (2005). Wetting and Spreading.
    [62] J. Eggers. Hydrodynamic Theory of Forced Dewetting[J]. Physical Review Letters. 2004,93(9):094502-094501.
    [63] D. G. A. L. Aarts, H. N. W. Lekkerkerker, H. Guo, et al. Hydrodynamics of Droplet Coalescence[J]. Physical Review Letters. 2005, 95(16):164503.
    [64] W. D. Ristenpart, P. M. McCalla, R. V. Roy, et al. Coalescence of Spreading Droplets on a Wettable Substrate[J]. Physical Review Letters. 2006, 97(6):064501.
    [65] S. J. Gokhale, S. DasGupta, J. L. Plawsky, et al. Reflectivity-Based Evaluation of the Coalescence of Two Condensing Drops and Shape Evolution of the Coalesced Drop[J]. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics). 2004, 70(5):051610-051612.
    [66] C. Andrieu, D. A. Beysens, V. S. Nikolayev, et al. Coalescence of Sessile Drops[J]. Journal of Fluid Mechanics. 2002, 453:427-438.
    [67] P. Meakin. Droplet Deposition Growth and Coalescence[J]. Reports on Progress in Physics. 1992, 55(2):157-240.
    [68] V. S. Nikolayev, D. Beysens,P. Guenoun. New Hydrodynamic Mechanism for Drop Coarsening[J]. Physical Review Letters. 1996, 76(17):3144.
    [69] V. S. Nikolayev. Dynamics and Depinning of the Triple Contact Line in the Presence of Periodic Surface Defects[J]. Journal of Physics: Condensed Matter. 2005, 17(13):2111-2119.
    [70] R. Narhe, D. Beysens,V. S. Nikolayev. Contact Line Dynamics in Drop Coalescence and Spreading[J]. Langmuir. 2004, 20(4):1213-1221.
    [71] R. Narhe, D. Beysens,V. Nikolayev. Dynamics of Drop Coalescence on a Surface: The Role of Initial Conditions and Surface Properties[J]. International Journal of Thermophysics. 2005, 26(6):1743-1757.
    [72] A. Menchaca-Rocha, A. Martez-Dalos, S. Popinet, et al. Coalescence of Liquid Drops by Surface Tension[J]. Physical Review E. 2001, 63(4):046309.
    [73] L. Bruno, N. Carlo, S. Ruben, et al. Modelling Merging and Fragmentation in Multiphase Flows with Surfer[J]. J Comput Phys. 1994, 113(1):134-147.
    [74] R. W. Hopper. Coalescence of Two Equal Cylinders: Exact Results for Creeping Viscous Plane Flow Driven by Capillarity[J]. J Am Chem Soc ; Vol/Issue: 67:12. 1984:Pages: C262-C264.
    [75] R. W. Hopper. Plane Stokes Flow Driven by Capillarity on a Free Surface[J]. Journal of Fluid Mechanics. 1990, 213:349-375.
    [76] R. W. Hopper. Plane Stokes Flow Driven by Capillarity on a Free Surface. Part 2. Further Developments[J]. Journal of Fluid Mechanics. 1991, 230:355-364.
    [77] R. W. Hopper. Capillarity-Driven Plane Stokes Flow Exterior to a Parabola[J]. Quarterly Journal of Mechanics and Applied Mathematics. 1993, 46(pt 2):193-210.
    [78] J. B. Keller, P. A. Milewski,J.-M. Vanden-Broeck. Merging and Wetting Driven by Surface Tension[J]. European Journal of Mechanics - B/Fluids. 2000, 19(4):491-502.
    [79] L. Duchemin, J. Eggers,C. Josserand. Inviscid Coalescence of Drops[J]. Journal of Fluid Mechanics. 2003, 487:167-178.
    [80] J. Billingham,A. C. King. Surface-Tension-Driven Flow Outside a Slender Wedge with an Application to the Inviscid Coalescence of Drops[J]. Journal of Fluid Mechanics. 2005, 533:193-221.
    [81] M. Orme. Experiments on Droplet Collisions, Bounce, Coalescence and Disruption[J]. Progress in Energy and Combustion Science. 1997, 23(1):65-79.
    [82] O. W. Jayaratne,B. J. Mason. The Coalescence and Bouncing of Water Drops at an Air/Water Interface[J]. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences (1934-1990). 1964, 280(1383):545-565.
    [83] A. Y. Tong,B. R. Holt. Numerical Study on the Solidification of Liquid Metal Droplets Impacting onto a Substrate[J]. Numerical Heat Transfer, Part A: Applications. 1997, 31(8):797 - 817.
    [84] J. Fukai, Y. Shiiba, T. Yamamoto, et al. Wetting Effects on the Spreading of a Liquid Droplet Colliding with a Flat Surface: Experiment and Modeling[J]. Physics of Fluids. 1995, 7(2):236-247.
    [85] N. Hatta, H. Fujimoto, K. Kinoshita, et al. Experimental Study of Deformation Mechanism of a Water Droplet Impinging on Hot Metallic Surfaces above the Leidenfrost Temperature[J]. Journal of Fluids Engineering. 1997, 119(3):692-699.
    [86] M. Rein. Phenomena of Liquid Drop Impact on Solid and Liquid Surfaces[J]. Fluid Dynamics Research. 1993, 12(2):61-93.
    [87] A. Karl,A. Frohn. Experimental Investigation of Interaction Processes between Droplets and Hot Walls[J]. Physics of Fluids. 2000, 12(4):785-796.
    [88] A. L. Yarin. Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing…[J]. Annual Review of Fluid Mechanics. 2006, 38(1):159-192.
    [89] S. L. Manzello,J. C. Yang. An Experimental Study of a Water Droplet Impinging on a Liquid Surface[J]. Experiments in Fluids. 2002, 32(5):580-589.
    [90] S. Sikalo, M. Marengo, C. Tropea, et al. Analysis of Impact of Droplets on Horizontal Surfaces[J]. Experimental Thermal and Fluid Science. 2002, 25(7):503-510.
    [91] H. Fujimoto, T. Ogino, H. Takuda, et al. Collision of a Droplet with a Hemispherical StaticDroplet on a Solid[J]. International Journal of Multiphase Flow. 2001, 27(7):1227-1245.
    [92] H. Zhao,D. Beysens. From Droplet Growth to Film Growth on a Heterogeneous Surface. Condensation Associated with a Wettability Gradient[J]. Langmuir. 1995, 11(2):627-634.
    [93] Y. Gu,D. Li. Model for a Liquid Drop Spreading on a Solid Surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1998, 142(2-3):243-256.
    [94] A. L. Yarin, L. Wenxia,D. H. Reneker. Motion of Droplets Along Thin Fibers with Temperature Gradient[J]. Journal of Applied Physics. 2002, 91(7):4751-4760.
    [95] A. D. Nikolov, D. T. Wasan, A. Chengara, et al. Superspreading Driven by Marangoni Flow[J]. Advances in Colloid and Interface Science. 2002, 96(1-3):325-338.
    [96] R. M. Hill, M. He, H. T. Davis, et al. Comparison of the Liquid Crystal Phase Behavior of Four Trisiloxane Superwetter Surfactants[J]. Langmuir. 1994, 10(6):1724-1734.
    [97] P. G. de Gennes. Wetting: Statics and Dynamics[J]. Reviews of Modern Physics. 1985, 57(3):827.
    [98] P. G. De Gennes. Forced Wetting by a Reactive Fluid[J]. Europhysics Letters. 1997, 39(4):407.
    [99] B. S. Gallardo, V. K. Gupta, F. D. Eagerton, et al. Electrochemical Principles for Active Control of Liquids on Submillimeter Scales[J]. 1999, 283(5398):57-60.
    [100] S. Daniel,M. K. Chaudhury. Rectified Motion of Liquid Drops on Gradient Surfaces Induced by Vibration[J]. Langmuir. 2002, 18(9):3404-3407.
    [101] F. T. Dodge. Spreading of Liquid Droplets on Solid Surfaces[J]. Journal of Colloid and Interface Science. 1988, 121(1):154-160.
    [102] R. G. Cox. Dynamics of the Spreading of Liquids on a Solid Surface. Part 1. Viscous Flow[J]. Journal of Fluid Mechanics. 1986, 168:169-194.
    [103] R. G. Cox. Dynamics of the Spreading of Liquids on a Solid Surface. Part 2. Surfactants[J]. Journal of Fluid Mechanics. 1986, 168:195-220.
    [104]王晓东,彭晓峰,段远源, et al. Chinese Journal of Chemical Engineering ,中国化学工程学报(英文版). 2007, (05).
    [105] H. Blake T.D., J.M. Kinetics of Liquid-Liquid Displacement[J]. Journal of Colloid and Interface Science. 1969, 30(3):421-423.
    [106] F. Brochard (1989). Motions of Droplets on Solid Surfaces Induced by Chemical or Thermal Gradients, pp. 432-438.
    [107] J. B. Brzoska, F. Brochard-Wyart,F. Rondelez. Motions of Droplets on Hydrophobic Model Surfaces Induced by Thermal Gradients[J]. Langmuir. 1993, 9(8):2220-2224.
    [108] P. C. Zielke, R. S. Subramanian, J. A. Szymczyk, et al. (2003). Movement of Drops on aSolid Surface Due to a Contact Angle Gradient, pp. 390-391.
    [109] R. S. Subramanian, N. Moumen,J. B. McLaughlin. Motion of a Drop on a Solid Surface Due to a Wettability Gradient[J]. Langmuir. 2005, 21(25):11844-11849.
    [110] R. Balasubramaniam,R. S. Subramanian. Thermocapillary Convection Due to a Stationary Bubble[J]. Physics of Fluids. 2004, 16(8):3131-3137.
    [111] M. L. Ford,A. Nadim. Thermocapillary Migration of an Attached Drop on a Solid Surface[J]. Physics of Fluids. 1994, 6(9):3183.
    [112] J. W. Rose. On the Mechanism of Dropwise Condensation[J]. International Journal of Heat and Mass Transfer. 1967, 10(6):755-756.
    [113]辛明道.沸腾传热及其强化,重庆大学出版社, 1987.
    [114] L. R. Glicksman,A. W. Hunt, Jr. Numerical Simulation of Dropwise Condensation[J]. International Journal of Heat and Mass Transfer. 1972, 15(11):2251-2269.
    [115] F. W. R. E.J.Lefevre (1966). A Theory of Dropwise Condensation. In Proc.3rd Ent.Heat Transfer Conf.
    [116] S. Vemuri,K. J. Kim. An Experimental and Theoretical Study on the Concept of Dropwise Condensation[J]. International Journal of Heat and Mass Transfer. 2006, 49(3-4):649-657.
    [117] I. Tanasawa,J.-I. Ochiai. Experimental Study on Dropwise Condensation[J]. Bulletin of the JSME. 1973, 16(98):1184-1197.
    [118] C. Graham,P. Griffith. Drop Size Distributions and Heat Transfer in Dropwise Condensation[J]. International Journal of Heat and Mass Transfer. 1973, 16(2):337-346.
    [119] H. Tanaka. Measurements of Drop-Size Distributions During Transient Dropwise Condensation[J]. Journal of Heat Transfer, Transactions ASME. 1975, 97 Ser C(3):341-346.
    [120]杨春信,王立刚,袁修干, et al.珠状凝结是一种典型的分形生长[J].航空动力学报. 1998, 13(3):272-276.
    [121] D. G. Wilkins,L. A. Bromley. Dropwise Condensation Phenomena[J]. AIChE Journal. 1973, 19(4):839-845.
    [122] S. N. Aksan,J. W. Rose. Dropwise Condensation--the Effect of Thermal Properties of the Condenser Material[J]. International Journal of Heat and Mass Transfer. 1973, 16(2):461-467.
    [123] J. W. Rose. Dropwise Condensation Theory[J]. International Journal of Heat and Mass Transfer. 1981, 24(2):191-194.
    [124] J. W. Rose. Dropwise Condensation Theory and Experiment: A Review[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 2002, 216(2):115-128.
    [125] C. Yamali,H. Merte Jr. A Theory of Dropwise Condensation at Large Subcooling Including the Effect of the Sweeping[J]. Heat and Mass Transfer/Waerme- und Stoffuebertragung. 2002, 38(3):191-202.
    [126] R. J. H. Voorrhoeve. Simplifications and Complications of Heterogeneous Nucleation Theory[J]. Surface Science. 1971, 28(1):145-156.
    [127] D. Beysens, C. M. Knobler,H. Schaffar. Scaling in the Growth of Aggregates on a Surface[J]. Physical Review B. 1990, 41(14):9814.
    [128] N. Moumen, R. Shankar Subramanian,J. B. McLaughlin. Experiments on the Motion of Drops on a Horizontal Solid Surface Due to a Wettability Gradient[J]. Langmuir. 2006, 22(6):2682-2690.
    [129] N. Moumen. Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient[J]. 2007.
    [130] F. Mashayek, N. Ashgriz, W. J. Minkowycz, et al. Coalescence Collision of Liquid Drops[J]. International Journal of Heat and Mass Transfer. 2003, 46(1):77-89.
    [131] T. Ban, K. h. F., N. h. S., et al. Study of Drop Coalescence Behaviour for Liquid-Liquid Extraction Operation[J]. Chemical Engineering Science. 2000, 55(22):5385-5391.
    [132] O. I. d. Río, D. Y. Kwok, R. Wu, et al. Contact Angle Measurements by Axisymmetric Drop Shape Analysis and an Automated Polynomial Fit Program[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1998, 143(2-3):197-210.
    [133]王晓东,彭晓峰,陆建峰, et al.接触角测试技术及粗糙表面上接触角的滞后性Ⅰ:接触角测试技术[J].应用基础与工程科学学报. 2003, (02).
    [134]王晓东,彭晓峰,陆建峰, et al.接触角测试技术及粗糙表面上接触角的滞后性Ⅱ:粗糙不锈钢表面接触角的滞后性[J].应用基础与工程科学学报. 2003, (03).
    [135] C. W. Hirt,B. D. Nichols. Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries[J]. J Comput Phys ; Vol/Issue: 39:1. 1981:Pages: 201-225.
    [136] D. T. Wasan, A. D. Nikolov,H. Brenner (2001). Fluid Dynamics: Droplets Speeding on Surfaces, pp. 605-606.
    [137] H. Suda,S. Yamada. Force Measurements for the Movement of a Water Drop on a Surface with a Surface Tension Gradient[J]. Langmuir. 2003, 19(3):529-531.
    [138] L. M. Pismen,U. Thiele. Asymptotic Theory for a Moving Droplet Driven by a Wettability Gradient[J]. Physics of Fluids. 2006, 18(4):042104-042110.
    [139] U. Thiele,E. Knobloch. On the Depinning of a Driven Drop on a Heterogeneous Substrate[J]. New Journal of Physics. 2006, 8:313.
    [140] U. Thiele,E. Knobloch. Driven Drops on Heterogeneous Substrates: Onset of SlidingMotion[J]. Physical Review Letters. 2006, 97(20):204501.
    [141] M. Sakai, J.-H. Song, N. Yoshida, et al. Relationship between Sliding Acceleration of Water Droplets and Dynamic Contact Angles on Hydrophobic Surfaces[J]. Surface Science. 2006, 600(16):L204-L208.
    [142] H. Linke, B. J. Aleman, L. D. Melling, et al. Self-Propelled Leidenfrost Droplets[J]. Physical Review Letters. 2006, 96(15):154502-154504.
    [143] P. Lazar,H. Riegler. Reversible Self-Propelled Droplet Movement: A New Driving Mechanism[J]. Physical Review Letters. 2005, 95(13):136103-136104.
    [144] Y. Sumino, H. Kitahata, K. Yoshikawa, et al. Chemosensitive Running Droplet[J]. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics). 2005, 72(4):041603-041608.
    [145] H. Kitahata, Y. Sumino, K. Nagai, et al. Autonomous Motion of Droplet Powered by Chemical Potential and by Photon-Flux Nagayo, Japan, 2005:107-111.
    [146] R. J. Petrie, T. Bailey, C. B. German, et al. Fast Directed Motion Of "Fakir" Droplets[J]. Langmuir. 2004, 20(23):9893-9896.
    [147] D. B. Colin. Motion of Liquids on Surfaces[J]. 2001, 2(10):580-582.
    [148]黄祖洽,丁鄂江.表面浸润和浸润相变,上海科技大学出版社, 1994.
    [149] J. M. Robert. Describing the Uncertainties in Experimental Results[J]. Experimential thermal and fluid science. 1988, 1:3-17.
    [150]兰忠,马学虎,张宇, et al.引入液固界面效应的滴状冷凝传热模型[J].化工学报. 2005, 56(9):1626-1632.
    [151] V. P. Carey. Liquid-Vapor Phase-Change Phenomena, Washington: Hemisphere Pub-lishing Corporation, 1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700