甲醇气相氧化羰基化制备碳酸二甲酯
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸二甲酯(DMC)是重要的绿色化工产品,具有广泛的应用前景,被誉为21世纪有机合成的“新基块”。在DMC合成方法中,甲醇气相氧化羰基化法以其成本低,污染小,产物选择性高和生产工艺简单等诸多优点倍受重视,被誉为是最有前途的DMC生产方法之一。然而,甲醇气相氧化羰基化法合成DMC存在的主要缺陷是甲醇转化率低,催化剂易于失活。
     本文从改变催化剂的助剂和载体两个方向出发,研究了多羟基化合物类助剂对甲醇气相氧化羰基化合成DMC催化剂性能的影响,并对助剂选择方法以及助剂的添加量等问题进行了探讨;同时,建立了载体的类型与催化剂反应活性、产物选择性之间的对应关系,研究了载体的材质及孔结构对催化剂性能的影响,主要研究结果如下:
     1.以多羟基化合物为助剂修饰活性炭(AC)负载的Pd-Cu双金属催化剂。活性评价结果显示:未添加助剂时,甲醇的转化率为2.8%,DMC对甲醇的选择性为88.9%。而添加适量的丙三醇后,甲醇的转化率达到26.1%,DMC对甲醇的选择性达到92.1%。XRD,SEM,XPS等表征结果表明:多羟基化合物助剂的添加,能有效提高金属活性组分的分散度,且焙烧后不会产生包裹活性组分或者挤占载体表面活性位的残余物,因此助剂改性后Pd-Cu/AC催化剂的反应性能较改性前有显著的提高。值得注意的是:多羟基化合物具有还原性,添加量过多将导致金属活性物种部分还原,造成催化剂活性下降。
     2.介孔材料的合成及其负载的Pd-Cu双金属催化剂的反应性能。以SBA-15为硬模板,蔗糖为碳源,合成出介孔炭材料。SEM,XRD和N2物理吸附测试结果显示:介孔炭呈棒状,质地疏松,有序度良好,表面积大,且孔道分布均匀,孔径集分布中在4nm左右。将合成的介孔炭作为载体应用于甲醇气相氧化羰基化反应中,活性评价结果显示:甲醇的初始转化率很高,达到了30%左右,可是产物对甲醇的选择性偏低,只有7%。随着反应的进行,转化率逐渐下降到17%,而DMC对甲醇的选择性在6h则升高到90%,且在随后的测试段内内保持稳定。对比活性炭负载的催化剂反应性能,可以看出炭质载体的孔结构的改变、孔径的增大并不能有效提高催化剂的反应性能,说明本反应体系所涉及的传质阻力较小,影响催化剂反应性能的关键因素应是金属活性物种的分散度。
     3.活性炭的预处理对催化反应性能的影响。测试的样品中,以0.5M硝酸处理的活性炭负载的金属催化剂性能最佳。在反应的初始阶段,甲醇最高转化率超过30%;进入稳定期后,转化率为25%, DMC对甲醇的选择性为90%。表征结果表明,硝酸处理能显著提高活性炭表面含氧基团的浓度,使得金属活性组分易于分散。而随着硝酸浓度的增加,高浓度的硝酸会氧化活性炭表面的不稳定碳分子,破坏活性炭的内孔壁表面,使得活性炭的部分微孔或中孔变大,从而降低了催化剂的活性。
Dimethyl carbonate(DMC), as an important green chemical intermediate, has considerable potential for green chemicals synthesis, and is known as a new benign building block of organic synthesis in the new century. There are several ways to the synthesis of DMC, in which vapor-phase oxidative carbonylation of methanol has many advantages, such as low erosion, relatively easier separation of products, attainable raw materials etc. However, the major drawback for this reaction is a low methanol conversion together with rapid deactivity of catalysts.
     In this paper, promoter and support were investigated to study the change of catalyst activity for synthesis of dimethyl carbonate by gas-oxidative carbonylation of methanol. The results are summarized as follows:
     1. In the reaction of gas-phase oxidative carbonylation of methanol, the activity of PdCl2-CuCl2/AC catalyst was low, the conversion of methanol and the selectivity of DMC to methanol are 2.8% and 88.9%. When the catalyst was modified by glycerol, its catalytic performance was improved significantly: the conversion of methanol and the selectivity of DMC to methanol are 26.1% and 92.1%. The catalysts use polyhydroxy compounds as promoter were characterized by means of XRD, SEM and XPS. The results showed that the addition of promoter can significantly enhance the dispersal of active species. And there would not have leftover after calcinations which will enwrap active component. However, the polyhydroxy compounds promoters would reduce the metal active component, and this situation would induce the deactivation of catalysts.
     2. Using SBA-15 as hard templates, sucrose as the carbon source, mesoporous carbon materials were prepared. The results of SEM and XRD showed that mesoporous carbon had a rod with loose texture, there were three XRD peaks which could be assigned to (100), (110) and (200) diffractions of the 2-d hexagonal space group, it indicated that carbon materials had highly ordered structure. And the carbon material has uniform mesopores about 4 nm in size. Mesoporous carbon was used as catalyst support in the synthesis of dimethyl carbonate by gas-phase oxidative carbonylation of methanol. At the beginning, the conversion of methanol and the selectivity of DMC to methanol are 30% and7%. While the activity of catalyst remains stable, the conversion of methanol and the selectivity of DMC to methanol are 17% and 90%. Compare with the catalysts support on the AC, it appeared that the change of pore structure and the increase of pore diameter can enhance the catalytic activities. So it can conclude that the key factors is dispersion of metal active species.
     3. The activated carbon (AC) which treated with different methods were investigated to study the change of PdCl_2-CuCl_2/AC catalysts activity, and found that the AC treated with nitric acid (0.5M) had the best performance. At the beginning, the conversion of methanol was more than 30%; the conversion received 25% and the selectivity of DMC to methanol was more than 90% while catalyst remains stable. The results of characterization showed that the treatment of HNO3 can significantly increase the concentration of oxygen-containing groups on AC, so the dispersal of active species on AC will be enhanced. However, a too-large concentration of HNO3 will destroy the mesopore and micropore structure of AC which will decrease the activity of catalysts.
引文
[1]Y. Ono. Dimethyl carbonate for environmentally benign reactions. Catalysis Today,1997,35 (1-2):15-25
    [2]C. Li, X. Zhang,S. Zhang. Environmental Benign Design of DMC Production Process. Chemical Engineering Research and Design,2006,84 (1):1-8
    [3]李翔毓.碳酸二甲酯合成技术及应用详述.上海化工,2001,(3-4):49-54
    [4]R. G. Deleon, A. Kobayashi, T. Yamauchi, et al. Catalytic methoxycarbonylation of 1,6-hexanediamine with dimethyl carbonate to dimethylhexane-1,6-dicarbamate using Bi(NO3)3. Applied Catalysis A: General,2002,225 (1-2):43-49
    [5]侯晓英,王海军.碳酸二甲酯的应用及制备方法.甘肃科技纵横,2007,(04):56,84
    [6]刘吉平,肖玉梅.绿色化学试剂——碳酸二甲酯.化学教学,2006,(12):32-33
    [7]王毅,张旭斌.碳酸二甲酯的合成及其应用现状.天津化工,2007,(02):41-44
    [8]肖博文,方云进.碳酸二甲酯合成及应用技术研究进展.化工科技,1998,6 (04):1-6
    [9]Yoshio Ono. Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block [J]. Appl. Catal. A: General. 1997, 155(2):133-166
    [10]H. Babad,A. G. Zeiler. Chemistry of phosgene. Chemical Reviews,1973,73 (1):75-91
    [11]Z. Li, B. Cheng, K. Su, et al. The synthesis of diphenyl carbonate from dimethyl carbonate and phenol over mesoporous MoO3/SiMCM-41. Journal of Molecular Catalysis A: Chemical,2008,289 (1-2):100-105
    [12]D.-S. Tong, J. Yao, Y. Wang, et al. Transesterification of dimethyl carbonate with phenol to diphenyl carbonate over V2O5 catalyst. Journal of Molecular Catalysis A: Chemical,2007,268 (1-2):120-126
    [13]J. Gong, X. Ma,S. Wang. Phosgene-free approaches to catalytic synthesis of diphenyl carbonate and its intermediates. Applied Catalysis A: General,2007,316 (1):1-21
    [14]舒婷,李光兴.碳酸二甲酯作甲基化试剂的研究进展.化工中间体,2008,(1):20-23
    [15]方云进,陆婉珍.碳酸二甲酯作汽油添加剂的应用研究.现代化工,1998,(4):20-22
    [16]陆婉珍,肖文德.碳酸二甲酯作为汽油添加剂的评价.石油学报:石油加工,1997,6
    [17]韦小杰;陈小鹏.绿色溶剂DMC在氢化松香甘油酯酸值测定中的应用.食品工业科技,2009,11
    [18]黄楚填,刘震.碳酸二甲酯在氯丁和SBS型胶黏剂中的应用.宁波化工,2008,(4):24-28
    [19]S. R. Jagtap, M. D. Bhor,B. M. Bhanage. Synthesis of dimethyl carbonate via transesterification of ethylene carbonate with methanol using poly-4-vinyl pyridine as a novel base catalyst. Catalysis Communications,2008,9 (9):1928-1931
    [20]Y. Zhao, L. N. He, Y. Y. Zhuang, et al. Dimethyl carbonate synthesis via transesterification catalyzed by quaternary ammonium salt functionalized chitosan. Chinese Chemical Letters,2008,19 (3):286-290
    [21]H. Wang, M. Wang, W. Zhang, et al. Synthesis of dimethyl carbonate from propylene carbonate and methanol using CaO-ZrO2 solid solutions as highly stable catalysts. Catalysis Today,2006,115 (1-4):107-110
    [22]D. W. Park, E. S. Jeong, K. H. Kim, et al.Synthesis of dimethyl carbonate by transesterification of ethylene carbonate and methanol using quaternary ammonium salt catalysts Studies in Surface Science and Catalysis:Volume 159. Elsevier,2006.329-332
    [23]P. DeFilippis, M. Scarsella, C. Borgianni, et al. Production of Dimethyl Carbonate via Alkylene Carbonate Transesterification Catalyzed by Basic Salts. Energy Fuels,2006,20 (1):17-20
    [24]V. V. M. Shekhar M Dhuri. Studies in transesterification of ethylene carbonate to dimethyl carbonate over Amberlyst A-21 catalyst. Journal of Chemical Technology & Biotechnology,2006,81 (1):62-69
    [25]成继业,江琦.环氧烷烃、二氧化碳和甲醇一步合成碳酸二甲酯研究进展.天然气化工(C1化学与化工),2007,(05):72-75
    [26]周奇志.二氧化碳和甲醇直接合成碳酸二甲酯的研究进展.化学通报,2009,(03) [27 ]K Tomishige , T Sakaihori , Y Ikeda et al . Catal . Lett . , 1999 , 58 (4) :225~2291 [28 ]K Tomishige ,Y Ikeda ,T Sakaihori et al . J Catal . , 2000 , 192 (2) :355~3621 [29 ]K TJung , A T Bell . Topics in Catal . , 2002 , 20 ( 124) : 97~1051
    [30]K TJung , A T Bell . J . Catal . , 2001 , 204 (2) : 339~3471
    [31]U Romano, R Tesel, M Massi Marri, et al. Synthesis of dimethyl carbonate from methanol, carbon monoxide and oxygen catalyzed by copper compounds[J]. Ind Eng Chem Prod Res Dev. 1980, 19:396-403
    [32]李忠,潘亚丽,谢客昌.碳酸二甲酯的合成化学.煤炭转化,2001,(04)
    [33]M. G. E,W. G.Process for the Coproduction of Dialkyl Carbonate and Tertiary Butanol.US.4644078,1987
    [34]姜瑞霞,王延吉,赵新强, et al.甲醇气相氧化羰基化合成碳酸二甲酯的研究Ⅲ.催化剂的失活再生.燃料化学学报,2000,(05):478-480
    [35]姜瑞霞,王延吉,赵新强, et al.甲醇气相氧化羰基化合成碳酸二甲酯的研究Ⅱ.燃料化学学报,1999,(04):319-322
    [36]张海涛,王淑芳,赵新强, et al.负载型CuO催化剂上甲醇气相氧化羰基化合成碳酸二甲酯反应研究.河北工业大学学报,2004,(04):
    [37]王延吉,赵新强,苑保国, et al.甲醇气相氧化羰基化合成碳酸二甲酯的研究Ⅰ.催化剂制备及反应性能.燃料化学学报,1997,(04):36-40
    [38]王淑芳,崔咏梅,赵新强, et al.合成碳酸二甲酯PdCl2-CuCl2-KOAc/AC催化剂失活过程分析.化工学报,2004,(12):2008-2014
    [39]曹发海,应卫勇,房鼎业, et al.气相直接法甲醇氧化羰化合成碳酸二甲酯催化剂的研究.化学反应工程与工艺,1997,(04):
    [1]宋一兵,罗爱国,杜玉海,et al.甲醇直接气相氧化羰基化合成碳酸二甲酯.化学进展,2008, 20 (2/3): 221-226
    [2]姜瑞霞,王延吉,赵新强,et al.甲醇气相氧化羰基化合成碳酸二甲酯的研究Ⅱ.燃料化学学报,1999, (04): 319-322
    [3]姜瑞霞,王延吉,赵新强,et al.甲醇气相氧化羰基化合成碳酸二甲酯的研究Ⅲ.催化剂的失活再生.燃料化学学报,2000, (05): 478-480
    [4]王延吉,赵新强,苑保国,et al.甲醇气相氧化羰基化合成碳酸二甲酯的研究Ⅰ.催化剂制备及反应性能.燃料化学学报,1997, (04): 36-40
    [5]W. Yanji, Z. Xinqiang, Y. Baoguo, et al. Synthesis of dimethyl carbonate by gas-phase oxidative carbonylation of methanol on the supported solid catalyst I. Catalyst preparation and catalytic properties. Applied Catalysis A: General, 1998, 171(2): 255-260
    [6]J. Ruixia, W. Shufang, Z. Xinqiang, et al. The effects of promoters on catalytic properties and deactivation-regeneration of the catalyst in the synthesis of dimethyl carbonate. Applied Catalysis A: General, 2003, 238(1): 131-139
    [7]王少成,曹勇,杨平,et al. TBAB修饰的负载型Wacker催化剂催化甲醇羰基化合成碳酸二甲酯.高等学校化学学报,2002, (12): 2363-2365
    [8]P. Yang, Y. Cao, J.-C. Hu, et al. Mesoporous bimetallic PdCl2-CuCl2 catalysts for dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol. Applied Catalysis A: General, 2003, 241(1-2): 363-373
    [9]郭锐华.甲醇、二甲醚共进料气相氧化羰基化合成碳酸二甲酯.汕头大学[硕士]. 2007.
    [10]薛亮.甲醇气相羰基化合成碳酸二甲酯的研究.汕头大学[硕士]. 2006.
    [11]方奕文.甲醇、二甲醚共进料气相氧化羰基化合成碳酸二甲酯.华南理工大学[博士]. 2006.
    [12]M. S. Han, B. G. Lee, I. Suh, et al. Synthesis of dimethyl carbonate by vapor phase oxidative carbonylation of methanol over Cu-based catalysts. Journal of Molecular Catalysis A: Chemical, 2001, 170(1-2): 225-234
    [13]曹发海,应卫勇,房鼎业.活性炭载体对甲醇氧化羰化合成碳酸二甲酯催化活性的影响.化学世界,2000, (04): 195-197
    [14]Y. Chiba, S. Yoshida, Y. Asada, Kagau Kougaku 60 (1996) 355.
    [15]B. Blin; F. Fievet; D. Beaupe`re; M. Figlarz NouV. J. Chim. 1989, 13: 67
    [16]Sara E. Skrabalk,Benjamin J.Willey.et al. On the Polyol Synthesis of Silver Nanostructures: Glycoladldehyde as a Reducing Agent. Nano Letters. 2008, 8(7): 2077-2081
    [1]Ryoo R,Joo S H,Jun S J.Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J]. J.PhysChem. B, 1999, 103: 7743-7746
    [2]H.Tamai,M.Lkeuchi,S.Kojima,H.Yasuda,Adv.Mater.9(1997)55.
    [3] T.Kyotani,Carbon 38(2000) 269.
    [4]Wan Y, Zhao DY. On the Controllable Soft-Templating Approach to Mesoporous Silicates. 2007, 107(7): 2821-2860.
    [5]Thomas A, Goettmann F, AntoniettiM. Hard Templates for Soft Materials: Creating Nanostructured Organic Materials. Chemistry of Materials, 2008, 20(3): 738-755
    [6]Velev OD, Lenhoff AM. Colloidal Crystals as Templates for Porous materials. Current Opinion in Colloid and Interface Science 2000: 5(1-2): 56-63
    [7]丛海林,曹维孝.二氧化硅胶体晶体及其为模板的多孔材料.高等学校化学学报, 2005, 26(3): 535-539
    [8]Deng Y, Liu C, Yu T, et al. Facile Synthesis of Hierarchically Porous Carbons from Dual Colloidal Crystal/Block Copolymer Template Approach. Chem. Mater. 2007, 19, (13), 3271-3277
    [9]杨鹏,周浪,李俊, et al. 2008. PMMA胶体晶体模板法制备SiO2多孔材料.武汉工程大学学报, 2008, 30(1): 76-79
    [10]曹艳玲,王艳平,朱永政, et al. 2006.聚苯乙烯胶体晶体模板制备高质量的二氧化钛孔型材料.科学通报, 2006, 51(13): 1509-1512
    [11]阎卫东李容杨2002.二氧化硅胶体晶模板技术制备间规聚苯乙烯有序孔材料.高等学校化学学报, 2002, 23(2): 330-332
    [12]KyotaniT, MaZX, TomitaA. Template synthesis of novel Porous carbons using various types of zeolites. Carbon,2003,41:1451一1459
    [13]Jun S, Joo S H, Ryoo R, et al. Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure, 2000,10712-10713
    [14]Ryoo R, Joo S H, Jun S. Synthesis of Highly Ordered Carbon Molecular Sievesvia Template-Mediated Structural Transformation. J. Phys. Chem. B, 1999, 103: 7743-7746
    [15]R. RYOO S H J M K M J 2001. Ordered Mesoporous Carbons. Advanced Materials , 13: 677-681.
    [16]姚七妹,谭镇,周颖,邱介山.模板法制备多孔炭材料的研究进展.炭素技术,2005,l(l): 15~21
    [17]KresgeCT, LeonowiczME, RothWJ, etal.Ordered mesoporous molecular sieve synthesized by a liquid crystal temPlate mechanism. Nature, 1992, 359:710-712
    [18]Zhao DY, Feng JL, Huo QS, et al. Triblock copolymer syntheses of mesoporous silica with Periodie 50 to300 angstrom Pore. Science, 279(1998): 548-552
    [19]Schuth F, Non-siliceous mesostructured and mesoporous materials. Chem Mater, 2001, 13(10): 3184-3195
    [20]St?ber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 1968, 26: 62-69
    [21]Tanev PT, Pinnavaia TJ. A neutral templating route to mesoporous molecular sieves, science, 1995, 267(5199): 865-867
    [1]韩文锋,霍超,刘化章.钌基氨合成催化剂的TPD/R研究[J].高校化学工程学报,2002,16(5):565—569.
    [2]Robert Schl?gl.Surface Composition and Structure of Active Carbons //Handbook of Porous Solids:2008.1863-1900
    [3]K. S. W. Sing.Overview of Physical Adsorption by Carbons //Adsorption by Carbons:Amsterdam:Elsevier,2008.3-14
    [4]Paul Chen,Shunnian Wu.Acid/base-treated activated carbon:characterization of functional groups and metal adsorptive properties[J].Langmuir,2004,20:2033-2242
    [5]Moreno C C,Carrasco M F,Maldonado H F,et al.Effect of non-oxidant and oxidant acid treatment on the surface properties of activated carbon with very low ash content[J]. Carbon,1998,36(1-2): 145-151.
    [6]Rodriguez-Reinoso F.The role of carbon materials in heterogeneous catalysts [J].Carbon,1998,36:159—175.
    [7]湛雪辉,黄艳.五氟氯乙烷的钯催化法加氢脱氯反应研究[J].环境科学研究,2003,16(2):61—64.
    [8]丁军委,江秀华.载体预处理对Pd/C催化剂催化性能的影响[J].工业催化,2007, 15(7).
    [9]Noh, J. S.; Scharwz, J. A. Carbon 1990, 28, 675-682.
    [10]C. Moreno-Castilla, M. A. Ferro-Garcia, J. P. Joly, et al. Activated Carbon Surface Modifications by Nitric Acid, Hydrogen Peroxide, and Ammonium Peroxydisulfate Treatments. Langmuir,1995,11 (11):4386-4392
    [11] Gomez-Serrano, V.; Acedo-Ramos, M.; Jopez-Peinado, A. J.; Valenzuela-Calahorrro, C. Thermochim. Acta 1997, 291, 109-115.
    [12] Mazet, M.; Farkhani, B.; Bauhu, M. Water Res. 1994, 28, 1609-1917.
    [13]C. Y. Yin, M. K. Aroua,W. M. A. W. Daud. Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Separation and Purification Technology,2007,52 (3):403-415
    [14]S.-J. Park,Y.-S. Jang. Pore Structure and Surface Properties of ChemicallyModified Activated Carbons for Adsorption Mechanism and Rate of Cr(VI). Journal of Colloid and Interface Science,2002,249 (2):458-463
    [15]W. Chen, F. S. Cannon,J. R. Rangel-Mendez. Ammonia-tailoring of GAC to enhance perchlorate removal. I: Characterization of NH3 thermally tailored GACs. Carbon,2005,43 (3):573-580
    [16]W. Chen, F. S. Cannon,J. R. Rangel-Mendez. Ammonia-tailoring of GAC to enhance perchlorate removal. II: Perchlorate adsorption. Carbon,2005,43 (3):581-590
    [17]万福成,李炳诗.活性炭富集溶液中.Au(Ⅲ)研究[J].信阳农业高等专科学校学报,1999,9(2):39-41
    [18]叶平伟,栾志强,张敬畅.活性炭的高温脱氧改性及其床层对全氟异丁烯的吸附动力学研究.高等学校化学学报,2008,29 (5):5
    [19]高尚愚.表面改性活性炭对苯酚及苯磺酸吸附的研究[J].林产化学与工业, 1994,24(3)
    [20]S. Biniak, M. Pakula, G. S. Szymanski, et al. Effect of Activated Carbon Surface Oxygen- and/or Nitrogen-Containing Groups on Adsorption of Copper(II) Ions from Aqueous Solution. Langmuir,1999,15 (18):6117-6122
    [21]乔志军,李家俊,赵乃勤.高温热处理对活性炭纤维微孔及表面性能的影响.新型炭材料,2004,4
    [22]N. Krishnankutty,M. A. Vannice. The Effect of Pretreatment on Pd/C Catalysts : I. Adsorption and Absorption Properties. Journal of Catalysis,1995,155 (2):312-326

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700