硫酸盐还原菌腐蚀机理及复合杀菌剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋金属腐蚀与海洋生物污损是开发利用海洋资源的海洋工程要面对两大难题,而且这两大问题通常相互影响。因此,研究海洋金属腐蚀与生物污损的机理及其防治技术具有重要的理论和应用价值。
     本文研究了硫酸盐还原菌(SRB)的两种主要代谢产物硫化物和胞外多聚物对Q235碳钢在3.5%NaCl溶液中的腐蚀影响。采用表面衰减全反射傅里叶变换红外光谱和原位液体池原子力显微镜等多种先进表征技术,结合极化曲线和交流阻抗谱,对胞外多聚物的腐蚀影响进行了研究。16天浸泡结果表明,SRB的代谢物腐蚀主要由硫化物造成,且胞外多聚物不能提供很好的保护作用。
     通过自组装和静电作用在铜的表面构筑了2-巯基苯骈噻唑掺杂壳聚糖复合膜,采用极化曲线和交流阻抗谱研究了该复合膜在3.5%NaCl溶液中的防腐蚀性能,同时研究了该复合膜在SRB培养液中的保护作用。结果表明,构筑的复合膜不仅对铜具有较好的保护作用,而且对于硫酸盐还原菌腐蚀具有一定的抑制效果。
     研发了新型高效纳米银氧化石墨烯复合杀菌剂,运用紫外-可见光谱、透射电镜和电子衍射对复合物进行了表征。实验结果表明,复合杀菌剂可以杀死水体中106菌落单位/毫升的大肠杆菌,同时对革兰氏阳性细菌金黄色葡萄球菌也起到很好的杀菌效果。
As a lot of marine engineering facilities and equipment has been put intoapplication, two major problems have to be faced inevitably: marine metal corrosionand marine biofouling and they often occur at the same time and have mutualinfluence. Thereafter, it is of great theoretical and practical importance to study themechanism of marine metal corrosion and marine biofouling and their preventionmethods.
     In this work, the effects of two main metabolites of sulfate-reducing bacteria,sulfide and extracellular polymeric substances (EPS) on Q235carbon steels in3.5%NaCl solution have been studied separately. Attenuated total reflectance fouriertransform infrared spectra (ATR-IR) and in situ atomic force microscopicmeasurements (AFM) with a liquid cell coupled with potentiodynamic polarisationcoupled with potentiodynamic polarization and electrochemical impedancespectroscopy have been used to studied the effects of EPS. Microbiologicallyinfluenced corrosion (MIC) induced by SRB was mainly caused by sulfide and EPSonly provide the feeble protective effect after16d of immersion.
     Chitosan hydrogel loaded with the well-known corrosion inhibitor2-mercaptobenzothiazole has been introduced into a composite coating to improvecopper protection by combining a simple self-assembled monolayer technique with asol-gel method. The anti-corrosion ability of the coating in3.5wt.%NaCl solutionwas investigated by potentiodynamic polarization and electrochemical impedancespectroscopy. The stability and integrity of the composite coating were also evaluated.The results suggest that the composite coating endows the copper substrate withanti-corrosion property in seawater and provide a certain protection against MICinduced by SRB.
     In order to increase the antibacterial efficiency, we have impregnated graphene oxide (GO) nanosheets with silver nanoparticles (Ag NP) and fabricated a novelantibacterial composite material. The morphology of Ag NP/GO composites werecharacterized by Electron Microscope (TEM) andElectron Diffraction. The as-prepared composites could kill106colony forming unitsEscherichia coli (E.coli) completely and exhibit a certain antibacterial activity toStaphylococcus aureus (S.aureus) a representative strain of Gram positive bacteria atthe same time.
引文
[1]侯保荣.海洋腐蚀环境理论及其应用[M].北京:科学出版社,1999.
    [2]侯保荣.海洋环境腐蚀规律及控制技术[J].科学与管理,2004,24(5):2.
    [3]VENKATESAN R, DWARKADASA E S, RAGHURAM A C. Effect of deep sea environment on the corrosion behaviour of metals and alloys [J]. Transactions of the Metal Finishing Society of India,1998,7(1):63-71.
    [4]马士德,李伟华,孙虎元,等.海洋腐蚀的生物控制[J].全面腐蚀控制,2006,20(3):5-7.
    [5]马士德,孙虎元,黄桂桥,等.海洋污损生物对碳钢腐蚀的影响[J].中国腐蚀与防护学报,2000,20(3):177-182.
    [6]朱相荣,黄桂桥,林乐耘,等.金属材料长周期海水腐蚀规律研究[J].中国腐蚀与防护学报,2005,25(3):7.
    [7]朱相荣,王相润,等.金属材料的海洋腐蚀与防护[M].北京:国防工业出版社,1999.
    [8]ROGBERGE P R. Handbook of Corrosion Engineering [M]. New York:McGraw-Hill,1999.
    [9]侯保荣,等.海洋钢结构浪花飞溅区腐蚀控制技术[M].北京:科学出版社,2011.
    [10]DAVIS J R, ASSOCIATES D. Corrosion:Understanding the Basic [M]. Novelty:ASM International,2000.
    [11]侯保荣.钢铁设施在海洋浪花飞溅区的腐蚀行为及其新型包覆防护技术[J].腐蚀与防护,2007,28(4):3.
    [12]LEE W, LEWANDOWSKI Z, NIELSEN P H, et al. Role of Sulfate-Reducing Bacteria in Corrosion of Mild-Steel-a Review [J]. Biofouling,1995,8(3):165-194.
    [13]DINH H T, KUEVER J, MUSSMANN M, et al. Iron corrosion by novel anaerobic microorganisms [J]. Nature,2004,427(6977):829-832.
    [14]BARTON L L, HAMILTON W A. Sulphate-reducing Bacteria Environmental and Engineering Systems [M]. New York:Cambridge University Press,2007.
    [15]FLEMMING H-C, MURTHY P S, VENKATESAN R, et al. Marine and Industrial Biofouling [M]. Berlin Springer,2009.
    [16]MORI K, TSURUMARU H, HARAYAMA S. Iron corrosion activity of anaerobic hydrogen-consuming microorganisms isolated from oil facilities [J]. Journal of Bioscience and Bioengineering,2010,110(4):426-430.
    [17]ARZOLA-PERALTA S, MENDOZA-FLORES J, DURAN-ROMERO R, et al. Cathodic kinetics of API X70pipeline steel corrosion in H2S containing solutions under turbulent flow conditions [J]. Corrosion Engineering, Science and Technology,2006,41(4):321-327.
    [18]HAMILTON W A. Sulphate-reducing bacteria and anaerobic corrosion [J]. Annual Review of Microbiology,1985,39:195-217.
    [19]VUKOVIC M, CVETKOVSKI V, CONIC V. Mechanisms of Microbiologically Induced Corrosion of Metals in the Environments Containing Sulphate-Reducing Bacteria [J]. Corrosion Reviews,2009,27(1-2):1-22.
    [20]ANTONY P J, RAMAN R K S, MOHANRAM R, et al. Influence of thermal aging on sulfate-reducing bacteria (SRB)-influenced corrosion behaviour of2205duplex stainless steel [J]. Corrosion Science,2008,50(7):1858-1864.
    [21]CETIN D, AKSU M L. Corrosion behavior of low-alloy steel in the presence of Desulfotomaculum sp [J]. Corrosion Science,2009,51(8):1584-1588.
    [22]VIDELA H A. An overview of mechanisms by which sulphate-reducing bacteria influence corrosion of steel in marine environments [J]. Biofouling,2000,15(1-3):37-47.
    [23]黄英,柯才焕,等.国外对藤壶幼体附着的研究进展[J].海洋科学,2001,25(3):30-32.
    [24]李燕,高亚辉,李雪松,等.海洋硅藻附着研究进展[J].生命科学,2008,20(5):768-772.
    [25]宋永香,王志政.海洋生物及其粘附机理—藤壶、帽贝、海葵、管栖蠕虫[J].中国胶粘剂,2003,12(4):60-63.
    [26]宋永香,王志政.海洋生物及其粘附机理—微生物、小型海藻、巨型海藻、贻贝[J].中国胶粘剂,2002,11(4):48-52.
    [27]廖智,申望,王日昕.海洋生物黏附蛋白研究进展[J].浙江海洋学院学报:自然科学版,2007,26(4):439-447.
    [28]黄运涛,彭乔.海洋生物污损的防治方法及研究进展[J].全面腐蚀控制,2004,18(1):3-5.
    [29]许凤玲,刘升发,侯保荣.海洋生物污损研究进展[J].海洋湖沼通报,2008,1:146-152.
    [30]黄宗国.海洋污损生物及其防除[M].北京:海洋出版社,2008.
    [31]史航,王鲁民.海洋污损生物藤壶的附着机理及防除[J].广东农业科学,2006,6:72- 73.
    [32]马士德,吴培辉.舰船的生物附着与腐蚀调查[J].海洋学报,1996,18(1):80-90.
    [33]冯万亮,桂赤斌,周建奇.生物污损对舰船的危害及防污新技术[J].四川兵工学报,2009,30(11):129-132.
    [34]田俊杰,刘刚,曲政.石油平台海生物污损的防治方法[J].腐蚀与防护,2003,24(10):450-451.
    [35]张明明,赵文,于世超.我国海洋污损生物的研究概况[J].水产科学,2008,27(10):545-549.
    [36]LEJARS M, MARGAILLAN A, BRESSY C. Fouling Release Coatings:A Nontoxic Alternative to Biocidal Antifouling Coatings [J]. Chemical Reviews,2012,112(8):4347-4390.
    [37]CALLOW M E, JENNINGS A R, BRENNAN A B, et al. Microtopographic cues for settlement of zoospores of the green fouling alga Enteromorpha [J]. Biofouling,2002,18(3):237-245.
    [38]MANSFELD F. The interaction of bacteria and metal surfaces [J]. Electrochimica Acta,2007,52(27):7670-7680.
    [39]CHEN M Y, CHEN M J, LEE P F, et al. Towards real-time observation of conditioning film and early biofilm formation under laminar flow conditions using a quartz crystal microbalance [J]. Biochemical Engineering Journal,2010,53(1):121-130.
    [40]COSTERTON J W, STEWART P S, GREENBERG E P. Bacterial biofilms:A common cause of persistent infections [J]. Science,1999,284(5418):1318-1322.
    [41]ALDRED N, CLARE A S. The adhesive strategies of cyprids and development of barnacle-resistant marine coatings [J]. Biofouling,2008,24(5):351-363.
    [42]KOEHL M A R. Mini review:Hydrodynamics of larval settlement into fouling communities [J]. Biofouling,2007,23(5):357-368.
    [43]UPADHYAYULA V K K, GADHAMSHETTY V. Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering:A review [J]. Biotechnology Advances,2010,28(6):802-816.
    [44]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社2008.
    [45]LITTLE B, WAGNER P, MANSFELD F. An Overview of Microbiologically Influenced Corrosion [J]. Electrochimica Acta,1992,37(12):2185-2194.
    [46]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社2002.
    [47]KARTHIK B B, SELVAKUMAR P, THANGAVELU C. Phosphonic Acids used as Corrosion Inhibitors-A Review [J]. Asian Journal of Chemistry,2012,24(8):3303-3308.
    [48]HUANG B X, TORNATORE P, LI Y S. IR and Raman spectroelectrochemical studies of corrosion films on tin [J]. Electrochimica Acta,2000,46(5):671-679.
    [49]FINSGAR M, MILOSEV I. Inhibition of copper corrosion by1,2,3-benzotriazole:A review [J]. Corrosion Science,2010,52(9):2737-2749.
    [50]WRZOSEK B, CUKRAS J, BUKOWSKA J. Adsorption of1,2,4-triazole on a silver electrode:surface-enhanced Raman spectroscopy and density functional theory studies [J]. Journal of Raman Spectroscopy,2012,43(8):1010-1017.
    [51]GU W, CAO P G, GU R A. Surface-enhanced Raman spectroscopy in studies of corrosion and inhibition on an iron surface [J]. Spectroscopy Spectral Analysis,2005,25(9):1412-1417.
    [52]TIAN Z Q, REN B. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy [J]. Annual Review of Physical Chemistry,2004,55:197-229.
    [53]YANG H F, FENG J, LIU Y L, et al. Electrochemical and surface enhanced Raman scattering spectroelectrochemical study of phytic acid on the silver electrode [J]. Journal of Physical Chemistry B,2004,108(45):17412-17417.
    [54]MELENDRES C A, PANKUCH M, LI Y S, et al. Surface enhanced Raman spectroelectrochemical studies of the corrosion films on iron and chromium in aqueous-solution environments [J]. Electrochimica Acta,1992,37(15):2747-2754.
    [55]PARDO A, MERINO M C, COY A E, et al. Corrosion behaviour of magnesium/aluminium alloys in3.5wt.%NaCl [J]. Corrosion Science,2008,50(3):823-834.
    [56]AMIN M A, EL-REHIM S S A, EL-SHERBINI E E F, et al. The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid-Part I. Weight loss, polarization, EIS, PZC, EDX and SEM studies [J]. Electrochimica Acta,2007,52(11):3588-3600.
    [57]REFAIT P, DRISSI S H, PYTKIEWICZ J, et al. The anionic species competition in iron aqueous corrosion:Role of various green rust compounds [J]. Corrosion Science,1997,39(9):1699-1710.
    [58]SERE P R, CULCASI J D, ELSNER C I, et al. Relationship between texture and corrosion resistance in hot-dip galvanized steel sheets [J]. Surface&Coatings Technology,1999,122(2-3):143-149.
    [59]HEUER J K, STUBBINS J F. An XPS characterization of FeCO3films from CO2corrosion [J]. Corrosion Science,1999,41(7):1231-1243.
    [60]HURLEY B L, MCCREERY R L. Covalent bonding of organic molecules to Cu and Al alloy2024T3surfaces via diazonium ion reduction [J]. Journal of The Electrochemical Society,2004,151(5):B252-B259.
    [61]PLOUX L, BECKENDORFF S, NARDIN M, et al. Quantitative and morphological analysis of biofilm formation on self-assembled monolayers [J]. Colloids and Surfaces B-Biointerfaces,2007,57(2):174-181.
    [62]ANTONY P J, CHONGDAR S, KUMAR P, et al. Corrosion of2205duplex stainless steel in chloride medium containing sulfate-reducing bacteria [J]. Electrochimica Acta,2007,52(12):3985-3994.
    [63]SEKAR R, GRIEBE T, FLEMMING H C. Influence of image acquisition parameters on quantitative measurements of biofilms using confocal laser scanning microscopy [J]. Biofouling,2002,18(1):47-56.
    [64]SURMAN S B, WALKER J T, GODDARD D T, et al. Comparison of microscope techniques for the examination of biofilms [J]. Journal of Microbiological Methods,1996,25(1):57-70.
    [65]WAGNER M, IVLEVA N P, HAISCH C, et al. Combined use of confocal laser scanning microscopy (CLSM) and Raman microscopy (RM):Investigations on EPS-Matrix [J]. Water Research,2009,43(1):63-76.
    [66]BARD A J, MIRKIN M V. Scanning Electrochemical Microscopy [M]. New York: Marcel Dekker,2001.
    [67]SEEGMILLER J C, BUTTRY D A. A SECM study of heterogeneous redox activity at AA2024surfaces [J]. Journal of The Electrochemical Society,2003,150(9):B413-B418.
    [68]ZHU R K, QIN Z Q, NOEL J J, et al. Analyzing the influence of alloying elements and impurities on the localized reactivity of titanium grade-7by scanning electrochemical microscopy [J]. Analytical Chemistry,2008,80(5):1437-47.
    [69]LI W, LI D Y. Influence of surface morphology on corrosion and electronic behavior [J]. Acta Materialia,2006,54(2):445-452.
    [70]SINHA P K, FESER R. Phosphate coating on steel surfaces by an electrochemical method [J]. Surface&Coatings Technology,2002,161(2-3):158-168.
    [71]BELKAID S, LADJOUZI M A, HAMDANI S. Effect of biofilm on naval steel corrosion in natural seawater [J]. Journal of Solid State Electrochemistry,2011,15(3):525-37.
    [72]PIRTTIAHO L, BLAKELY J. Environmental scanning electron microscope observations of H2S attack on the protective oxide on an Ni-Fe alloy [J]. Scanning,1996,18(7):497-499.
    [73]POLSON E J, BUCKMAN J O, BOWEN D, et al. An Environmental-Scanning-Electron-Microscope Investigation Into the Effect of Biofilm on the Wettability of Quartz [J]. SPE Journal,2010,15(1):223-227.
    [74]KOWAL K, DELUCCIA J, JOSEFOWICZ J Y, et al. In situ atomic force microscopy observations of the corrosion behavior of aluminum-copper alloys [J]. Journal of The Electrochemical Society,1996,143(8):2471-2481.
    [75]SERRY F M, STRAUSSER Y E, ELINGS J, et al. Surface characterisation using atomic force microscopy [J]. Surface Engineering,1999,15(4):285-290.
    [76]XU L C, CHAN K Y, FANG H H P. Application of atomic force microscopy in the study of microbiologically influenced corrosion [J]. Materials Characterization,2002,48(2-3):195-203.
    [77]MACPHERSON J V, UNWIN P R. Combined scanning electrochemical-atomic force microscopy [J]. Analytical Chemistry,2000,72(2):276-285.
    [78]FLEMMING H C. Biofouling in water systems-cases, causes and countermeasures [J]. Applied Microbiology and Biotechnology,2002,59(6):629-640.
    [79]GLINEL K, JONAS A M, JOUENNE T, et al. Antibacterial and Antifouling Polymer Brushes Incorporating Antimicrobial Peptide [J]. Bioconjugate Chemistry,2009,20(1):71-77.
    [80]CARMAN M L, ESTES T G, FEINBERG A W, et al. Engineered antifouling microtopographies-correlating wettability with cell attachment [J]. Biofouling,2006,22(1):11-21.
    [81]HO WELL D, BEHRENDS B. A review of surface roughness in antifouling coatings illustrating the importance of cutoff length [J]. Biofouling,2006,22(6):401-410.
    [82]MARMUR A. Super-hydrophobicity fundamentals:implications to biofouling prevention [J]. Biofouling,2006,22(2):107-115.
    [83]SCHULTZ M P. Effects of coating roughness and biofouling on ship resistance and powering [J]. Biofouling,2007,23(5):331-341.
    [84]PIOLA R F, DAFFORN K A, JOHNSTON E L. The influence of antifouling practices on marine invasions [J]. Biofouling,2009,25(7):633-644.
    [85]SCHUMACHER J F, ALDRED N, CALLOW M E, et al. Species-specific engineered antifouling topographies:correlations between the settlement of algal zoospores and barnacle cyprids [J]. Biofouling,2007,23(5):307-317.
    [86]BRADY R F. Fouling-release coatings for warships [J]. Defence Science Journal,2005,55(1):75-81.
    [87]PONTIE M, RAPENNE S, THEKKEDATH A, et al. Tools for membrane autopsies and antifouling strategies in seawater feeds:a review [J]. Desalination,2005,181(1-3):75-90.
    [88]WHELAN A, REGAN F. Antifouling strategies for marine and riverine sensors [J]. Journal of Environmental Monitoring,2006,8(9):880-886.
    [89]CLARE A S. Towards nontoxic antifouling [J]. Journal of Marine Biotechnology,1998,6(1):3-6.
    [90]KRISHNAN S, WEINMAN C J, OBER C K. Advances in polymers for anti-biofouling surfaces [J]. Journal of Materials Chemistry,2008,18(29):3405-3413.
    [91]GU J S, YU H Y, HUANG L, et al. Chain-length dependence of the antifouling characteristics of the glycopolymer-modified polypropylene membrane in an SMBR [J]. Journal of Membrane Science,2009,326(1):145-152.
    [92]FINLAY J A, KRISHNAN S, CALLOW M E, et al. Settlement of Ulva zoospores on patterned fiuorinated and PEGylated monolayer surfaces [J]. Langmuir,2008,24(2):503-510.
    [93]GUDIPATI C S, FINLAY J A, CALLOW J A, et al. The antifouling and fouling-release perfomance of hyperbranched fluoropolymer (HBFP)-poly(ethylene glycol)(PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva [J]. Langmuir,2005,21(7):3044-3053.
    [94]IGUERB O, POLEUNIS C, MAZEAS F, et al. Antifouling Properties of Poly(methyl methacrylate) Films Grafted with Poly(ethylene glycol) Monoacrylate Immersed in Seawater [J]. Langmuir,2008,24(21):12272-122781.
    [95]KRISHNAN S, AYOTHI R, HEXEMER A, et al. Anti-biofouling properties of comblike block copolymers with amphiphilic side chains [J]. Langmuir,2006,22(11):5075-5086.
    [96]SHEPAROVYCH R, MOTORNOV M, MINKO S. Adapting Low-Adhesive Thin Films from Mixed Polymer Brushes [J]. Langmuir,2008,24(24):13828-13832.
    [97]LICHTER J A, VAN VLIET K J, RUBNER M F. Design of Antibacterial Surfaces and Interfaces:Polyelectrolyte Multilayers as a Multifunctional Platform [J]. Macromolecules,2009,42(22):8573-8586.
    [98]YARBROUGH J C, ROLLAND J P, DESIMONE J M, et al. Contact angle analysis, surface dynamics, and biofouling characteristics of cross-linkable, random perfiuoropolyether-based graft terpolymers [J]. Macromolecules,2006,39(7):2521-2528.
    [99]KOCH K, BHUSHAN B, BARTHLOTT W. Multifunctional surface structures of plants: An inspiration for biomimetics [J]. Progress in Materials Science,2009,54(2):137-178.
    [100]ALMEIDA E, DIAMANTINO T C, DE SOUSA O. Marine paints:The particular case of antifouling paints [J]. Progress in Organic Coatings,2007,59(1):2-20.
    [101]YEBRA D M, KIIL S, DAM-JOHANSEN K. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings [J]. Progress in Organic Coatings,2004,50(2):75-104.
    [102]GROZEA C M, WALKER G C. Approaches in designing non-toxic polymer surfaces to deter marine biofouling [J]. Soft Matter,2009,5(21):4088-4100.
    [103]CHAMBERS L D, STOKES K R, WALSH F C, et al. Modern approaches to marine antifouling coatings [J]. Surface&Coatings Technology,2006,201(6):3642-3652.
    [104]金晓鸿.海洋污损生物防除技术和发展(Ⅲ)—世界防污技术的历史和发展[J].材料开发与应用,2006,21(1):44-46.
    [105]刘姗姗,严涛.海洋污损生物防除的现状及展望[J].海洋学研究,2006,24(4):53-60.
    [106]张立侠.防海生物污损技术初探[J].橡塑资源利用,2006,2:7-11.
    [107]OMAE I. Organotin antifouling paints and their alternatives [J]. Applied Organometallic Chemistry,2003,17(2):81-105.
    [108]CLARE A S. Marine natural product antifoulants:Status and potential [J]. Biofouling,1996,9(3):211-229.
    [109]DOBRETSOV S, DAHMS H U, QIAN P Y. Inhibition of biofouling by marine microorganisms and their metabolites [J]. Biofouling,2006,22(1):43-54.
    [110]VOULVOULIS N, SCRIMSHAW M D, LESTER J N. Alternative antifouling biocides [J]. Applied Organometallic Chemistry,1999,13(3):135-143.
    [111]RALSTON E, SWAIN G. Bioinspiration-the solution for biofouling control?[J]. Bioinspiration&Biomimetics,2009,4(1):015007.
    [112]ROSENHAHN A, EDERTH T, PETTITT M E. Advanced nanostructures for the control of biofouling:The FP6EU Integrated Project AMBIO [J]. Biointerphases,2008,3(1):IR1-IR5.
    [113]CHENG G, ZHANG Z, CHEN S F, et al. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces [J]. Biomaterials,2007,28(29):4192-4199.
    [114]FALCONNET D, CSUCS G, GRANDIN H M, et al. Surface engineering approaches to micropattern surfaces for cell-based assays [J]. Biomaterials,2006,27(16):3044-3063.
    [115]NEJADNIK M R, VAN DER MEI H C, NORDE W, et al. Bacterial adhesion and growth on a polymer brush-coating [J]. Biomaterials,2008,29(30):4117-4121.
    [116]OMAE M. General aspects of tin-free antifouling paints [J]. Chemical Reviews,2003,103(9):3431-3448.
    [117]KESEL A, LIEDERT R. Learning from nature:Non-toxic biofouling control by shark skin effect [J]. Comparative Biochemistry and Physiology a-Molecular&Integrative Physiology,2007,146(4):6.
    [118]SCHUMACHER J F, LONG C J, CALLOW M E, et al. Engineered nanoforce gradients for inhibition of settlement (attachment) of swimming algal spores [J]. Langmuir,2008,24(9):4931-4937.
    [119]RITTSCHOF D. Natural product antifoulants:One perspective on the challenges related to coatings development [J]. Biofouling,2000,15(1-3):119-127.
    [120]QIAN P Y, XU Y, FUSETANI N. Natural products as antifouling compounds:recent progress and future perspectives [J]. Biofouling,2010,26(2):223-234.
    [121]YI H M, WU L Q, BENTLEY W E, et al. Biofabrication with chitosan [J]. Biomacromolecules,2005,6(6):2881-2894.
    [122]BERGER J, REIST M, MAYER J M, et al. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications [J]. European Journal of Pharmaceutics and Biopharmaceutics,2004,57(1):19-34.
    [123]RINAUDO M. Chitin and chitosan:Properties and applications [J]. Progress in Polymer Science,2006,31(7):603-632.
    [124]KUMAR M. A review of chitin and chitosan applications [J]. Reactive&Functional Polymers,2000,46(1):1-27.
    [125]SANCHEZ V C, JACHAK A, HURT R H, et al. Biological Interactions of Graphene-Family Nanomaterials:An Interdisciplinary Review [J]. Chemical Research in Toxicology,2012, 25(1):15-34.
    [126]MAUTER M S, ELIMELECH M. Environmental applications of carbon-based nanomaterials [J]. Environmental Science&Technology,2008,42(16):5843-5859.
    [127]VECITIS C D, ZODROW K R, KANG S, et al. Electronic-Structure-Dependent Bacterial Cytotoxicity of Single-Walled Carbon Nanotubes [J]. ACS Nano,2010,4(9):5471-5479.
    [128]AKHAVAN O, GHADERI E. Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria [J]. ACS Nano,2010,4(10):5731-5736.
    [129]HU W B, PENG C, LUO W J, et al. Graphene-Based Antibacterial Paper [J]. ACS Nano,2010,4(7):4317-4323.
    [130]LIU S B, ZENG T H, HOFMANN M, et al. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide:Membrane and Oxidative Stress [J]. ACS Nano,2011,5(9):6971-6980.
    [131]AKHAVAN O, GHADERI E. Escherichia coil bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner [J]. Carbon,2012,50(5):1853-1860.
    [132]BEIGBEDER A, DEGEE P, CONLAN S L, et al. Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings [J]. Biofouling,2008,24(4):291-302.
    [133]BEIGBEDER A, MINCHEVA R, PETTITT M E, et al. Marine Fouling Release Silicone/Carbon Nanotube Nanocomposite Coatings:On the Importance of the Nanotube Dispersion State [J]. Journal of Nanoscience and Nanotechnology,2010,10(5):2972-2978.
    [134]ADAMS L K, LYON D Y, ALVAREZ P J J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions [J]. Water Research,2006,40(19):3527-3532.
    [135]MUSEE N, THWALA M, NOTA N. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants [J]. Journal of Environmental Monitoring,2011,13(5):1164-1183.
    [136]SADIQ I M, CHANDRASEKARAN N, MUKHERJEE A. Studies on Effect of TiO2Nanoparticles on Growth and Membrane Permeability of Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis [J]. Current Nanoscience,2010,6(4):381-287.
    [137]CHOI O, HU Z Q. Role of Reactive Oxygen Species in Determining Nitrification Inhibition by Metallic/Oxide Nanoparticles [J]. Journal of Environmental Engineering-Asce, 2009,135(12):1365-1370.
    [138]RAGHUPATHI K R, KOODALI R T, MANNA A C. Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles [J]. Langmuir,2011,27(7):4020-4028.
    [139]NAIR S, SASIDHARAN A, RANI V V D, et al. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells [J]. Journal of Materials Science:Materials in Medicine,2009,20:235-241.
    [140]JONES N, RAY B, RANJIT K T, et al. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms [J]. FEMS Microbiology Letters,2008,279(1):71-76.
    [141]PAL S, TAK Y K, SONG J M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli [J]. Applied and Environmental Microbiology,2007,73(6):1712-1720.
    [142]MILLSTONE J E, HURST S J, METRAUX G S, et al. Colloidal Gold and Silver Triangular Nanoprisms [J]. Small,2009,5(6):646-664.
    [143]SIMON-DECKERS A, LOO S, MAYNE-L'HERMITE M, et al. Size-, Composition-and Shape-Dependent Toxicological Impact of Metal Oxide Nanoparticles and Carbon Nanotubes toward Bacteria [J]. Environmental Science&Technology,2009,43(21):8423-8429.
    [144]FABREGA J, FAWCETT S R, RENSHAW J C, et al. Silver Nanoparticle Impact on Bacterial Growth:Effect of pH, Concentration, and Organic Matter [J]. Environmental Science&Technology,2009,43(19):7285-7290.
    [145]KVITEK L, SOUKUPOVA J. Comment on 'Preparation and antibacterial activity of Fe3O4@Ag nanoparticles'[J]. Nanotechnology,2009,20(2):1-2.
    [146]PANACEK A, KOLAR M, VECEROVA R, et al. Antifungal activity of silver nanoparticles against Candida spp [J]. Biomaterials,2009,30(31):6333-6340.
    [147]PANACEK A, KVITEK L, PRUCEK R, et al. Silver colloid nanoparticles:Synthesis, characterization, and their antibacterial activity [J]. Journal of Physical Chemistry B,2006,110(33):16248-16253.
    [148]KVITEK L, PANACEK A, SOUKUPOVA J, et al. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs)[J]. Journal of Physical Chemistry C,2008,112(15):5825-5834.
    [149]LI Q, MAHENDRA S, LYON D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control:Potential applications and implications [J]. Water Research,2008,42(18):4591-4602.
    [150]MOORE M N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?[J]. Environment International,2006,32(8):967-976.
    [151]BAUN A, HARTMANN N B, GRIEGER K, et al. Ecotoxicity of engineered nanoparticles to aquatic invertebrates:a brief review and recommendations for future toxicity testing [J]. Ecotoxicology,2008,17(5):387-395.
    [152]STERN S T, MCNEIL S E. Nanotechnology safety concerns revisited [J]. Toxicological Sciences,2008,101(1):4-21.
    [153]HARDMAN R. A toxicologic review of quantum dots:Toxicity depends on physicochemical and environmental factors [J]. Environmental Health Perspectives,2006,114(2):165-172.
    [154]OBERDORSTER G, STONE V, DONALDSON K. Toxicology of nanoparticles:A historical perspective [J]. Nanotoxicology,2007,1(1):2-25.
    [155]TIEDE K, BOXALL A B A, TEAR S P, et al. Detection and characterization of engineered nanoparticles in food and the environment [J]. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure&Risk Assessment,2008,25(7):795-821.
    [156]FARRE M, GAJDA-SCHRANTZ K, KANTIANI L, et al. Ecotoxicity and analysis of nanomaterials in the aquatic environment [J]. Analytical and Bioanalytical Chemistry,2009,393(1):81-95.
    [157]THERON J, WALKER J A, CLOETE T E. Nanotechnology and water treatment: Applications and emerging opportunities [J]. Critical Reviews in Microbiology,2008,34(1):43-69.
    [158]BORM P, KLAESSIG F C, LANDRY T D, et al. Research strategies for safety evaluation of nanomaterials, Part Ⅴ:Role of dissolution in biological fate and effects of nanoscale particles [J]. Toxicological Sciences,2006,90(1):23-32.
    [159]MARAMBIO-JONES C, HOEK E M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment [J]. Journal of Nanoparticle Research,2010,12(5):1531-1551.
    [160]KLAINE S J, ALVAREZ P J J, BATLEY G E, et al. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects [J]. Environmental Toxicology and Chemistry,2008,27(9):1825-1851.
    [161]PETOSA A R, JAISI D P, QUEVEDO I R, et al. Aggregation and Deposition of Engineered Nanomaterials in Aquatic Environments:Role of Physicochemical Interactions [J]. Environmental Science&Technology,2010,44(17):6532-6549.
    [162]RAO T S, KORA A J, ANUPKUMAR B, et al. Pitting corrosion of titanium by a freshwater strain of sulphate reducing bacteria (Desulfovibrio vulgaris)[J]. Corrosion Science,2005,47(5):1071-1084.
    [163]SHERAR B W A, POWER I M, KEECH P G, et al. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion [J]. Corrosion Science,2011,53(3):955-960.
    [164]LITTLE B, LEE J, RAY R. The influence of marine biofilms on corrosion:A concise review [J]. Electrochimica Acta,2008,54(1):2-7.
    [165]JAVAHERDASHTI R. A review of some characteristics of MIC caused by sulfate-reducing bacteria:past, present and future [J]. Anti-Corrosion Methods and Materials,1999,46(3):173-180.
    [166]JAVAHERDASHTI R. Impact of sulphate-reducing bacteria on the performance of engineering materials [J]. Applied Microbiology and Biotechnology,2011,91(6):1507-1517.
    [167]ANTONY P J, RAMAN R K S, RAMAN R, et al. Role of microstructure on corrosion of duplex stainless steel in presence of bacterial activity [J]. Corrosion Science,2010,52(4):1404-1412.
    [168]BAO Q, ZHANG D, WAN Y.2-Mercaptobenzothiazole doped chitosan/11-alkanethiolate acid composite coating:Dual function for copper protection [J]. Applied Surface Science,2011,257(24):10529-10534.
    [169]CHONGDAR S, GUNASEKARAN G, KUMAR P. Corrosion inhibition of mild steel by aerobic biofilm [J]. Electrochimica Acta,2005,50(24):4655-4665.
    [170]SHENG X X, TING Y P, PEHKONEN S A. The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI316[J]. Corrosion Science,2007,49(5):2159-2176.
    [171]VIDELA H A, HERRERA L K. Understanding microbial inhibition of corrosion. A comprehensive overview [J]. International Biodeterioration&Biodegradation,2009,63(7):896- 900.
    [172]CHAN K Y, XU L C, FANG H H P. Anaerobic electrochemical corrosion rug of mild steel in the presence of extracellular polymeric substances produced by a culture enriched in sulfate-reducing bacteria [J]. Environmental Science&Technology,2002,36(8):1720-1727.
    [173]SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems:A review [J]. Biotechnology Advances,2010,28(6):882-894.
    [174]LAVANIA M, SARMA P M, MANDAL A K, et al. Efficacy of natural biocide on control of microbial induced corrosion in oil pipelines mediated by Desulfovibrio vulgaris and Desulfovibrio gigas [J]. Journal of Environmental Sciences (China),2011,23(8):1394-1402.
    [175]LIN Y, DE KREUK M, VAN LOOSDRECHT M C M, et al. Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant [J]. Water Research,2010,44(11):3355-3564.
    [176]ILYALETDINOV A N, ENKER P B, LOGINOVA L V. Role of Sulfate-Reducing Bacteria in Precipitation of Copper [J]. Microbiology,1977,46(1):92-95.
    [177]MOON K M, CHO H R, LEE M H, et al. Electrochemical analysis of the microbiologically influenced corrosion of steels by sulfate-reducing bacteria [J]. Metals and Materials International,2007,13(3):211-216.
    [178]ORTEGA-TOLEDO D M, GONZALEZ-RODRIGUEZ J G, CASALES M, et al. The CO2corrosion inhibition of a high strength pipeline steel by hydroxyethyl imidazoline [J]. Materials Chemistry and Physics,2010,122(2-3):485-490.
    [179]YING W, YANG F, BICK A, et al. Extracellular Polymeric Substances (EPS) in a Hybrid Growth Membrane Bioreactor (HG-MBR):Viscoelastic and Adherence Characteristics [J]. Environmental Science&Technology,2010,44(22):8636-8643.
    [180]LIU X M, SHENG G P, LUO H W, et al. Contribution of Extracellular Polymeric Substances (EPS) to the Sludge Aggregation [J]. Environmental Science&Technology,2010,44(11):4355-4360.
    [181]DESIMONE M P, GRUNDMEIER G, GORDILLO G, et al. Amphiphilic amido-amine as an effective corrosion inhibitor for mild steel exposed to CO2saturated solution:Polarization, EIS and PM-IRRAS studies [J]. Electrochimica Acta,2011,56(8):2990-2998.
    [182]BOUANIS F Z, BENTISS F, TRAISNEL M, et al. Enhanced corrosion resistance properties of radiofrequency cold plasma nitrided carbon steel:Gravimetric and electrochemical results [J]. Electrochimica Acta,2009,54(8):2371-2378.
    [183]WANG B, DU M, ZHANG J, et al. Electrochemical and surface analysis studies on corrosion inhibition of Q235steel by imidazoline derivative against CO2corrosion [J]. Corrosion Science,2011,53(1):353-361.
    [184]GARCIA-ARRIAGA V, ALVAREZ-RAMIREZ J, AMAYA M, et al. H2S and O2influence on the corrosion of carbon steel immersed in a solution containing3M diethanolamine [J]. Corrosion Science,2010,52(7):2268-2279.
    [185]FARELAS F, GALICIA M, BROWN B, et al. Evolution of dissolution processes at the interface of carbon steel corroding in a CO2environment studied by EIS [J]. Corrosion Science,2010,52(2):509-517.
    [186]AMIN M A, KHALED K F, MOHSEN Q, et al. A study of the inhibition of iron corrosion in HC1solutions by some amino acids [J]. Corrosion Science,2010,52(5):1684-1695.
    [187]PARK M K, SAKELLARIOU G, PISPAS S, et al. On the quantitative adsorption behavior of multi-zwitterionic end-functionalized polymers onto gold surfaces [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,326(3):115-121.
    [188]XIONG S L, LI A, HUANG N, et al. Antioxidant and immunoregulatory activity of different polysaccharide fractions from tuber of Ophiopogon japonicus [J]. Carbohydrate Polymers,2011,86(3):1273-1280.
    [189]FINKENSTADT V L, C T G L, WILLETT J L. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides [J]. Biotechnology Letters,2011,33(6):1093-1100.
    [190]KLEBER C, HILFRICH U, SCHREINER M. In situ QCM and TM-AFM investigations of the early stages of degradation of silver and copper surfaces [J]. Applied Surface Science,2007,253(7):3712-3721.
    [191]LI R, CHEN W C, WANG W P, et al. Antioxidant activity of Astragalus polysaccharides and antitumour activity of the polysaccharides and siRNA [J]. Carbohydrate Polymers,2010,82(2):240-244.
    [192]SHI Y, SHENG J, YANG F, et al. Purification and identification of polysaccharide derived from Chlorella pyrenoidosa [J]. Food Chemistry,2007,103(1):101-105.
    [193]QIAN J Y, CHEN W, ZHANG W M, et al. Adulteration identification of some fungal polysaccharides with SEM, XRD, IR and optical rotation:A primary approach [J]. Carbohydrate Polymers,2009,78(3):620-625.
    [194]SAN N O, NAZiR H, DNMEZ G. Microbial corrosion of Ni-Cu alloys by Aeromonas eucrenophila bacterium [J]. Corrosion Science,2011,53(6):2216-2221.
    [195]LI Y J, ZHANG D, WU J J. Study on kinetics of cathodic reduction of dissolved oxygen in3.5%sodium chloride solution [J]. Journal of Ocean University of China (English Edition)2010,9(3):239-243.
    [196]李永娟,张盾,刘学庆.Q235钢在模拟海水环境混凝土孔隙液中阴极氧还原反应的动力学研究[J].腐蚀科学与防护技术,2009,21(2):3.
    [197]孙蓉,张盾,张胜涛,等.钢铁材料在海水中阴极氧还原反应研究进展[J].腐蚀科学与防护技术,2009,21(1):4.
    [198]TSURU T. Anodic-dissolution mechanisms of metals and alloys [J]. Materials Science and Engineering A, Structural Materials:Properties, Microstructure and Processing,1991,146(1-2):1-14.
    [199]BARRANCO V, FELIU S. EIS study of the corrosion behaviour of zinc-based coatings on steel in quiescent3%NaCl solution. Part1:directly exposed coatings [J]. Corrosion Science,2004,46(9):2203-2220.
    [200]P REZ E J, CABRERA-SIERRA R, GONZ LEZ I, et al. Influence of Desulfovibrio sp. biofilm on SAE1018carbon steel corrosion in synthetic marine medium [J]. Corrosion Science,2007,49(9):3580-3597.
    [201]STANCANELLI R, FICARRA R, CANNAV C, et al. UV-vis and FTIR-ATR characterization of9-fluorenon-2-carboxyester/(2-hydroxypropyl)-(3-cyclodextrin inclusion complex [J]. Journal of Pharmaceutical and Biomedical Analysis,2008,47(4-5):704-709.
    [202]CIESLIK-BOCZULA K, SZWED J, JASZCZYSZYN A, et al. Interactions of Dihydrochloride Fluphenazine with DPPC Liposomes:ATR-IR and P31NMR Studies [J]. Journal of Physical Chemistry B,2009,113(47):15495-15502.
    [203]CRUPI V, FICARRA R, GUARDO M, et al. UV-vis and FTIR-ATR spectroscopic techniques to study the inclusion complexes of genistein with (3-cyclodextrins [J]. Journal of Pharmaceutical and Biomedical Analysis,2007,44(1):110-117.
    [204]CRUPI V, MAJOLINO D, MAZZAGLIA A, et al. Chiral recognition and complexation behaviour of (3-CyD vs. L-and DL-serine by FTIR-ATR spectroscopy [J]. Journal of Molecular Structure,2011,993(1-3):376-381.
    [205]BEECH I B, ZINKEVICH V, TAPPER R, et al. Study of the interaction of sulphate-reducing bacteria exopolymers with iron using X-ray photoelectron spectroscopy and time-of-flight secondary ionisation mass spectrometry [J]. Journal of Microbiological Methods,1999,36(1-2):3-10.
    [206]POMORSKA A, YLINIEMI K, WILSON B P, et al. QCM study of the adsorption of polyelectrolyte covered mesoporous TiO2nanocontainers on SAM modified Au surfaces [J]. Journal of Colloid and Interface Science,2011,362(1):180-187.
    [207]OLSSON A L J, VAN DER MEI H C, BUSSCHER H J, et al. Acoustic sensing of the bacterium-substratum interface using QCM-D and the influence of extracellular polymeric substances [J]. Journal of Colloid and Interface Science,2011,357(1):135-138.
    [208]SCHOFIELD A L, RUDD T R, MARTIN D S, et al. Real-time monitoring of the development and stability of biofilms of Streptococcus mutans using the quartz crystal microbalance with dissipation monitoring [J]. Biosensors and Bioelectronics,2007,23(3):407-413.
    [209]ZHU P T, LONG G Y, NI J R, et al. Deposition Kinetics of Extracellular Polymeric Substances (EPS) on Silica in Monovalent and Divalent Salts [J]. Environmental Science&Technology,2009,43(15):5699-5704.
    [210]AZEREDO J, VISSER J, OLIVEIRA R. Exopolymers in bacterial adhesion: interpretation in terms of DLVO and XDLVO theories [J]. Colloids and Surfaces B-Biointerfaces,1999,14(1-4):141-148.
    [211]FONDER G, LAFFINEUR F, DELHALLE J, et al. Alkanethiol-oxidized copper interface: The critical influence of concentration [J]. Journal of Colloid and Interface Science,2008,326(2):333-338.
    [212]VERA R, BASTIDAS F, VILLARROEL M, et al. Corrosion inhibition of copper in chloride media by1,5-bis(4-dithiocarboxylate-l-dodecyl-5-hydroxy-3-methylpyrazolyl)pentan e [J]. Corrosion Science,2008,50(3):729-736.
    [213]RAO B V A, IQBAL M Y, SREEDHAR B. Self-assembled monolayer of2-(octadecylthio)benzothiazole for corrosion protection of copper [J]. Corrosion Science,2009,51(6):1441-1452.
    [214]ALLAM N K, ASHOUR E A. Promoting effect of low concentration of benzotriazole on the corrosion of CulONi alloy in sulfide polluted salt water [J]. Applied Surface Science,2008,254(16):5007-5011.
    [215]AL KHARAFI F M, ABDULLAH A M, GHAYAD I M, et al. Effect of sulfide pollution on the stability of the protective film of benzotriazole on copper [J]. Applied Surface Science,2007,253(22):8986-8991.
    [216]JENNINGS G K, MUNRO J C, YONG T H, et al. Effect of chain length on the protection of copper by n-alkanethiols [J]. Langmuir,1998,14(21):6130-6139.
    [217]LAIBINIS P E, WHITESIDES G M. Self-assembled monolayers of n-alkanethiolates on copper are barrier films that protect the metal against oxidation by air [J]. Journal of the American Chemical Society,1992,114(23):9022-9028.
    [218]JENNINGS G K, YONG T H, MUNRO J C, et al. Structural effects on the barrier properties of self-assembled monolayers formed from long-chain omega-alkoxy-n-alkanethiols on copper [J]. Journal of the American Chemical Society,2003,125(10):2950-2957.
    [219]DENAYER J, DELHALLE J, MEKHALIF Z. Comparative study of copper surface treatment with self-assembled monolayers of aliphatic thiol, dithiol and dithiocarboxylic acid [J]. Journal of Electroanalytical Chemistry,2009,637(1-2):43-49.
    [220]ZAMBORINI F P, CROOKS R M. Corrosion passivation of gold by n-alkanethiol self-assembled monolayers:Effect of chain length and end group [J]. Langmuir,1998,14(12):3279-3286.
    [221]DENG T, WANG H, LI J S, et al. A novel biosensing interfacial design based on the assembled multilayers of the oppositely charged polyelectrolytes [J]. Analytica Chimica Acta,2005,532(2):137-144.
    [222]ZHAO Q, LIU Y, WANG C. Development and evaluation of electroless Ag-PTFE composite coatings with anti-microbial and anti-coffosion properties [J]. Applied Surface Science,2005,252(5):1620-1627.
    [223]ZHANG D Q, GAO L X, ZHOU G D. Inhibition of copper corrosion in aerated hydrochloric acid solution by heterocyclic compounds containing a mercapto group [J]. Corrosion Science,2004,46(12):3031-3040.
    [224]CONDE A, ARENAS M A, DE FRUTOS A, et al. Effective corrosion protection of8090alloy by cerium conversion coatings [J]. Electrochimica Acta,2008,53(26):7760-7768.
    [225]SOUTO R M, LAZ M M, GONZALEZ S. X-ray photoelectron spectroscopy and electrochemical studies on the interaction of potassium ethyl xanthate with metallic copper [J]. Journal of Physical Chemistry B,1997,101(4):508-511.
    [226]ZUCCHI F, FRIGNANI A, GRASSI V, et al. Organo-silane coatings for AZ31magnesium alloy corrosion protection [J]. Materials Chemistry and Physics,2008,110(2-3):263-268.
    [227]MA H Y, YANG C, YIN B S, et al. Electrochemical characterization of copper surface modified by n-alkanethiols in chloride-containing solutions [J]. Applied Surface Science,2003,218(1-4):143-153.
    [228]ILHAN-SUNGUR E, COTUK A. Microbial corrosion of galvanized steel in a simulated recirculating cooling tower system [J]. Corrosion Science,2010,52(1):161-171.
    [229]SCENDO M. Potassium ethyl xanthate as corrosion inhibitor for copper in acidic chloride solutions [J]. Corrosion Science,2005,47(7):1738-1749.
    [230]TANEICHI D, HANEDA R, ARAMAKI K. A novel modification of an alkanethiol self-assembled monolayer with alkylisocyanates to prepare protective films against copper corrosion [J]. Corrosion Science,2001,43(8):1589-1600.
    [231]DAVIS F, HIGSON S P J. Structured thin films as functional components within biosensors [J]. Biosensors and Bioelectronics,2005,21(1):1-20.
    [232]KEAR G, BARKER B D, WALSH F C. Electrochemical corrosion of unalloyed copper in chloride media-a critical review [J]. Corrosion Science,2004,46(1):109-135.
    [233]SHERIF E S M. Effects of2-amino-5-(ethylthio)-1,3,4-thiadiazole on copper corrosion as a corrosion inhibitor in3%NaCl solutions [J]. Applied Surface Science,2006,252(24):8615-8623.
    [234]OHSAWA M, SUETAKA W. Spectro-electrochemical studies of the corrosion inhibition of copper by mercaptobenzothiazole [J]. Corrosion Science,1979,19(10):709-722.
    [235]LI Y S, LU W J, WANG Y, et al. Studies of (3-mercaptopropyl)trimethoxylsilane and bis(trimethoxysilyl)ethane sol-gel coating on copper and aluminum [J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2009,73(5):922-928.
    [236]SHINDE V, SAINKAR S R, PATIL P P. Corrosion protective poly(o-toluldine) coatings on copper [J]. Corrosion Science,2005,47(6):1352-1369.
    [237]KUANG F, WANG J, YAN L, et al. Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel [J]. Electrochimica Acta,2007,52(20):6084-6088.
    [238]IVERSON W P. Microbial corrosion of metals [J]. Advances in Applied Microbiology,1987,32:1-36.
    [239]RAHMOUNI K, KEDDAM M, SRHIRI A, et al. Corrosion of copper in3%NaCl solution polluted by sulphide ions [J]. Corrosion Science,2005,47(12):3249-3266.
    [240]FRANCHINI C, MURAGLIA M,CORBO F, et al. Synthesis and Biological Evaluation of2-Mercapto-1,3-benzothiazole Derivatives with Potential Antimicrobial Activity [J]. Archiv Der Pharmazie,2009,342(10):605-613.
    [241]LI Q L, MAHENDRA S, LYON D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control:Potential applications and implications [J]. Water Research,2008,42(18):4591-4602.
    [242]GANGADHARAN D, HARSHVARDAN K, GNANASEKAR G, et al. Polymeric microspheres containing silver nanoparticles as a bactericidal agent for water disinfection [J]. Water Research,2010,44(18):5481-5487.
    [243]KRATSCHMER W, LAMB L D, FOSTIROPOULOS K, et al. Solid C60-a new form of carbon [J]. Nature,1990,347(6291):354-358.
    [244]ZHANG H J, CHEN G H. Potent Antibacterial Activities of Ag/TiO2Nanocomposite Powders Synthesized by a One-Pot Sol-Gel Method [J]. Environmental Science&Technology,2009,43(8):2905-2910.
    [245]DASTJERDI R, MONTAZER M. A review on the application of inorganic nano-structured materials in the modification of textiles:Focus on anti-microbial properties [J]. Colloids and Surfaces B-Biointerfaces,2010,79(1):5-18.
    [246]RUPARELIA J P, CHATTERIEE A K, DUTTAGUPTA S P, et al. Strain specificity in antimicrobial activity of silver and copper nanoparticles [J]. Acta Biomaterialia,2008,4(3):707-716.
    [247]JAIN J, ARORA S, RAJWADE J M, et al. Silver Nanoparticles in Therapeutics: Development of an Antimicrobial Gel Formulation for Topical Use [J]. Molecular Pharmaceutics,2009,6(5):1388-1401.
    [248]JIN X, LI M H, WANG J W, et al. High-Throughput Screening of Silver Nanoparticle Stability and Bacterial Inactivation in Aquatic Media:Influence of Specific Ions [J]. Environmental Science&Technology,2010,44(19):7321-7328.
    [249]KIM J S, KUK E, YU K N, et al. Antimicrobial effects of silver nanoparticles [J]. Nanomedicine-Nanotechnology Biology and Medicine,2007,3(1):95-101.
    [250]LE PAPE H, SOLANO-SERENA F, CONTINI P, et al. Involvement of reactive oxygen species in the bactericidal activity of activated carbon fibre supporting silver bactericidal activity of ACF(Ag) mediated by ROS [J]. Journal of Inorganic Biochemistry,2004,98(6):1054-1060.
    [251]DROR-EHRE A, MAMANE H, BELENKOVA T, et al. Silver nanoparticle-E. coli colloidal interaction in water and effect on E-coli survival [J]. Journal of Colloid and Interface Science,2009,339(2):521-526.
    [252]LIU T, TANG H Q, CAI X M, et al. A study on bactericidal properties of Ag coated carbon nanotubes [J]. Nuclear Instruments&Methods in Physics Research Section B-Beam Interactions with Materials and Atoms,2007,264(2):282-286.
    [253]NIU A, HAN Y J, WU J A, et al. Synthesis of One-Dimensional Carbon Nanomaterials Wrapped by Silver Nanoparticles and Their Antibacterial Behavior [J]. Journal of Physical Chemistry C,2010,114(29):12728-12735.
    [254]LIN Y, WATSON K A, FALLBACH M J, et al. Rapid, Solventless, Bulk Preparation of Metal Nanoparticle-Decorated Carbon Nanotubes [J]. ACS Nano,2009,3(4):871-884.
    [255]YUAN W, JIANG G H, CHE J F, et al. Deposition of Silver Nanoparticles on Multiwalled Carbon Nanotubes Grafted with Hyperbranched Poly(amidoamine) and Their Antimicrobial Effects [J]. Journal of Physical Chemistry C,2008,112(48):18754-18759.
    [256]ZHU Y W, MURALI S, CAI W W, et al. Graphene and Graphene Oxide:Synthesis, Properties, and Applications [J]. Advanced Materials,2010,22(35):3906-3924.
    [257]CHEN H, MULLER M B, GILMORE K J, et al. Mechanically strong, electrically conductive, and biocompatible graphene paper [J]. Advanced Materials,2008,20(18):3557-3561.
    [258]FU X Q, BEI F L, WANG X, et al. Excitation profile of surface-enhanced Raman scattering in graphene-metal nanoparticle based derivatives [J]. Nanoscale,2010,2(8):1461-1466.
    [259]MUSZYNSKI R, SEGER B, KAMAT P V. Decorating graphene sheets with gold nanoparticles [J]. Journal of Physical Chemistry C,2008,112(14):5263-5266.
    [260]LIANG J J, XU Y F, SUI D, et al. Flexible, Magnetic, and Electrically Conductive Graphene/Fe3O4Paper and Its Application For Magnetic-Controlled Switches [J]. Journal of Physical Chemistry C,2010,114(41):17465-17471.
    [261]SU C Y, XU Y P, ZHANG W J, et al. Electrical and Spectroscopic Characterizations of Ultra-Large Reduced Graphene Oxide Monolayers [J]. Chemistry of Materials,2009,21(23):5674-5680.
    [262]STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon,2007,45(7):1558-1565.
    [263]HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide [J]. Journal of the American Chemical Society,1958,80(6):1339.
    [264]NIITSOO O, COUZIS A. Facile synthesis of silver core-silica shell composite nanoparticles [J]. Journal of Colloid and Interface Science,2011,354(2):887-890.
    [265]LUKMAN A I, GONG B, MARJO C E, et al. Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates [J]. Journal of Colloid and Interface Science,2011,353(2):433-444.
    [266]VIMALA K, MOHAN Y M, SIVUDU K S, et al. Fabrication of porous chitosan films impregnated with silver nanoparticles:A facile approach for superior antibacterial application [J]. Colloids and Surfaces B-Biointerfaces,2010,76(1):248-258.
    [267]SHARMA V K, YNGARD R A, LIN Y. Silver nanoparticles:Green synthesis and their antimicrobial activities [J]. Advances in Colloid and Interface Science,2009,145(1-2):83-96.
    [268]KONG H, JANG J. Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles [J]. Langmuir,2008,24(5):2051-2056.
    [269]AKHAVAN O, GHADERI E. Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation [J]. Journal of Physical Chemistry C,2009,113(47):20214-20220.
    [270]SREEPRASAD T S, MALIYEKKAL S M, LISHA K P, et al. Reduced graphene oxide-metal/metal oxide composites:Facile synthesis and application in water purification [J]. Journal of Hazardous Materials,2011,186(1):921-931.
    [271]REN C L, YANG B F, WU M, et al. Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance [J]. Journal of Hazardous Materials,2010,182(1-3):123-129.
    [272]THOMAS V, YALLAPU M M, SREEDHAR B, et al. A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity [J]. Journal of Colloid and Interface Science,2007,315(1):389-395.
    [273]AGOSTINI G, USSEGLIO S, GROPPO E, et al. From Isolated Ag+Ions to Aggregated AgO Nanoclusters in Silver-Exchanged Engelhard Titanosilicate (ETS-10) Molecular Sieve: Reversible Behavior [J]. Chemistry of Materials,2009,21(7):1343-1353.
    [274]DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide [J]. Chemical Society Reviews,2010,39(1):228-240.
    [275]WU J L, SHEN X P, JIANG L, et al. Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites [J]. Applied Surface Science,2010,256(9):2826-2830.
    [276]LIU J Y, SONSHINE D A, SHERVANI S, et al. Controlled Release of Biologically Active Silver from Nanosilver Surfaces [J]. ACS Nano,2010,4(11):6903-6913.
    [277]CHOI O, DENG K K, KIM N J, et al. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth [J]. Water Research,2008,42(12):3066-3074.
    [278]PARK S, RUOFF R S. Chemical methods for the production of graphenes [J]. Nature Nanotechnology,2009,4(4):217-224.
    [279]GAO W, ALEMANY L B, CI L J, et al. New insights into the structure and reduction of graphite oxide [J]. Nature Chemistry,2009,1(5):403-408.
    [280]LIU J Y, HURT R H. Ion Release Kinetics and Particle Persistence in Aqueous Nano-Silver Colloids [J]. Environmental Science&Technology,2010,44(6):2169-2175.
    [281]WANG J X, WEN L X, WANG Z H, et al. Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects [J]. Materials Chemistry and Physics,2006,96(1):90-97.
    [282]WEI D W, SUN W Y, QIAN W P, et al. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity [J]. Carbohydrate Research,2009,344(17):2375-2382.
    [283]OH J, LEE J H, KOO J C, et al. Graphene oxide porous paper from amine-functionalized poly(glycidyl methacrylate)/graphene oxide core-shell microspheres [J]. Journal of Materials Chemistry,2010,20(41):9200-9204.
    [284]CHEN S, ZHU J W, WANG X. One-Step Synthesis of Graphene-Cobalt Hydroxide Nanocomposites and Their Electrochemical Properties [J]. Journal of Physical Chemistry C,2010,114(27):11829-11834.
    [285]XU C, WANG X. Fabrication of Flexible Metal-Nanoparticte Film Using Graphene Oxide Sheets as Substrates [J]. Small,2009,5(19):2212-2217.
    [286]COMPTON O C, NGUYEN S T. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene:Versatile Building Blocks for Carbon-Based Materials [J]. Small,2010,6(6):711-723.
    [287]SUBRAHMANYAM K S, MANNA A K, PATI S K, et al. A study of graphene decorated with metal nanoparticles [J]. Chemical Physics Letters,2010,497(1-3):70-75.
    [288]WAN Y, WANG Y, WU J J, et al. Graphene Oxide Sheet-Mediated Silver Enhancement for Application to Electrochemical Biosensors [J]. Analytical Chemistry,2011,83(3):648-653.
    [289]BRYASKOVA R, PENCHEVA D, KALE G M, et al. Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag NP hybrid thin films [J]. Journal of Colloid and Interface Science,2010,349(1):77-85.
    [290]WANG Q F, YU H J, ZHONG L, et al. Incorporation of silver ions into ultrathin titanium phosphate films:In situ reduction to prepare silver nanoparticles and their antibacterial activity [J]. Chemistry of Materials,2006,18(7):1988-1994.
    [291]SHEN J F, SHI M, YAN B, et al. Covalent attaching protein to graphene oxide via diimide-activated amidation [J]. Colloids and Surfaces B-Biointerfaces,2010,81(2):434-438.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700